

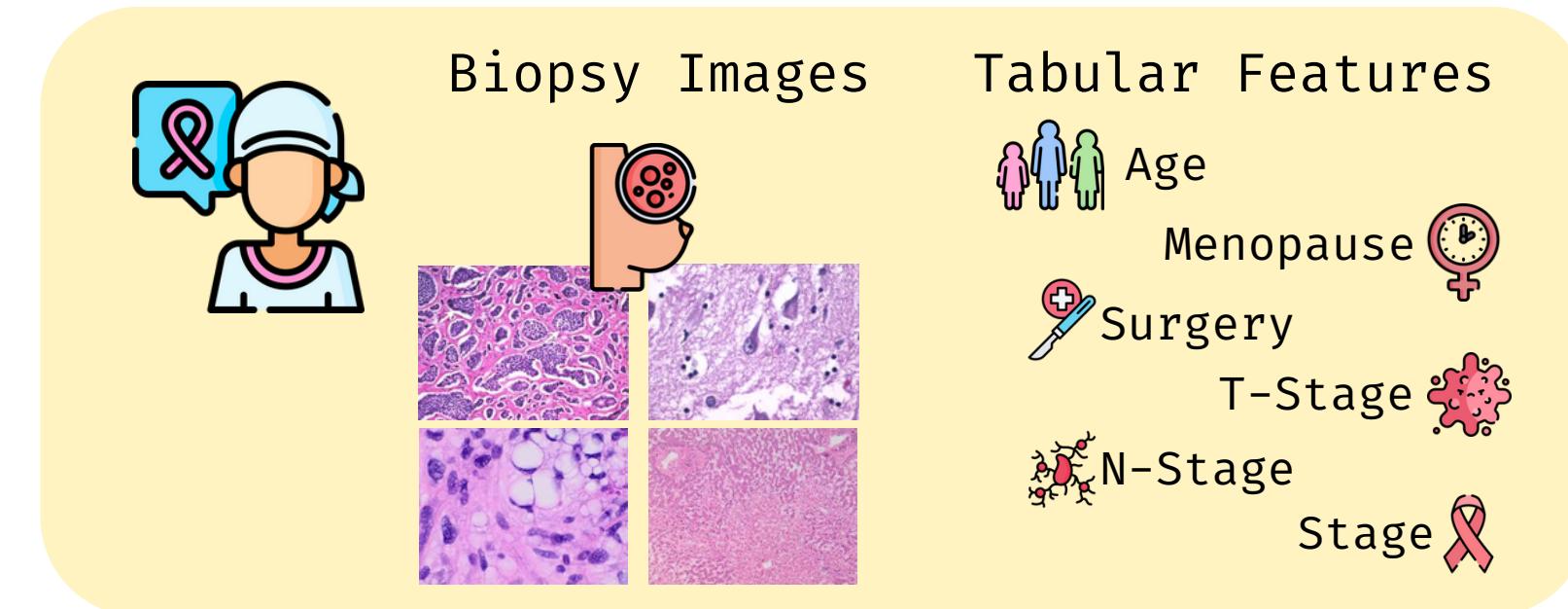
Interpretable Machine Learning for Survival Analysis

Sophie Hanna Langbein, Marvin N. Wright
Leibniz Institute for Prevention Research and Epidemiology – BIPS

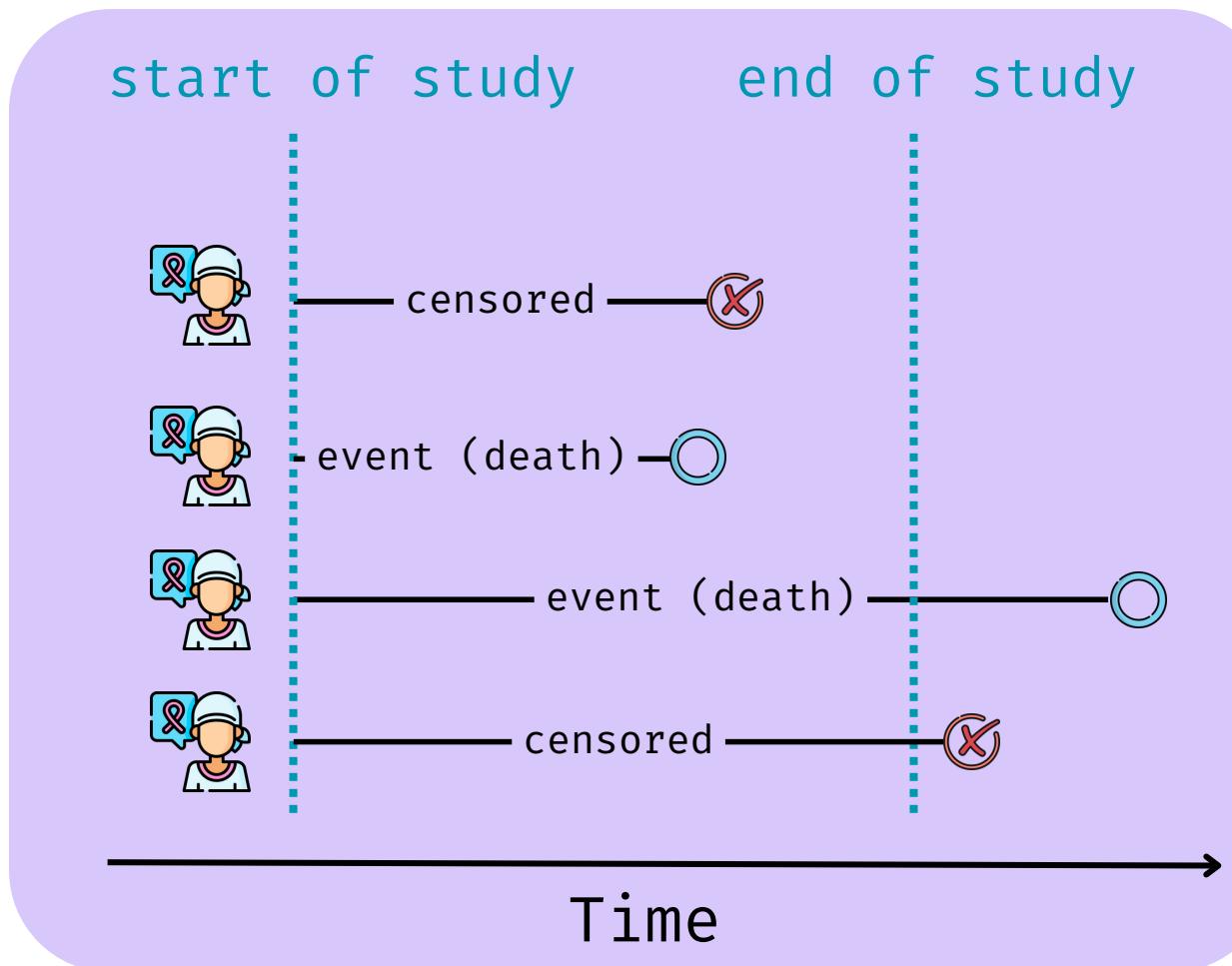
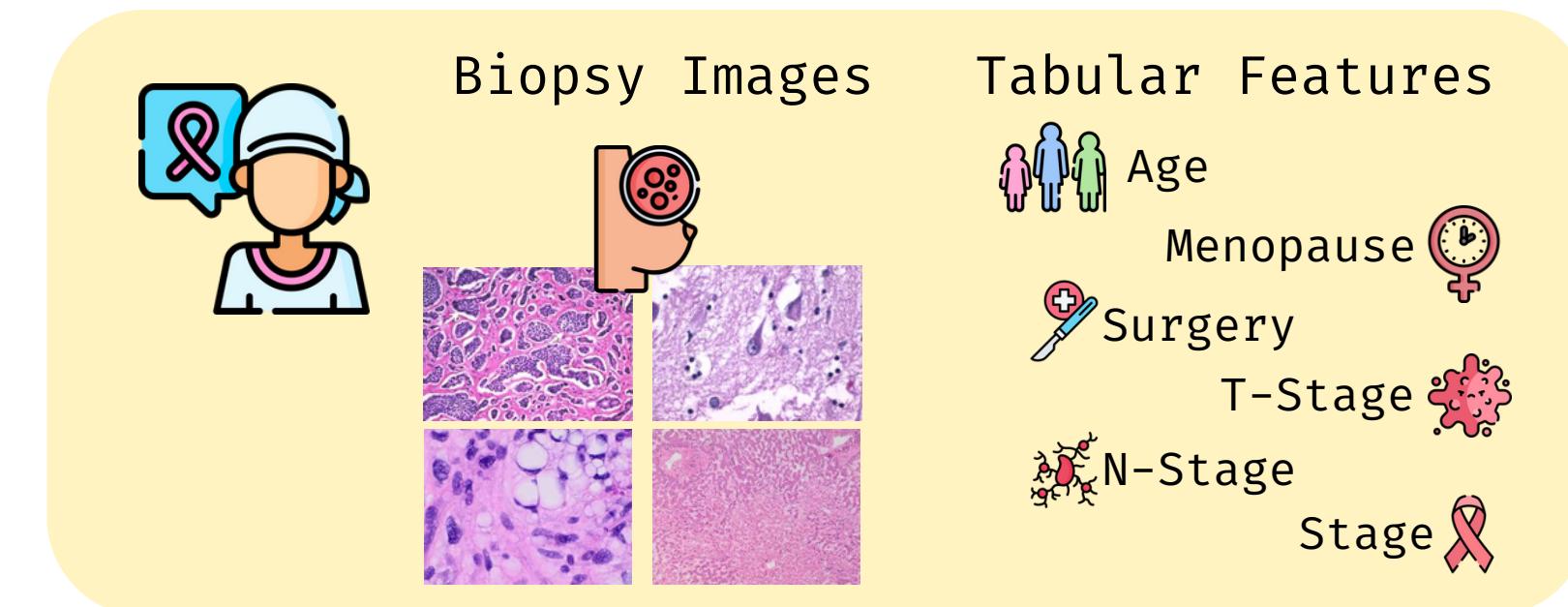
Workshop on Methods for xML in Healthcare, Amsterdam UMC
4th of February 2026

