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shapr – Conditional Shapley Value 
Explanation in R and Python

Code examples available at 
https://github.com/NorskRegnesentral/shapr/tree/master/inst/demo

https://github.com/NorskRegnesentral/shapr/tree/master/inst/demo
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Background

• 2017/2018: Developed interest in explainability

• 2018: Identified dependence issue in Lundberg & Lee (2017)

• 2019: First preprint of Aas, Jullum & Løland (2021)

• 2020: JOSS paper for shapr 0.2.3, Sellereite & Jullum (2020)

• 2020-2024: Multiple methodological papers for estimating 𝑣 𝑆 ++

• 2024-2025: Complete overhaul of shapr + Python wrapper (shaprpy)

• 2025: Preprint of software paper for shapr + shaprpy

Core idea of shapr: Contrast shap in Python – doing dependence aware estimation of 𝑣 𝑆
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Estimation procedure in shapr

• Use KernelSHAP to approximate the 
Shapley value formula

A wide range of approaches for 
estimating 𝑣 𝑆

• Monte Carlo integration

• Regression 𝑓 𝒙 ҧ𝑆 , 𝒙𝑆 ∼ 𝒙𝑆

KernelSHAP WLS problem
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• Native support for lm, glm, xgboost, ranger, 
mgcv-gam, parsnip/workflows, …

• Custom model support

• Bootstrapping coalition sampling uncertainty

• Convergence detection

• Iterative estimation and continued estimation

• MSEv evaluation of estimation approaches

• Feature group explanation

• Asymmetric and Causal Shapley values
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• Improved KernelSHAP efficiency 

• Parallelized batch computations (future)

• Progress reports and information while 
running (progressr + cli)

• Utilize C++ (Rcpp/RcppArmadillo) for 
computationally demanding code segments

• Visualization of explanations (ggplot2)

• Explain time series forecasts (multiple 
horizons)

• Approaches can be combined – one 
approach per size of |S|

Package capabilities
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shaprpy – the Python wrapper

• Lightweight Python wrapper around shapr for 
explaining models fitted in Python

• Built using the rpy2 library

• Visualization through the shap library

• All core capabilities of the shapr package

• Exceptions

• Explaining time series forecasts

• Parallelization

• Available on PyPI 
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Getting started

• Pkgdown site norskregnesentral.github.io/shapr

• Lots of examples in 4 comprehensive vignettes

• Full installation instruction

• shapr – install from CRAN: install.packages(‘shapr’)

• shaprpy – install from PyPI: pip install shaprpy

• Requires access to R with shapr installed

• Software paper (arxiv preprint)

• Code and issues: github.com/NorskRegnesentral/shapr

https://norskregnesentral.github.io/shapr/
https://norskregnesentral.github.io/shapr/
https://github.com/NorskRegnesentral/shapr
https://github.com/NorskRegnesentral/shapr
https://github.com/NorskRegnesentral/shapr
https://github.com/NorskRegnesentral/shapr
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DEMO TIME!
Code examples available at 

https://github.com/NorskRegnesentral/shapr/tree/master/inst/demo

https://github.com/NorskRegnesentral/shapr/tree/master/inst/demo
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