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The role of causality in XAI

• Humans have a strong tendency to reason about their environment
in causal terms.1 Both causality and XAI are centered on humans,
aiming to ensure true usefulness for humans.2

• It is often easier for a model to get good predictions for the wrong
reasons.3 Pearl highlights the need to have AI systems that are
robust to changes in environment.4

• For medical decision support, it is necessary to understand the
causality of learned representations, so causal reasoning becomes an
important component of explainable AI.5

1 Sloman, Causal Models.
2 Carloni, Berti, and Colantonio, “The Role of Causality in Explainable Artificial Intelligence”.
3 Pichler and Hartig, “Machine learning and deep learning: A review for ecologists”.
4 Pearl, “The seven tools of causal inference, with reflections on machine learning”.
5 Wu et al., “Methods and Applications of Causal Reasoning in Medical Field”.
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Source: Carloni, Berti, and Colantonio, “The Role of Causality in Explainable Artificial Intelligence”



Shapley values

Shapley values are based on solid game-theoretic principles and provide a
natural way to estimate the contribution of each input feature in a
predictive model.

The prediction Y of a model f (X) can be decomposed into:

Y = f (x) = E[f (X)] +
n∑

i=1
φi [f (x)] , i ∈ N = {1, 2, . . . , n},

where the Shapley value of feature i is

φi = 1
n

∑
S⊆N\{i}

(
n − 1
|S|

)−1
[υ(S ∪ {i}) − υ(S)] ,

for a chosen payoff / value function υ and coalition S.



Value functiona

a Lundberg and Lee, “A Unified Approach to Interpreting Model Predictions”; Aas, Jullum, and Løland, “Explaining individual
predictions when features are dependent”.

A common choice for the value function involves computing conditional
distributions on the observed data:

υ(S) = E [f (X)|XS = xS ]

=
∫

dX P(X|XS = xS)f (X)

=
∫

dXS̄ P(XS̄ |XS = xS)f (XS̄ , xS) ,

where S is a coalition of players and S̄ = N \ S is the set of players
outside the coalition.



Why do we need causal Shapley values?
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Incorporating causality into Shapley values

Idea 1: use marginal distributions for the value function6

P(XS̄ |XS = xS) = P(XS̄) =⇒

υ(S) =
∫

dXS̄P(XS̄)f (XS̄ , xS)

6 Janzing, Minorics, and Bloebaum, “Feature relevance quantification in explainable AI”.



Incorporating causality into Shapley values

Idea 2: choose coalitions based on known causal orderings7

For any permutation (arbitrary ordering) of the N variables, we define:

φi(π) = υ({j : j �π i}) − υ({j : j ≺π i}) ,

with j ≺π i if j precedes i in the permutation π. Then

φi =
∑
π∈Π

φi(π) ,

where Π is the set of all permutation consistent with the causal structure
between features. These Shapley values are no longer symmetric.

7 Frye, Rowat, and Feige, “Asymmetric Shapley values”.



Incorporating causality into Shapley values

Our idea: apply do-calculus8

X Y
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P(y |x)
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Z

P(y |do(x))

P(y |x) 6=
∑

z
P(y |x , z)P(z) = P(y |do(x))

8 Heskes et al., “Causal Shapley Values”.
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Causal Shapley values

We define the value function as

υ(S) = E [f (X)|do(XS = xS)] =
∫

dXS̄ P(XS̄ |do(XS = xS))f (XS̄ , xS) ,

where S is a coalition of players and S̄ = N \ S is the set of players
outside the coalition.

Given a complete causal ordering, the interventional distribution is:

P(XS̄ |do(XS = xS)) =
∏
j∈S̄

P(Xj |Xpa(j)∩S̄ , xpa(j)∩S) ,

where pa(j) ∩ S are the parents of j that are also part of the coalition S.



Causal Shapley values
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Causal Shapley values in practice

partial causal ordering

({1, 2}, {3, 4, 5}, {6, 7})
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Causal Shapley values in practice

partial causal ordering

({trend}, {cosyear , sinyear},
{temp, atemp, windspeed , hum})
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Causal Shapley values in practice

partial causal ordering

({trend}, {cosyear , sinyear},
{temp, atemp, windspeed , hum})
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Applications in healthcare

• Banerjee et al.9 use causal Shapley values to understand the causal
connections between socioeconomic metrics and the spread of
COVID-19. They consider three plausible partial causal graphs.

• Su et al.10 use causal Shapley values to address potential biases
caused by confounding features in a study on predicting mortality of
hemodialysis patients.

• Tyrovolas et al.11 proposes the use of causal XAI for cancer diagnosis
to address the vulnerability of predictive models to biases and
spurious correlations.

9 Banerjee et al., “Causal connections between socioeconomic disparities and COVID-19 in the USA”.
10Su et al., “Prediction of mortality in hemodialysis patients based on autoencoders”.
11Tyrovolas et al., “Towards Causal Explainable AI in Cancer Diagnosis”.



Extensions

• Watson12 propose rational Shapley values, which extend the
methodology to also explain contrastive outcomes by shifting the
reference distribution.

• Wang, Zhang, and Fu13 perform causal discovery (with Direct-
LiNGAM) to obtain a fully-specified causal graph that can be used to
compute causal Shapley values.

• Ng et al.14 incorporate causal strengths (estimated with IDA) into
the SHAP algorithm by using them to reweigh Shapley values.

12Watson, “Rational Shapley Values”.
13Wang, Zhang, and Fu, “Time series prediction of tunnel boring machine (TBM) performance during excavation using causal explainable
artificial intelligence (CX-AI)”.
14Ng et al., “Causal SHAP”.



Conclusions

• When causal information (partial graph, strength estimates) is
available, it is useful to incorporate it into your SHAP analysis to
achieve a more causally intuitive feature attribution.

• Using the interventional distribution is optimal when one seeks
explanations for the causal data-generating processes.15

• Causal Shapley values provide a principled way of incorporating
causal information via do-calculus16, that results in a sensible
separation of direct and indirect effect contributions.

15Watson, “Rational Shapley Values”.
16Pearl, “The seven tools of causal inference, with reflections on machine learning”.



Thank you!



Direct and indirect effects

υ(S) = E [f (X)|do(XS = xS)] =
∫

dXS̄ P(XS̄ |do(XS = xS))f (XS̄ , xS) .

=⇒ υ(S ∪ i) − υ(S) =

= E[f (XS̄ , xS∪i )|do(XS∪i = xS∪i )] − E[f (XS̄∪i , xS)|do(XS = xS)] (total effect)
= E[f (XS̄ , xS∪i )|do(XS = xS)] − E[f (XS̄∪i , xS)|do(XS = xS)] + (direct effect)

E[f (XS̄ , xS∪i )|do(XS∪i = xS∪i )] − E[f (XS̄ , xS∪i )|do(XS = xS)] (indirect effect)

where S ∈ N \ i is an arbitrary coalition and S̄ = N \ (S ∪ i).



Causal Shapley values in practice

partial causal ordering
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