Introduction to IML & Survival Analysis

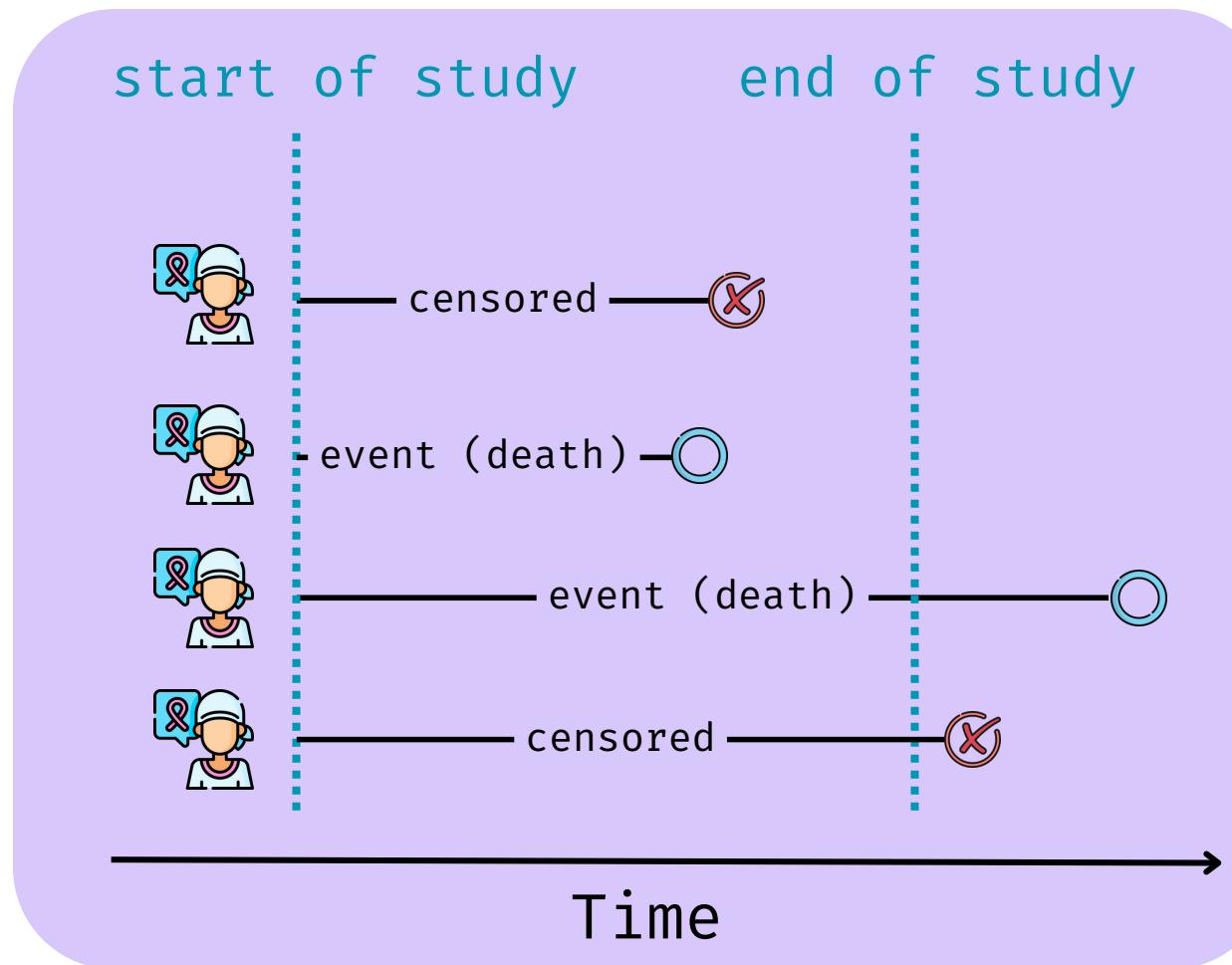
Introduction to Survival Analysis



Introduction to Survival Analysis

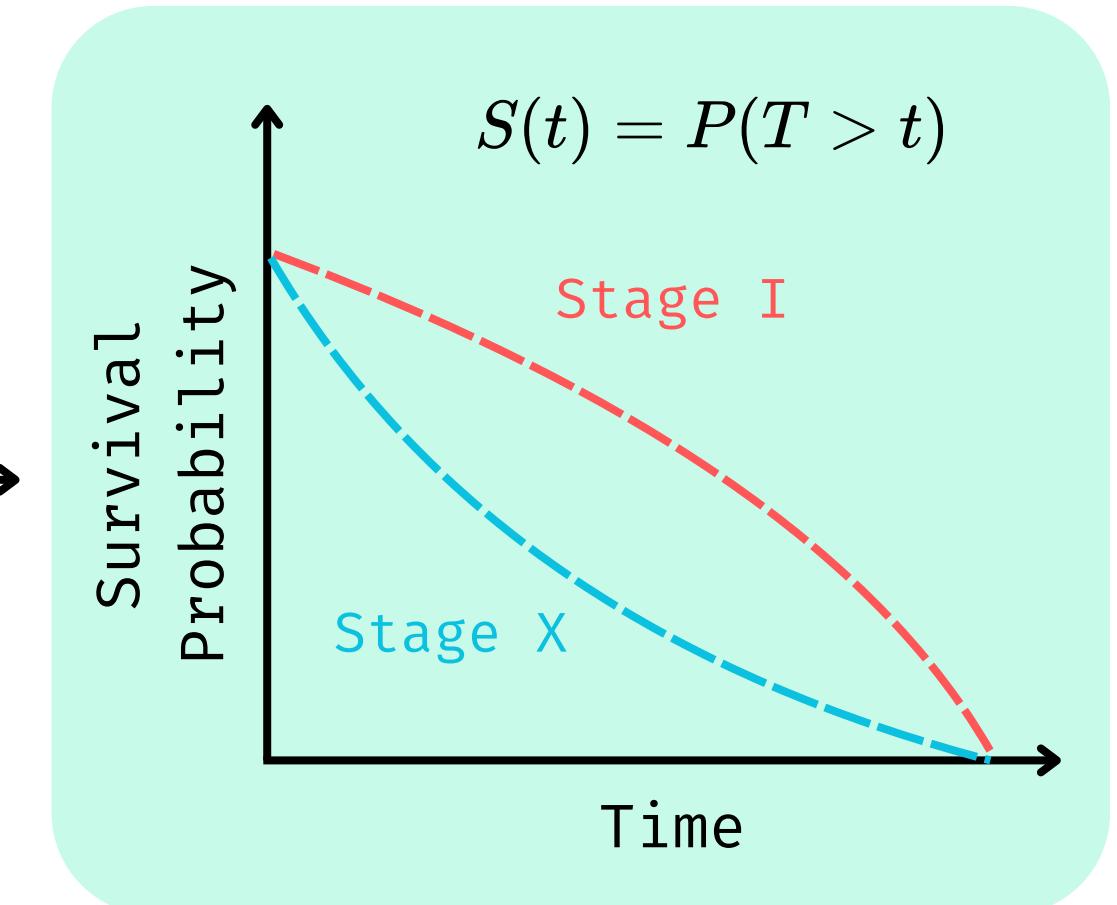
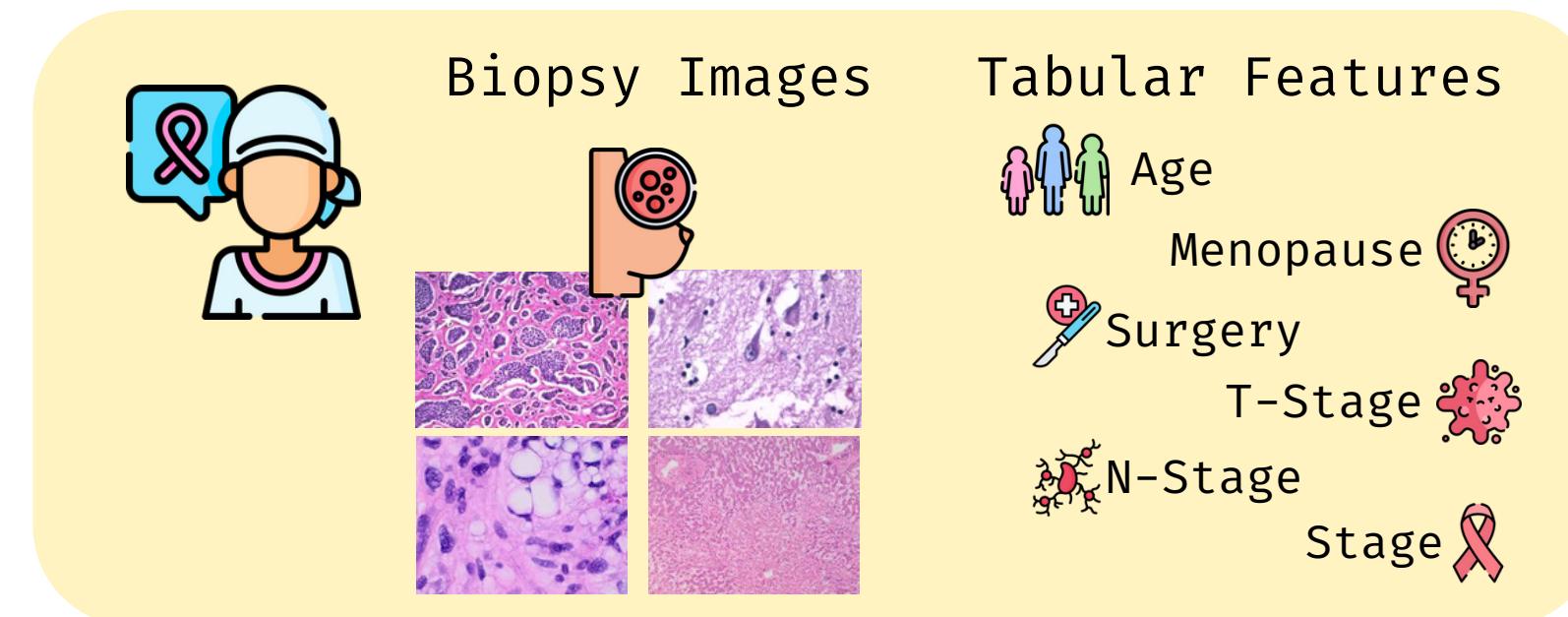


Introduction to Survival Analysis

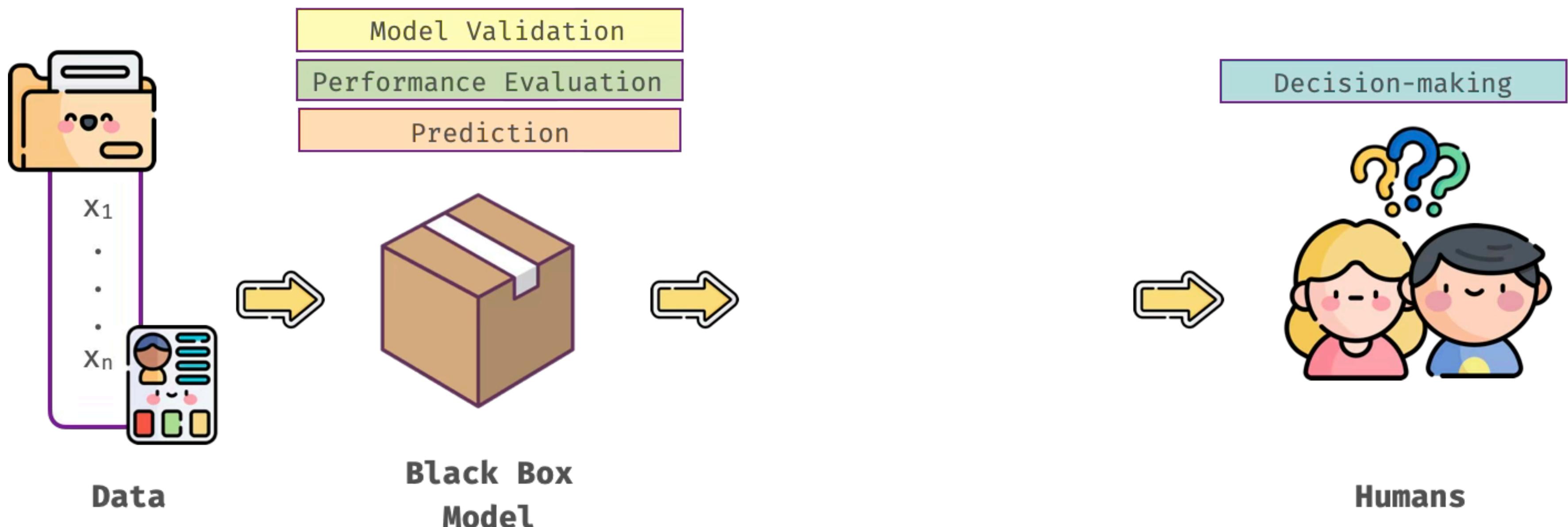


When will the event happen?
Time-to-event distribution

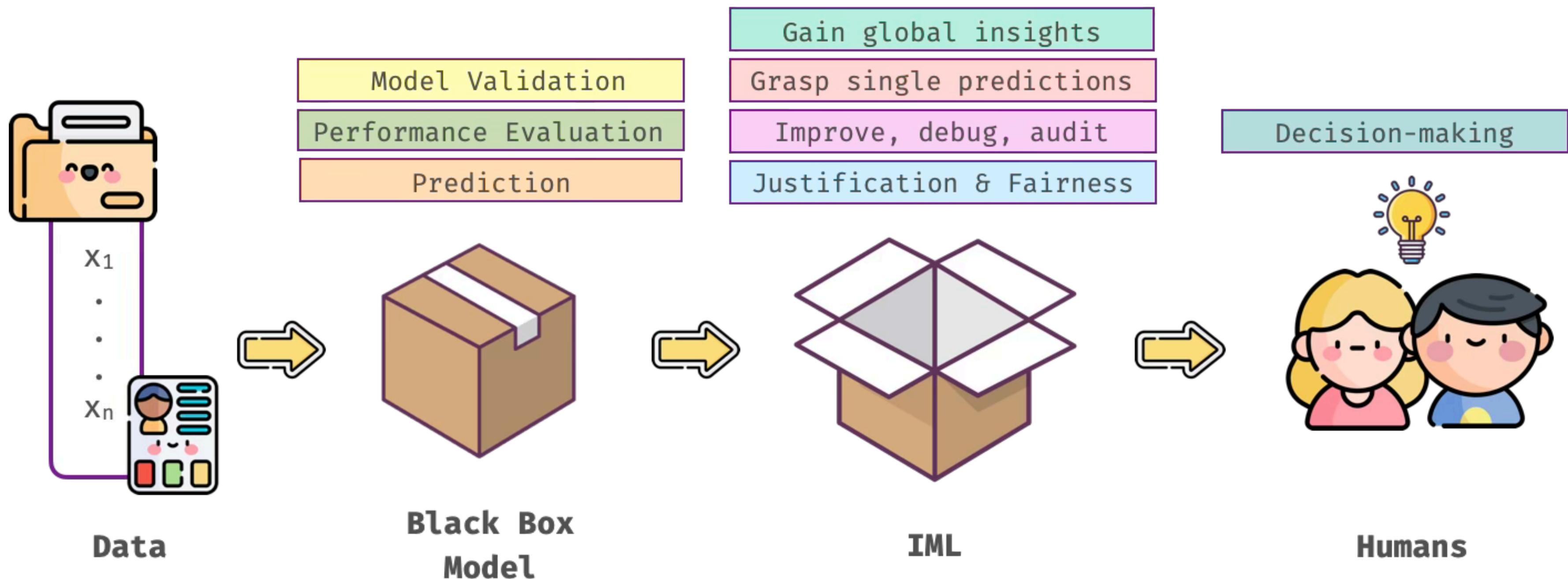
What factors affect when event happens?



Interpretable Machine Learning



Interpretable Machine Learning

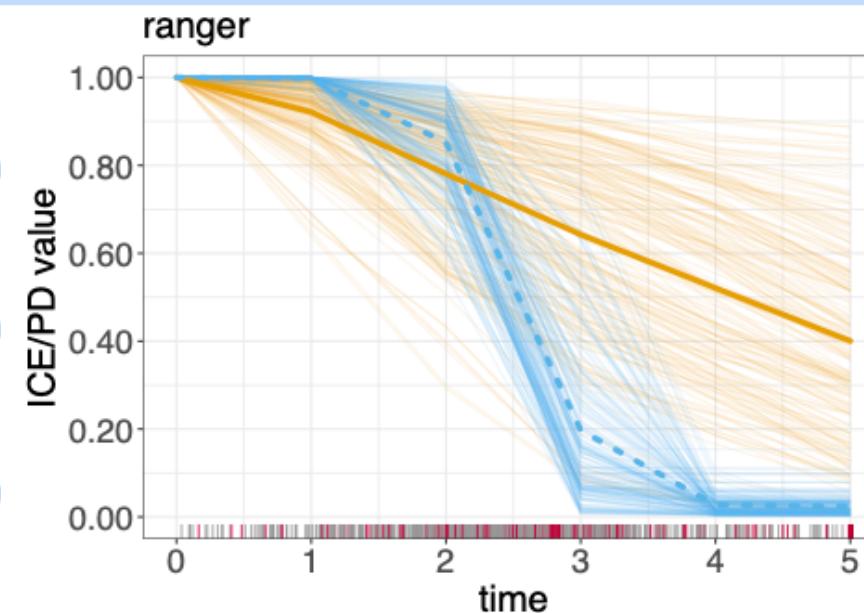


IML for Survival Analysis

Model-Agnostic
-explain arbitrary models-

Global
-explain overall
model behavior-

PDP
ALE
PFI



IML for Survival Analysis

Model-Agnostic -explain arbitrary models-

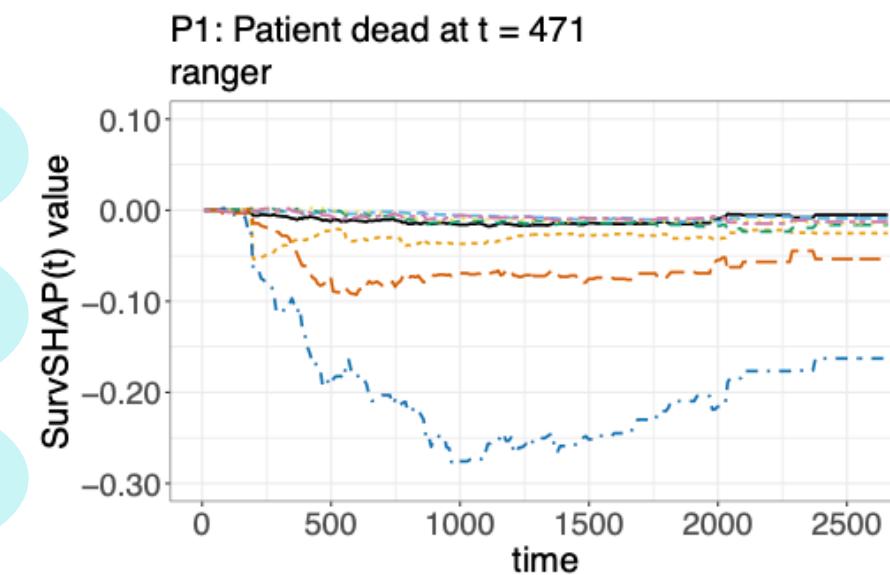
Local

-instance based
explanations-

LIME

SHAP

ICE



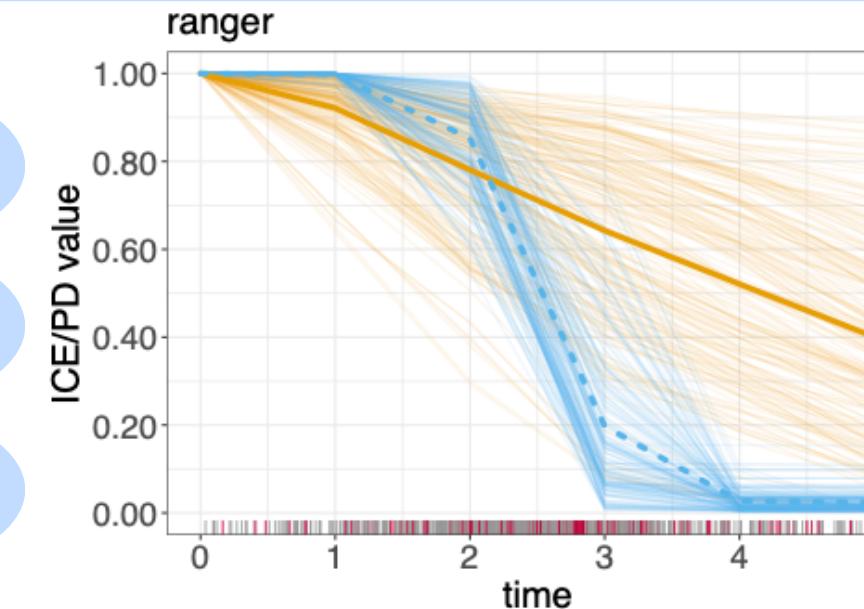
Global

-explain overall
model behavior-

PDP

ALE

PFI



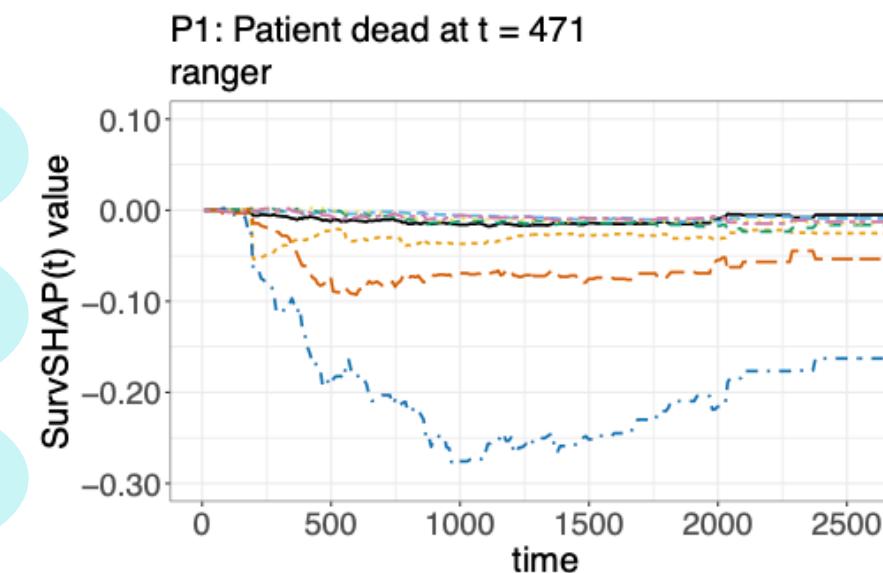
IML for Survival Analysis

Model-Agnostic

-explain arbitrary models-

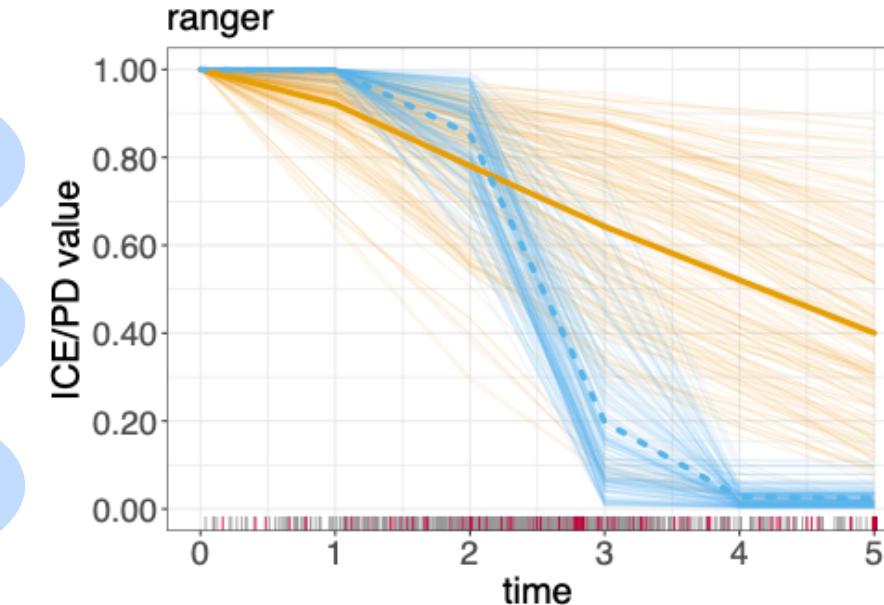
Local
-instance based explanations-

LIME
SHAP
ICE



Global
-explain overall model behavior-

PDP
ALE
PFI

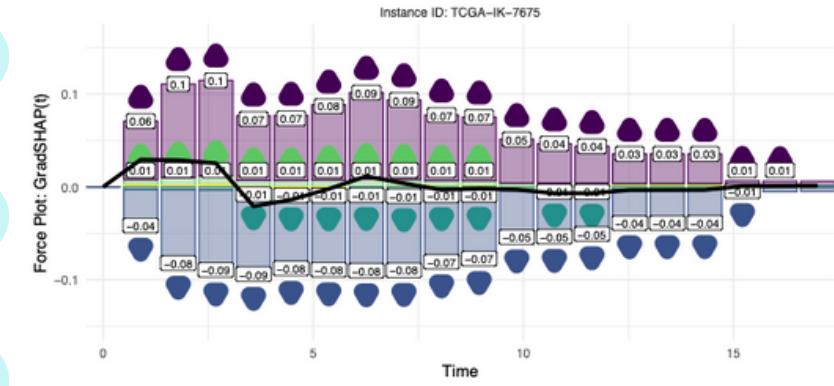


Model-Specific

-explain specific models-

Local
-instance based explanations-

IntGrad
Gradients
GradSHAP



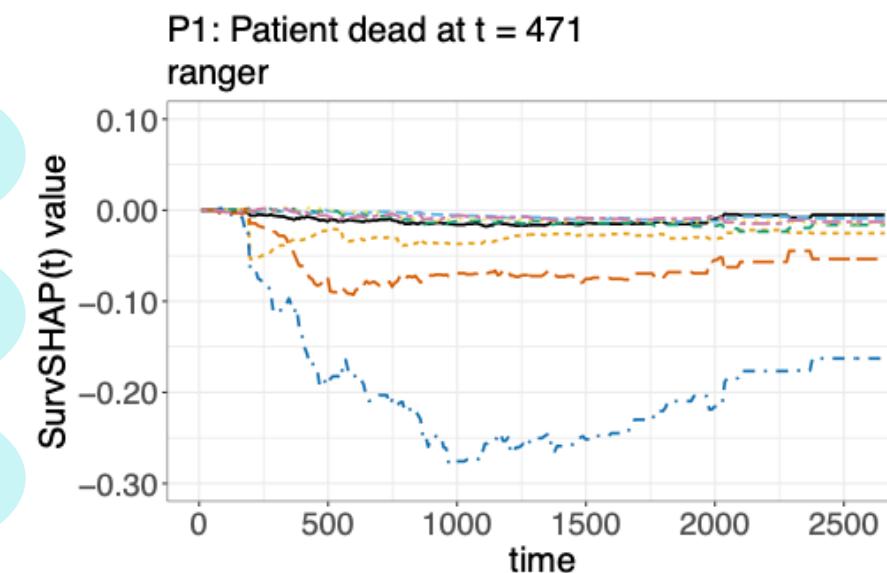
IML for Survival Analysis

Model-Agnostic

-explain arbitrary models-

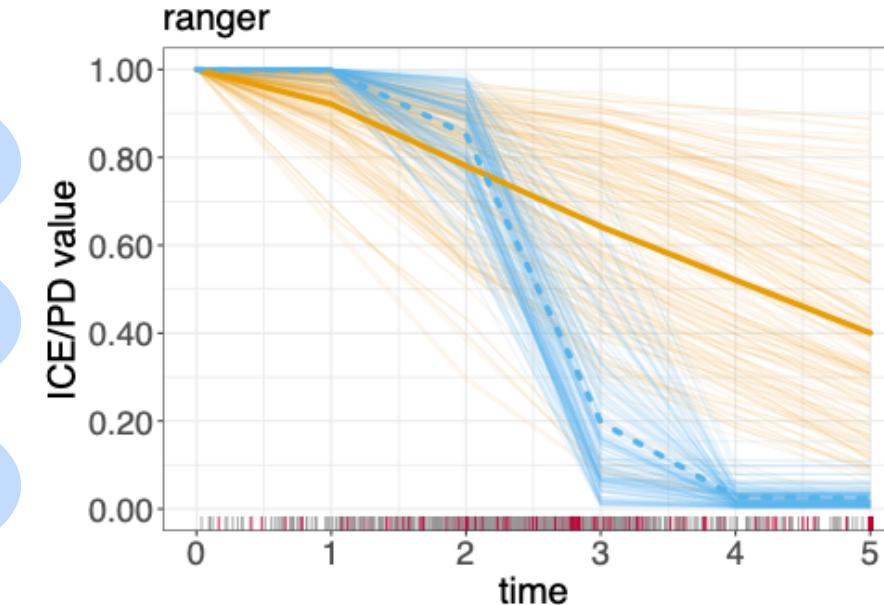
Local
-instance based explanations-

LIME
SHAP
ICE



Global
-explain overall model behavior-

PDP
ALE
PFI

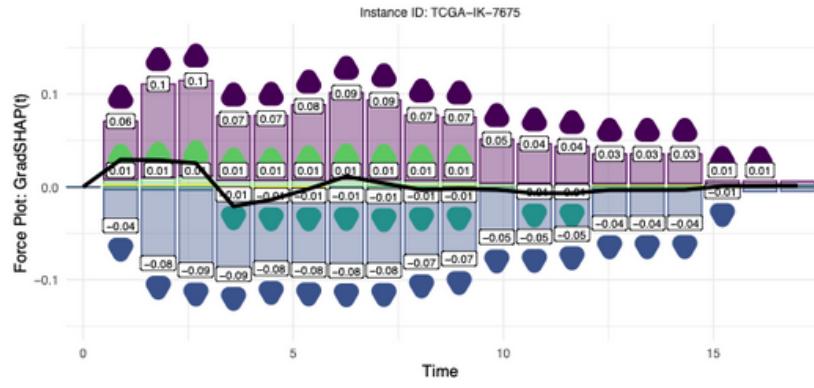


Model-Specific

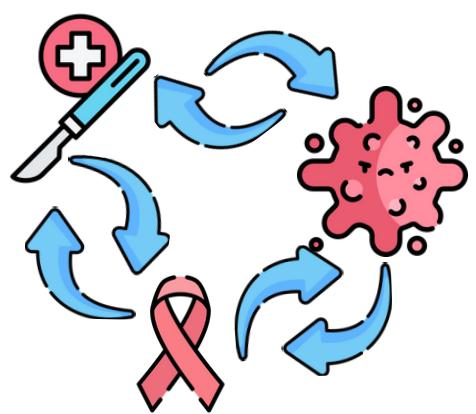
-explain specific models-

Local
-instance based explanations-

IntGrad
Gradients
GradSHAP



What about
Interactions?



Functional Decomposition (SurvFD) & Shapley Interactions (SurvSHAP- IQ) for Survival Models

Survival Analysis Background

Survival Dataset:

$$\mathbb{D} = \{(\mathbf{x}^{(i)}, y^{(i)}, \delta^{(i)}) : i = 1, \dots, n\}$$

features $\mathbf{x}^{(i)} = (x_1^{(i)}, \dots, x_p^{(i)}) \in \mathcal{X}$

Survival Analysis Background

Survival Dataset:

$$\mathbb{D} = \{(\mathbf{x}^{(i)}, y^{(i)}, \delta^{(i)}) : i = 1, \dots, n\}$$

observed survival time $y^{(i)} = \min(t^{(i)}, c^{(i)})$

Survival Analysis Background

Survival Dataset:

$$\mathbb{D} = \{(\mathbf{x}^{(i)}, y^{(i)}, \delta^{(i)}) : i = 1, \dots, n\}$$

censoring indicator $\delta^{(i)} \in \{0, 1\}$

Survival Analysis Background

Survival Dataset:

$$\mathbb{D} = \{(\mathbf{x}^{(i)}, y^{(i)}, \delta^{(i)}) : i = 1, \dots, n\}$$

Hazard function:

$$h(t|\mathbf{x}) = \lim_{\Delta t \rightarrow 0} \frac{\mathbb{P}(t \leq T \leq t + \Delta t | T \geq t, \mathbf{x})}{\Delta t}$$

Instantaneous risk of event at specified time

Survival Analysis Background

Survival Dataset:

$$\mathbb{D} = \{(\mathbf{x}^{(i)}, y^{(i)}, \delta^{(i)}) : i = 1, \dots, n\}$$

Hazard function:

$$h(t|\mathbf{x}) = \lim_{\Delta t \rightarrow 0} \frac{\mathbb{P}(t \leq T \leq t + \Delta t | T \geq t, \mathbf{x})}{\Delta t}$$

Transformation →

Survival function:

$$S(t|\mathbf{x}) = \exp \left(- \int_0^t h(u|\mathbf{x}) du \right)$$

Instantaneous risk of event at specified time

Probability of surviving longer than specified time

Survival Analysis Background

Survival Dataset:

$$\mathbb{D} = \{(\mathbf{x}^{(i)}, y^{(i)}, \delta^{(i)}) : i = 1, \dots, n\}$$

Hazard function:

$$h(t|\mathbf{x}) = \lim_{\Delta t \rightarrow 0} \frac{\mathbb{P}(t \leq T \leq t + \Delta t | T \geq t, \mathbf{x})}{\Delta t}$$

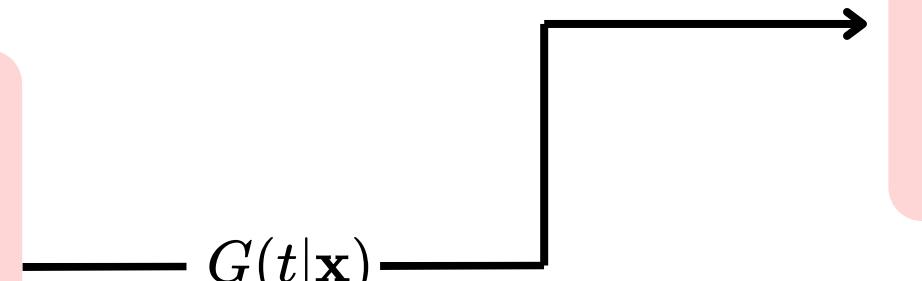
Transformation

Survival function:

$$S(t|\mathbf{x}) = \exp \left(- \int_0^t h(u|\mathbf{x}) du \right)$$

General multiplicative hazards model:
(Oakes, 1977)

$$h(t|\mathbf{x}) = h_0(t) \exp(G(t|\mathbf{x}))$$



Standard CoxPH model: (Cox, 1972)

$$G(t|\mathbf{x}) = \sum_{j \in P} \beta_j x_j$$

Survival Analysis Background

Survival Dataset:

$$\mathbb{D} = \{(\mathbf{x}^{(i)}, y^{(i)}, \delta^{(i)}) : i = 1, \dots, n\}$$

Hazard function:

$$h(t|\mathbf{x}) = \lim_{\Delta t \rightarrow 0} \frac{\mathbb{P}(t \leq T \leq t + \Delta t | T \geq t, \mathbf{x})}{\Delta t}$$

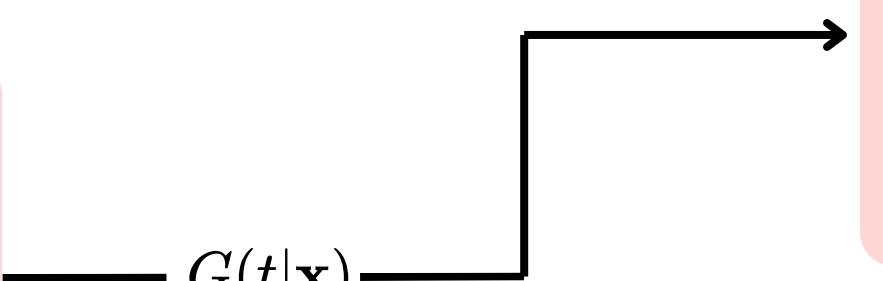
Transformation

Survival function:

$$S(t|\mathbf{x}) = \exp \left(- \int_0^t h(u|\mathbf{x}) du \right)$$

General multiplicative hazards model:
(Oakes, 1977)

$$h(t|\mathbf{x}) = h_0(t) \exp(G(t|\mathbf{x}))$$



Generalized risk score:

$$G(t|\mathbf{x}) = \sum_{M \subseteq P} \beta_M \prod_{j \in M} g_j(x_j) l_j(t)$$

$g_j(x_j)$ (non-linear) feature transformation

$l_j(t)$ (non-linear) time-dependence

Functional Decomposition for Survival (SurvFD)

Ground-truth Assumptions

Generalized
additive risk
function

$$G(t|\mathbf{x}) = \sum_{M \in \mathcal{I}_d} g_M(t|\mathbf{x}) + \sum_{M \in \mathcal{I}_{id}} g_M(\mathbf{x})$$

Generalized risk score:

$$G(t|\mathbf{x}) = \sum_{M \subseteq P} \beta_M \prod_{j \in M} g_j(x_j) l_j(t)$$

Functional Decomposition for Survival (SurvFD)

Ground-truth Assumptions

Generalized
additive risk
function

$$G(t|\mathbf{x}) = \sum_{M \in \mathcal{I}_d} g_M(t|\mathbf{x}) + \sum_{M \in \mathcal{I}_{id}} g_M(\mathbf{x})$$

\mathcal{I}_d
Time-dependent
feature set
Effect on risk
changes over time

\mathcal{I}_{id}
Time-independent
feature set
Effect on risk
constant over time

Generalized risk score:

$$G(t|\mathbf{x}) = \sum_{M \subseteq P} \beta_M \prod_{j \in M} g_j(x_j) l_j(t)$$

Functional Decomposition for Survival (SurvFD)

Ground-truth Assumptions

Generalized
additive risk
function

$$G(t|\mathbf{x}) = \sum_{M \in \mathcal{I}_d} g_M(t|\mathbf{x}) + \sum_{M \in \mathcal{I}_{id}} g_M(\mathbf{x})$$

\mathcal{I}_d
Time-dependent
feature set
Effect on risk
changes over time

\mathcal{I}_{id}
Time-independent
feature set
Effect on risk
constant over time

Generalized risk score:

$$G(t|\mathbf{x}) = \sum_{M \subseteq P} \beta_M \prod_{j \in M} g_j(x_j) l_j(t)$$

**“Ground-truth” feature
effect separation**

Functional Decomposition for Survival (SurvFD)

Ground-truth Assumptions

Generalized
additive risk
function

$$G(t|\mathbf{x}) = \sum_{M \in \mathcal{I}_d} g_M(t|\mathbf{x}) + \sum_{M \in \mathcal{I}_{id}} g_M(\mathbf{x})$$

plug in $G(t|\mathbf{x})$

Hazard
function

$$h(t|\mathbf{x}) = h_0(t) \exp(G(t|\mathbf{x}))$$

←

Functional Decomposition for Survival (SurvFD)

6

Ground-truth Assumptions

Generalized
additive risk
function

$$G(t|\mathbf{x}) = \sum_{M \in \mathcal{I}_d} g_M(t|\mathbf{x}) + \sum_{M \in \mathcal{I}_{id}} g_M(\mathbf{x})$$

Hazard
function

$$h(t|\mathbf{x}) = h_0(t) \exp(G(t|\mathbf{x}))$$

log-trafo

Log-
hazard
function

$$\log h(t|\mathbf{x}) = \log(h_0(t)) + G(t|\mathbf{x})$$

Functional Decomposition for Survival (SurvFD)

Ground-truth Assumptions

Generalized
additive risk
function

$$G(t|\mathbf{x}) = \sum_{M \in \mathcal{I}_d} g_M(t|\mathbf{x}) + \sum_{M \in \mathcal{I}_{id}} g_M(\mathbf{x})$$

Hazard
function

$$h(t|\mathbf{x}) = h_0(t) \exp(G(t|\mathbf{x}))$$

transformation

Log-
hazard
function

$$\log h(t|\mathbf{x}) = \log(h_0(t)) + G(t|\mathbf{x})$$

Survival
function

$$S(t|\mathbf{x}) = \exp \left(- \int_0^t (h_0(u) \exp(G(u|\mathbf{x}))) du \right)$$

Functional Decomposition for Survival (SurvFD)

We summarize (log-)hazard and survival function as $F(t|\mathbf{x})$:

$$F(t|\mathbf{x}) = f_\emptyset(t) + \sum_{\emptyset \neq M \subseteq P} f_M(t|\mathbf{x})$$

Functional Decomposition for Survival (SurvFD)

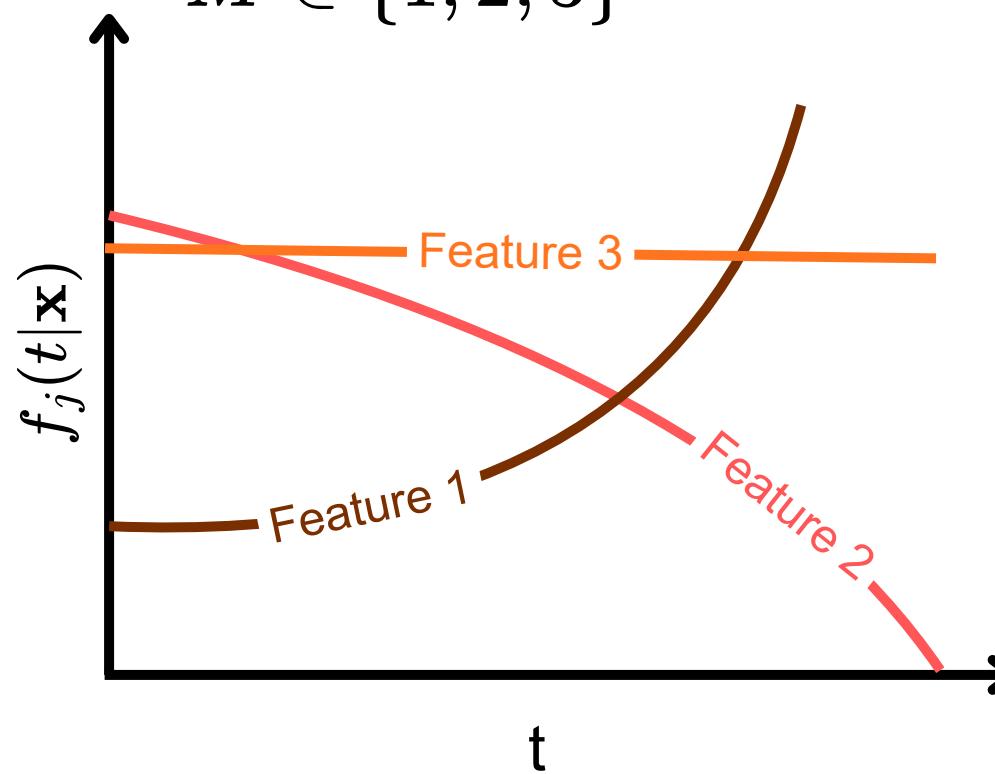
We summarize (log-)hazard and survival function as $F(t|\mathbf{x})$:

$$F(t|\mathbf{x}) = f_\emptyset(t) + \sum_{\emptyset \neq M \subseteq P} f_M(t|\mathbf{x})$$

Example: $P = \{1, 2, 3\}$

Effects of Order 1

$$M \in \{1, 2, 3\}$$



Functional Decomposition for Survival (SurvFD)

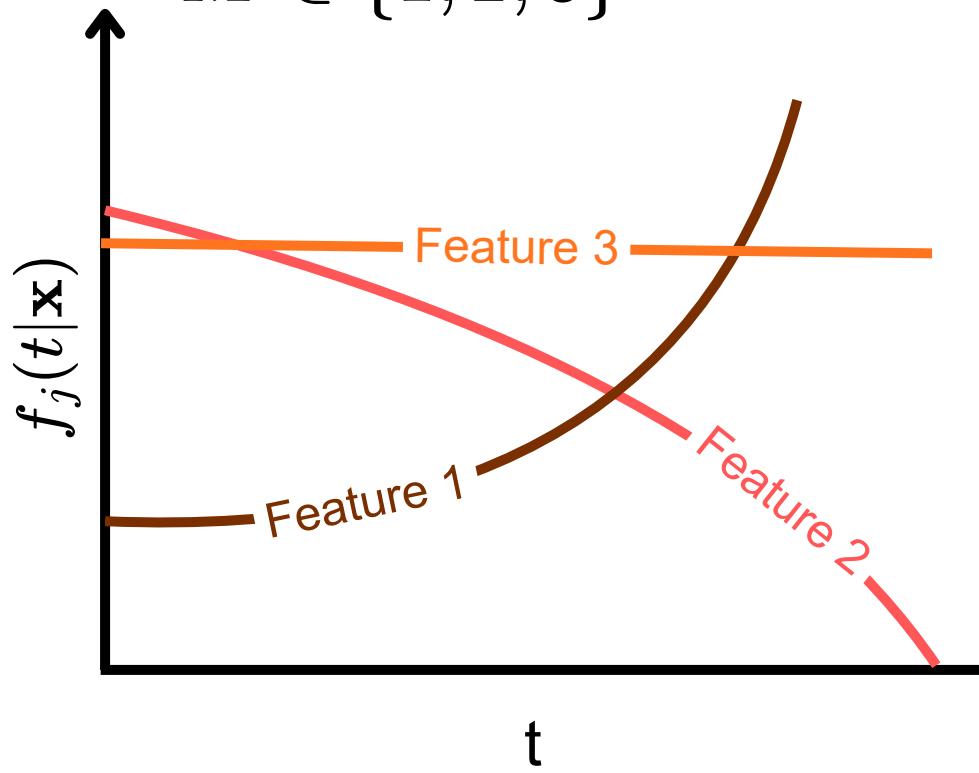
We summarize (log-)hazard and survival function as $F(t|\mathbf{x})$:

$$F(t|\mathbf{x}) = f_\emptyset(t) + \sum_{\emptyset \neq M \subseteq P} f_M(t|\mathbf{x})$$

Example: $P = \{1, 2, 3\}$

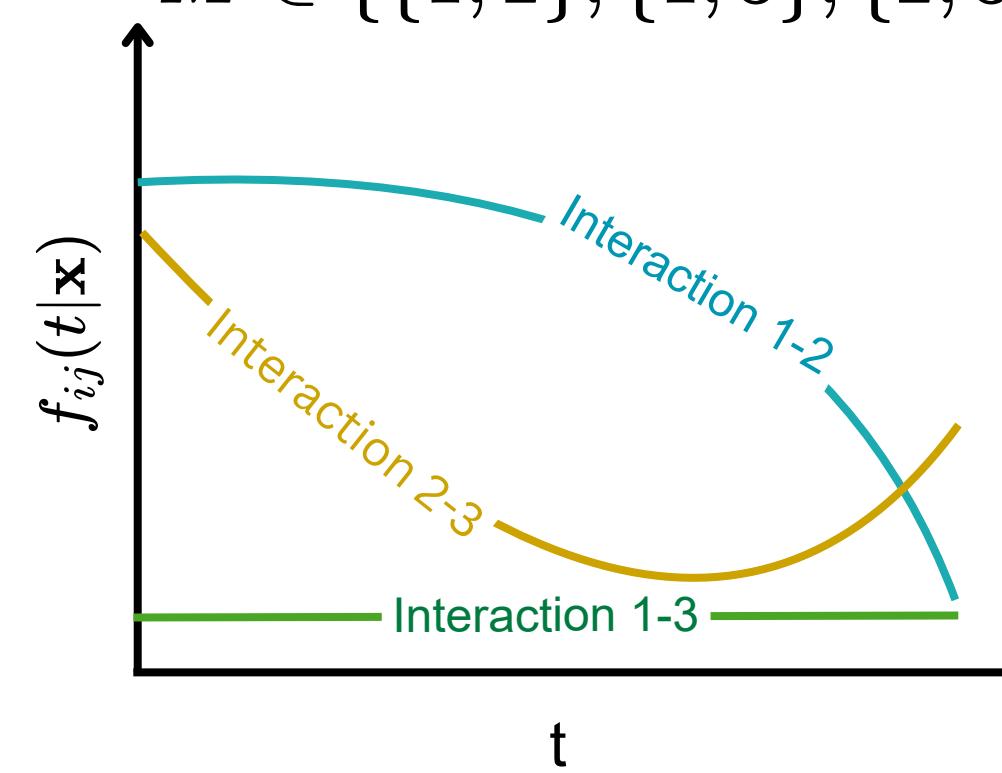
Effects of Order 1

$$M \in \{1, 2, 3\}$$



Effects of Order 2

$$M \in \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}$$

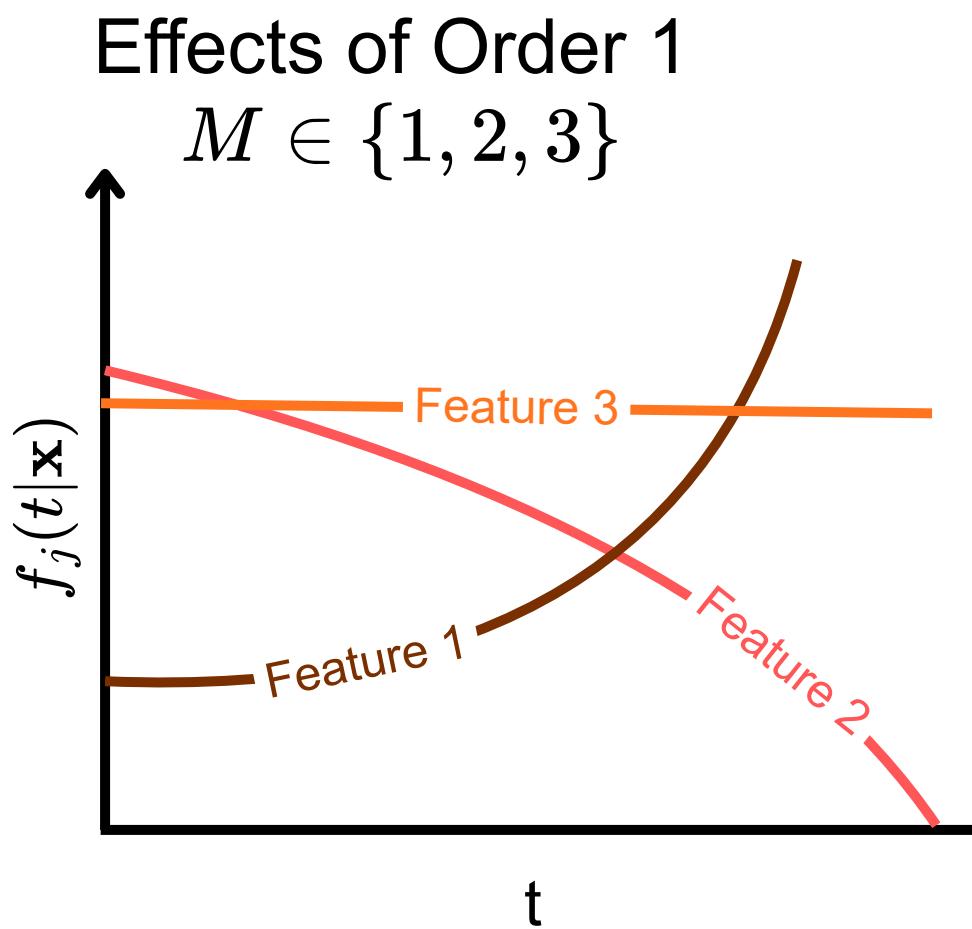
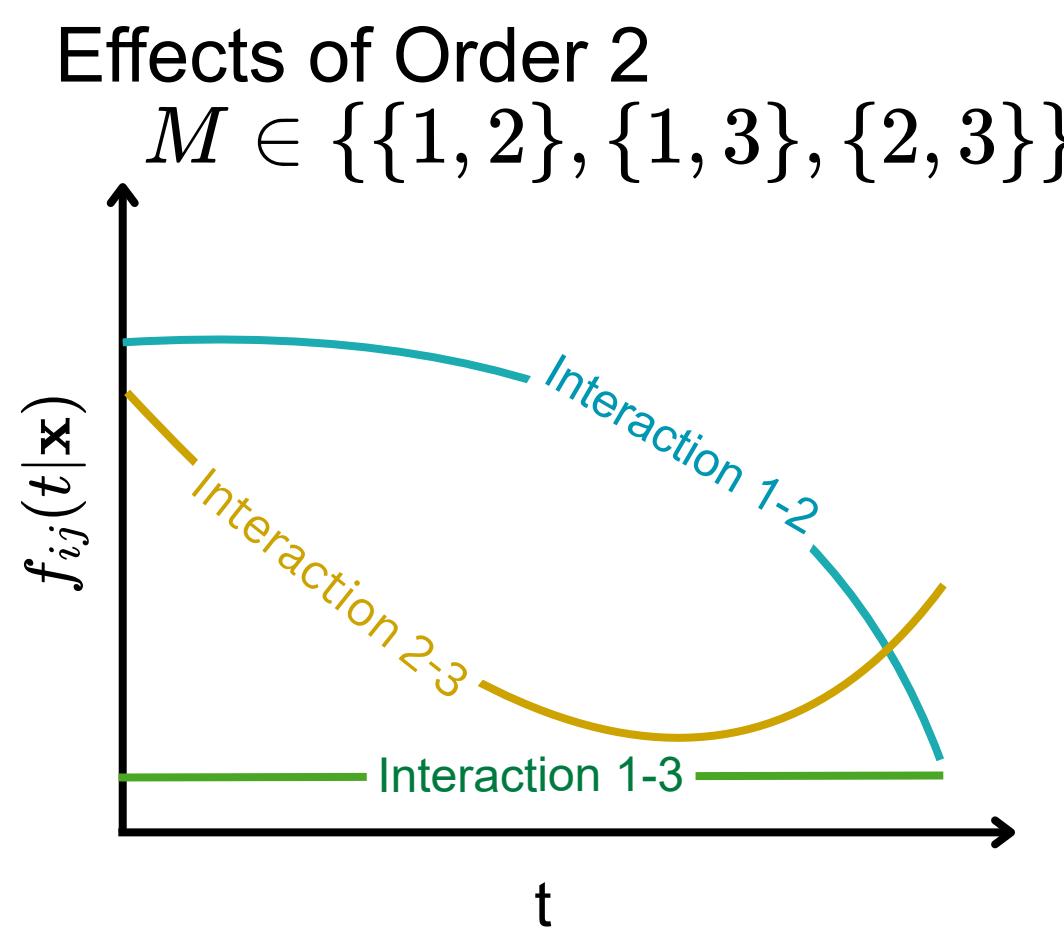
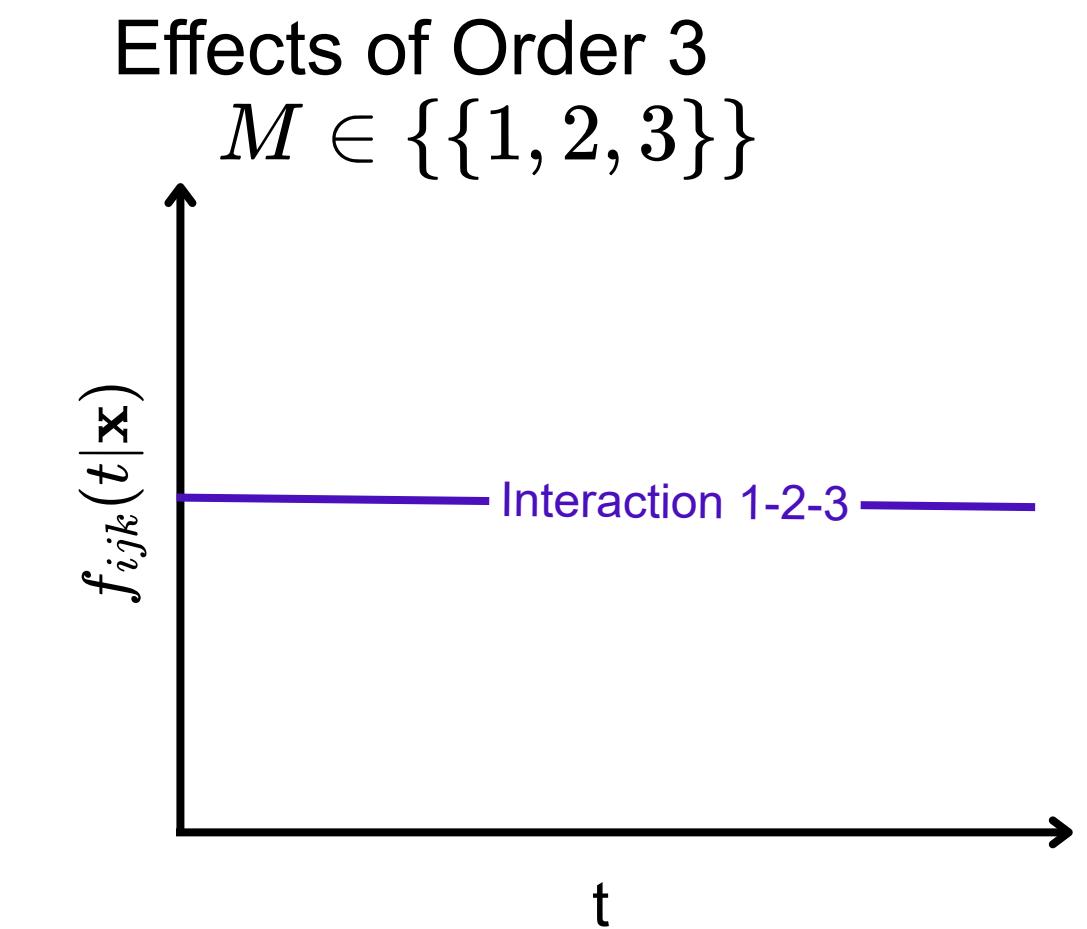


Functional Decomposition for Survival (SurvFD)

We summarize (log-)hazard and survival function as $F(t|\mathbf{x})$:

$$F(t|\mathbf{x}) = f_\emptyset(t) + \sum_{\emptyset \neq M \subseteq P} f_M(t|\mathbf{x})$$

Example: $P = \{1, 2, 3\}$



Functional Decomposition for Survival (SurvFD)

We summarize (log-)hazard and survival function as $F(t|\mathbf{x})$:

$$\begin{aligned} F(t|\mathbf{x}) &= f_\emptyset(t) + \sum_{\emptyset \neq M \subseteq P} f_M(t|\mathbf{x}) \\ &= f_\emptyset(t) + \sum_{M \in \mathcal{I}_d^\star} f_M(t|\mathbf{x}) + \sum_{M \in \mathcal{I}_{id}^\star} f_M(\mathbf{x}) \end{aligned}$$

Functional Decomposition for Survival (SurvFD)

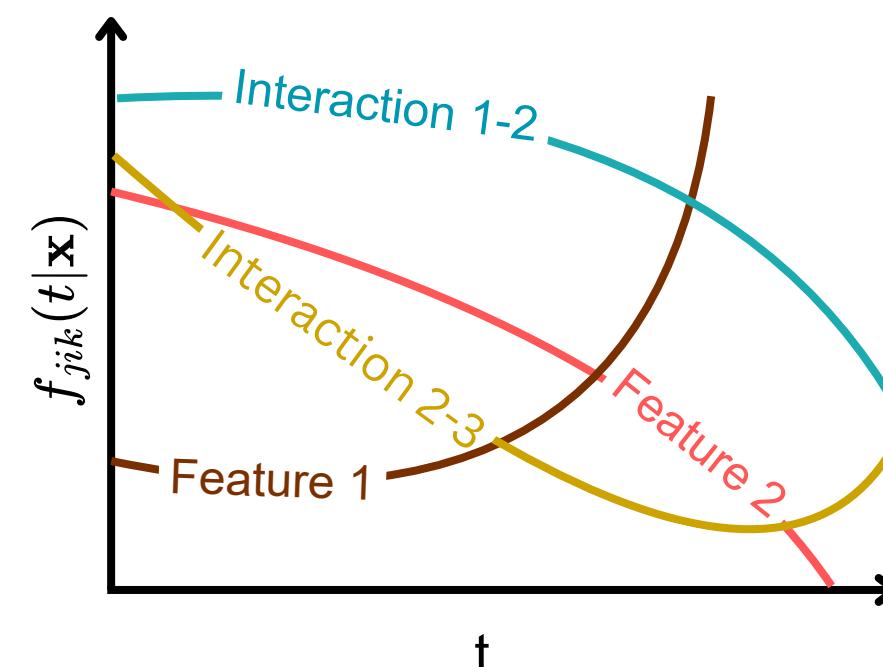
7

We summarize (log-)hazard and survival function as $F(t|\mathbf{x})$:

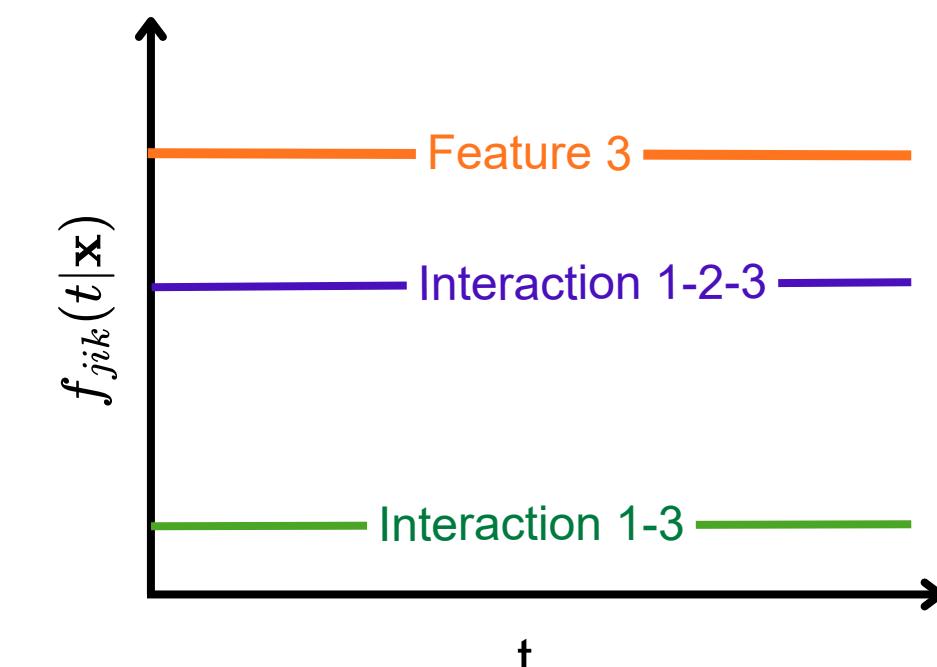
$$\begin{aligned}
 F(t|\mathbf{x}) &= f_\emptyset(t) + \sum_{\emptyset \neq M \subseteq P} f_M(t|\mathbf{x}) \\
 &= f_\emptyset(t) + \sum_{M \in \mathcal{I}_d^*} f_M(t|\mathbf{x}) + \sum_{M \in \mathcal{I}_{id}^*} f_M(\mathbf{x})
 \end{aligned}$$

Example: $P = \{1, 2, 3\}$

Time-dependent Effects
 $\mathcal{I}_d^* \in \{\{1\}, \{2\}, \{1, 2\}, \{2, 3\}\}$



Time-independent Effects
 $\mathcal{I}_{id}^* = \{\{3\}, \{1, 3\}, \{1, 2, 3\}\}$



Functional Decomposition for Survival (SurvFD)

$$\begin{aligned} F(t|\mathbf{x}) &= f_\emptyset(t) + \sum_{\emptyset \neq M \subseteq P} f_M(t|\mathbf{x}) \\ &= f_\emptyset(t) + \sum_{M \in \mathcal{I}_d^\star} f_M(t|\mathbf{x}) + \sum_{M \in \mathcal{I}_{id}^\star} f_M(\mathbf{x}) \end{aligned}$$

$$G(t|\mathbf{x}) = \sum_{M \in \mathcal{I}_d} g_M(t|\mathbf{x}) + \sum_{M \in \mathcal{I}_{id}} g_M(\mathbf{x})$$

Functional Decomposition for Survival (SurvFD)

$$\begin{aligned} F(t|\mathbf{x}) &= f_\emptyset(t) + \sum_{\emptyset \neq M \subseteq P} f_M(t|\mathbf{x}) \\ &= f_\emptyset(t) + \sum_{M \in \mathcal{I}_d^\star} f_M(t|\mathbf{x}) + \sum_{M \in \mathcal{I}_{id}^\star} f_M(\mathbf{x}) \end{aligned}$$

$$G(t|\mathbf{x}) = \sum_{M \in \mathcal{I}_d} g_M(t|\mathbf{x}) + \sum_{M \in \mathcal{I}_{id}} g_M(\mathbf{x})$$

When do $\mathcal{I}_d^\star = \mathcal{I}_d$ and $\mathcal{I}_{id}^\star = \mathcal{I}_{id}$?

Functional Decomposition for Survival (SurvFD)

When do $\mathcal{I}_{id}^* = \mathcal{I}_{id}$ and $\mathcal{I}_d^* = \mathcal{I}_d$?

Log-hazard function: $\log h(t|\mathbf{x}) = \log(h_0(t)) + \sum_{M \in \mathcal{I}_d} g_M(t|\mathbf{x}) + \sum_{M \in \mathcal{I}_{id}} g_M(\mathbf{x})$

(1) $G(t|\mathbf{x})$ is **linear** in \mathbf{x} including interactions

$G(t|\mathbf{x})$

Functional Decomposition for Survival (SurvFD)

When do $\mathcal{I}_{id}^* = \mathcal{I}_{id}$ and $\mathcal{I}_d^* = \mathcal{I}_d$?

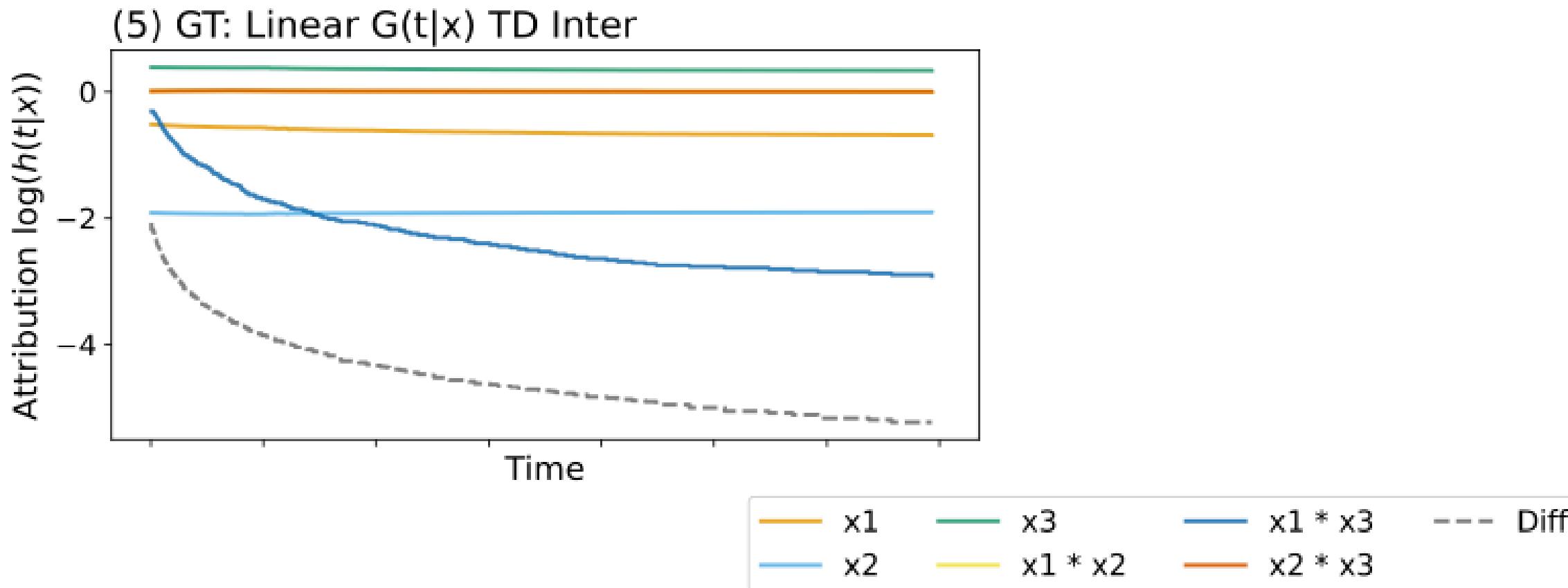
Log-hazard function: $\log h(t|\mathbf{x}) = \log(h_0(t)) + \sum_{M \in \mathcal{I}_d} g_M(t|\mathbf{x}) + \sum_{M \in \mathcal{I}_{id}} g_M(\mathbf{x})$

(1) $G(t|\mathbf{x})$ is **linear** in \mathbf{x} including interactions

$G(t|\mathbf{x})$

Examples:

$$G(t|\mathbf{x}) = 0.4x_1 - 0.8x_2 - 0.6x_3 + 0.2x_1x_3 \log(t + 1)$$



Functional Decomposition for Survival (SurvFD)

9

When do $\mathcal{I}_{id}^* = \mathcal{I}_{id}$ and $\mathcal{I}_d^* = \mathcal{I}_d$?

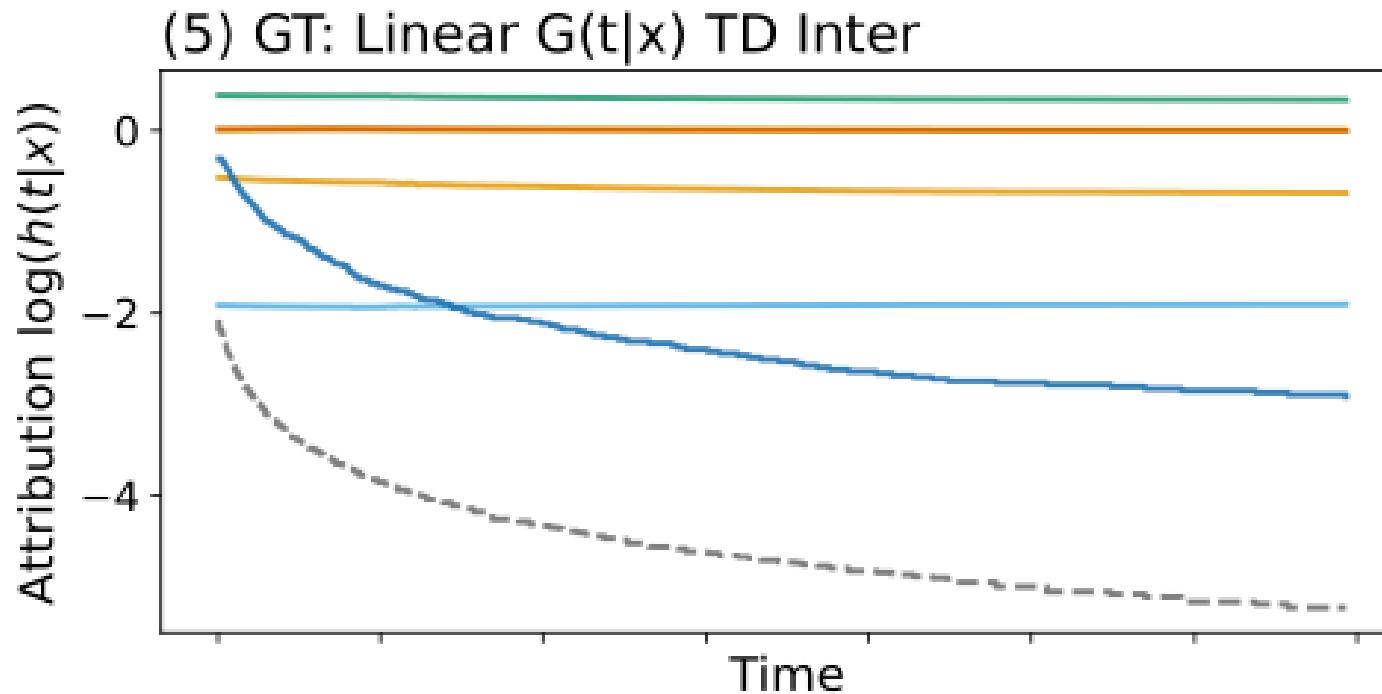
Log-hazard function: $\log h(t|\mathbf{x}) = \log(h_0(t)) + \sum_{M \in \mathcal{I}_d} g_M(t|\mathbf{x}) + \sum_{M \in \mathcal{I}_{id}} g_M(\mathbf{x})$

(1) $G(t|\mathbf{x})$ is **linear in \mathbf{x} including interactions**

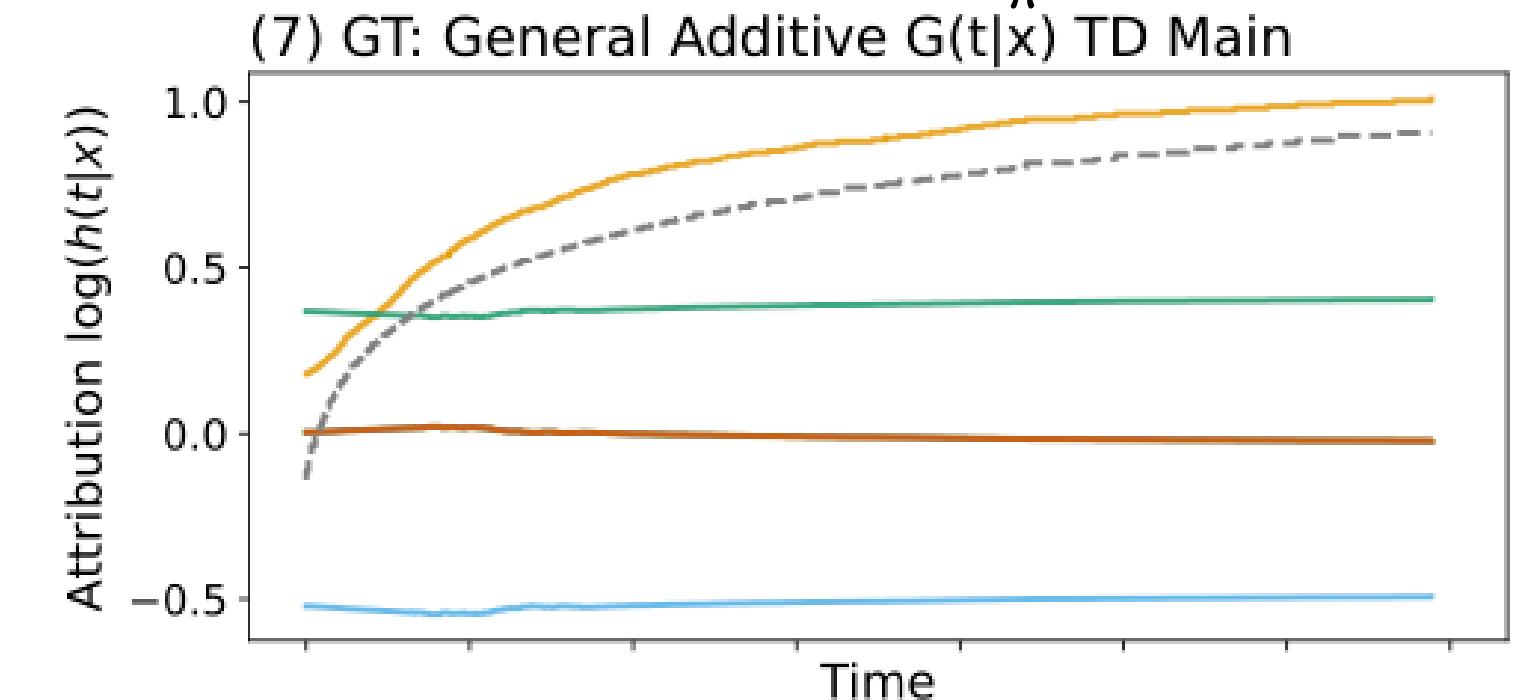
(2) $G(t|\mathbf{x})$ is an **additive main effect model**

Examples:

$$G(t|\mathbf{x}) = 0.4x_1 - 0.8x_2 - 0.6x_3 + 0.2x_1x_3 \log(t + 1)$$



$$G(t|\mathbf{x}) = 0.4x_1^2 \log(t + 1) - 0.8 \frac{2}{\pi} \arctan(0.7x_2) - 0.6x_3$$



Functional Decomposition for Survival (SurvFD)

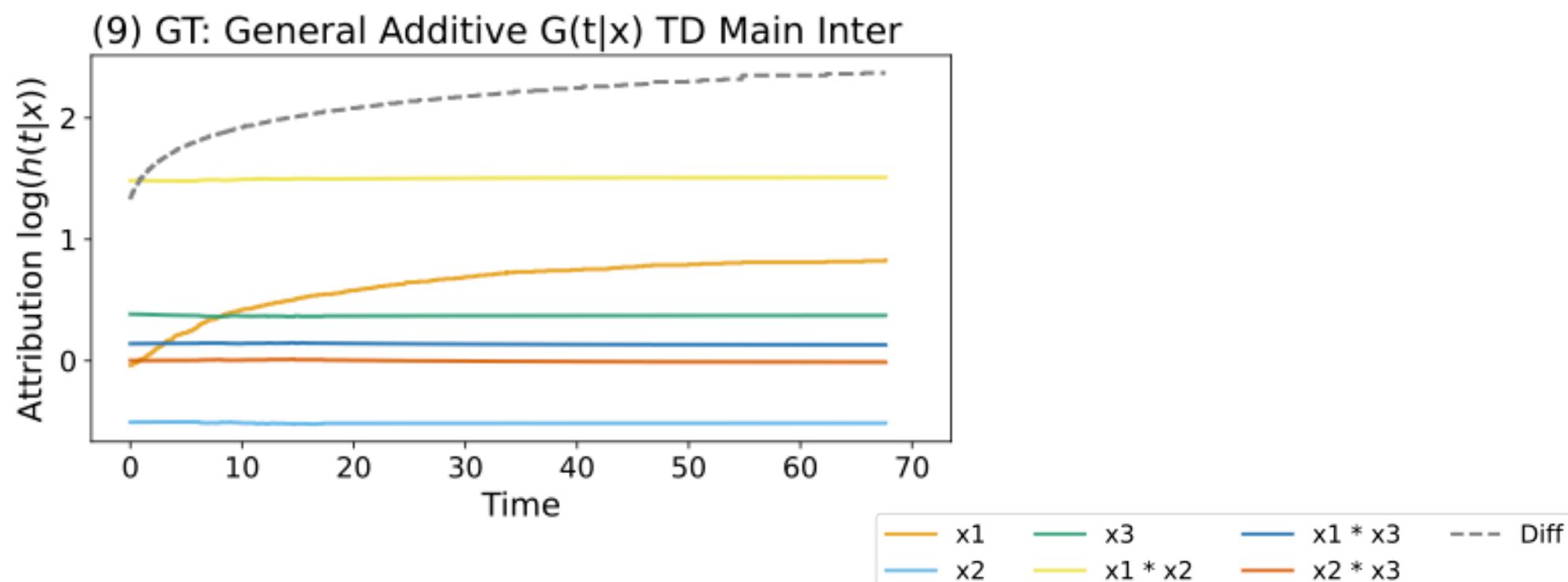
What about more general $G(t|\mathbf{x})$?

Log-hazard function: $\log h(t|\mathbf{x}) = \log(h_0(t)) + \sum_{M \in \mathcal{I}_d} g_M(t|\mathbf{x}) + \sum_{M \in \mathcal{I}_{id}} g_M(\mathbf{x})$

(1) No superset of the true time-dependent set in $G(t|\mathbf{x})$ can appear time-dependent
(no upward propagation)

Examples:

$$G(t|\mathbf{x}) = 0.4x_1^2 \log(t+1) - 0.8 \frac{2}{\pi} \arctan(0.7x_2) - 0.6x_3 - 0.5x_1x_2 + 0.2x_1x_3^2$$



Functional Decomposition for Survival (SurvFD)

What about more general $G(t|\mathbf{x})$?

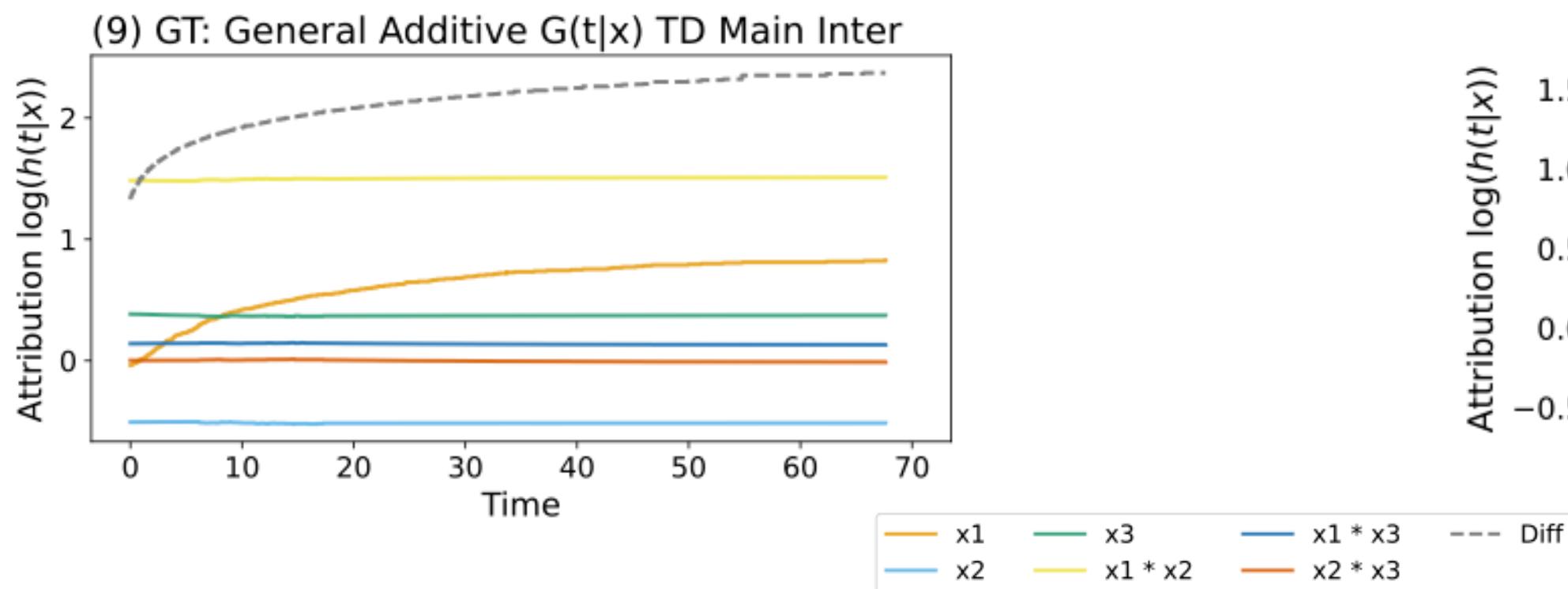
Log-hazard function: $\log h(t|\mathbf{x}) = \log(h_0(t)) + \sum_{M \in \mathcal{I}_d} g_M(t|\mathbf{x}) + \sum_{M \in \mathcal{I}_{id}} g_M(\mathbf{x})$

(1) No superset of the true time-dependent set in $G(t|\mathbf{x})$ can appear time-dependent
(no upward propagation)

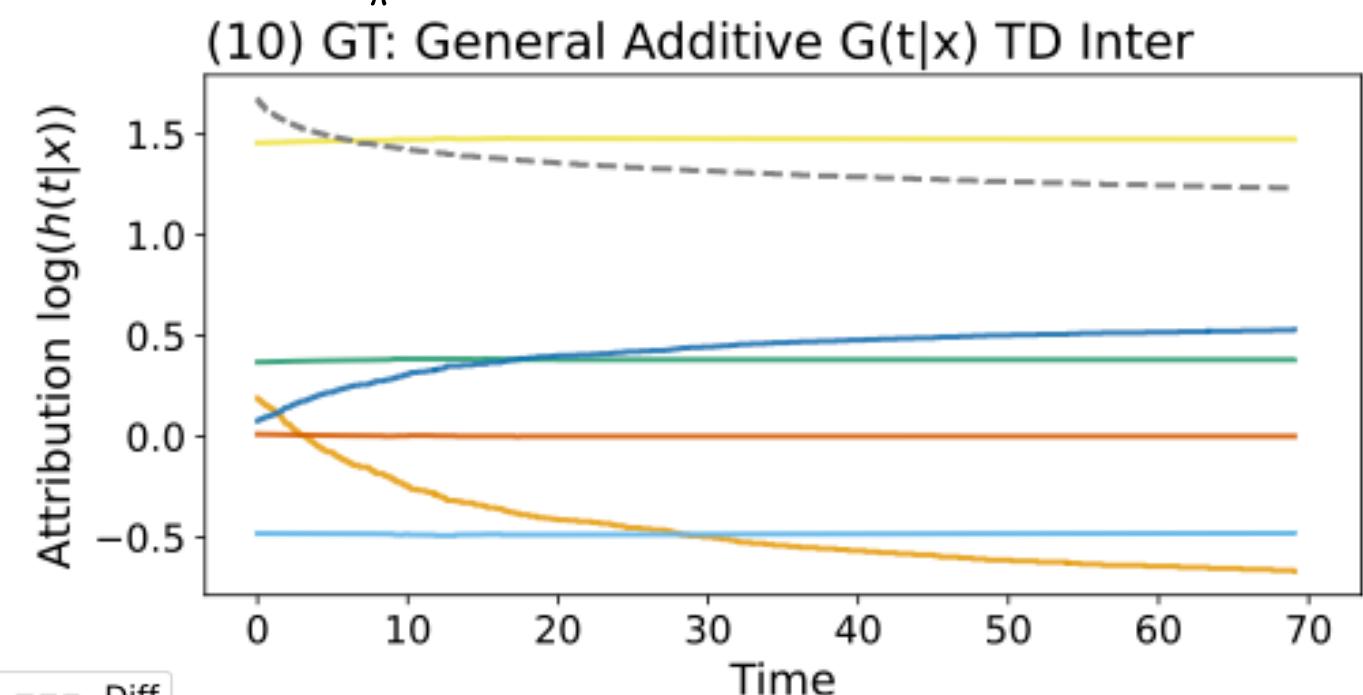
(2) Any subset of the true time-dependent set in $G(t|\mathbf{x})$ may also appear time-dependent
(downward propagation)

Examples:

$$G(t|\mathbf{x}) = 0.4x_1^2 \log(t+1) - 0.8 \frac{2}{\pi} \arctan(0.7x_2) - 0.6x_3 - 0.5x_1x_2 + 0.2x_1x_3^2$$



$$G(t|\mathbf{x}) = 0.4x_1^2 - 0.8 \frac{2}{\pi} \arctan(0.7x_2) - 0.6x_3 - 0.5x_1x_2 + 0.2x_1x_3^2 \log(t+1)$$



Functional Decomposition for Survival (SurvFD)

What about hazard and survival function?

$$\text{Hazard: } h(t|\mathbf{x}) = h_0(t) \exp(G(t|\mathbf{x}))$$

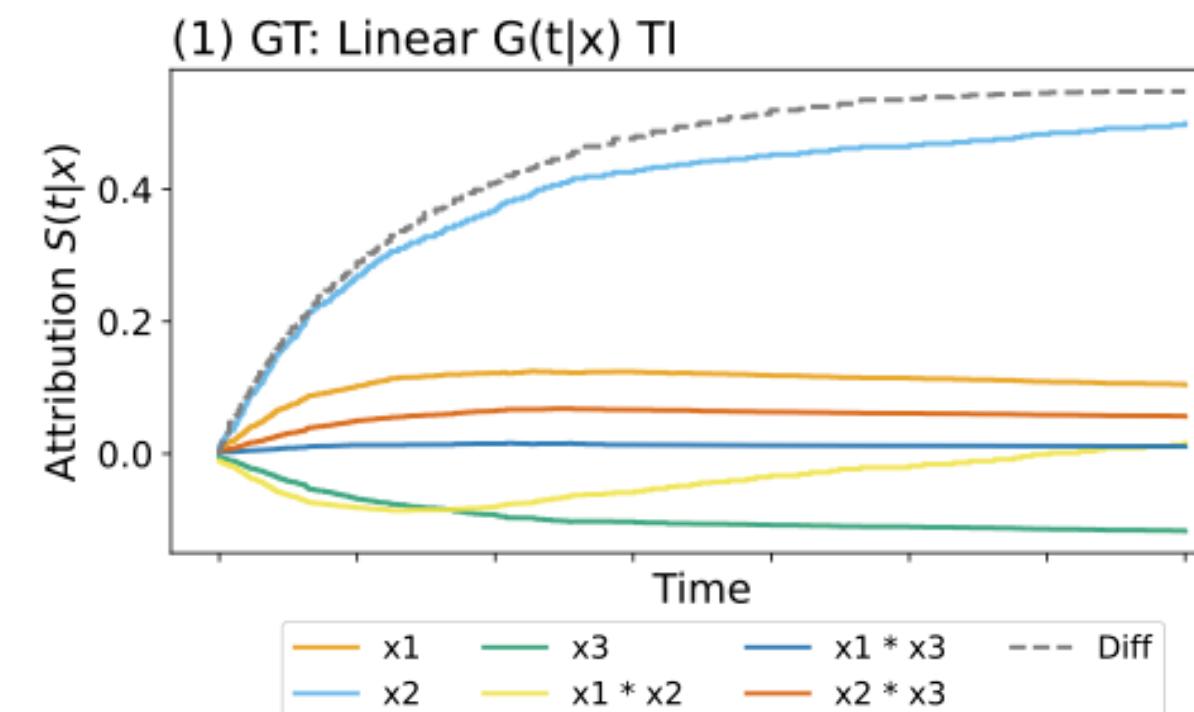
(1) Subsets and supersets of the true time-independent set in $G(t|\mathbf{x})$ can appear time-dependent (**upward & downward propagation**)

$$\text{Survival: } S(t|\mathbf{x}) = \exp\left(-\int_0^t h(u|\mathbf{x})du\right)$$

(2) Even if $G(t|\mathbf{x}) = \mathbf{x}\beta$ is a **standard CoxPH** model the SurvFD exhibits **interaction effects**

Examples:

$$G(t|\mathbf{x}) = 0.4x_1 - 0.8x_2 - 0.6x_3$$



Functional Decomposition for Survival (SurvFD)

What about hazard and survival function?

$$\text{Hazard: } h(t|\mathbf{x}) = h_0(t) \exp(G(t|\mathbf{x}))$$

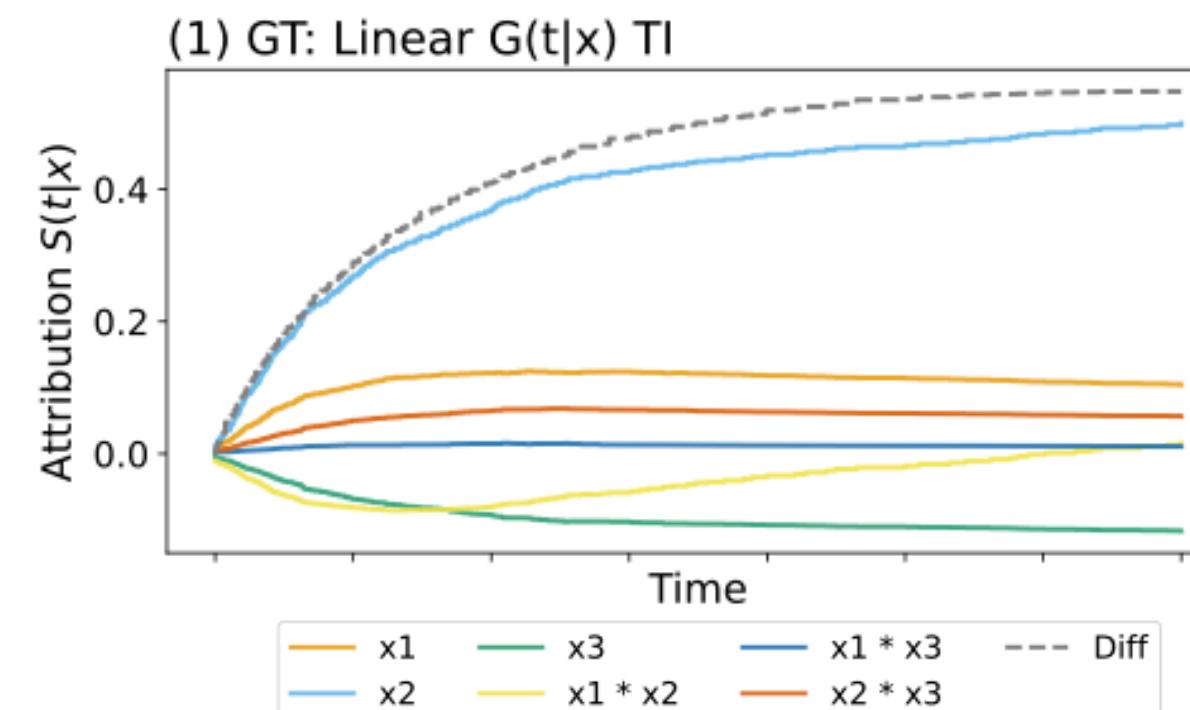
(1) Subsets and supersets of the true time-independent set in $G(t|\mathbf{x})$ can appear time-dependent (**upward & downward propagation**)

$$\text{Survival: } S(t|\mathbf{x}) = \exp\left(-\int_0^t h(u|\mathbf{x})du\right)$$

(2) Even if $G(t|\mathbf{x}) = \mathbf{x}\beta$ is a **standard CoxPH** model the SurvFD exhibits **interaction effects**

Examples:

$$G(t|\mathbf{x}) = 0.4x_1 - 0.8x_2 - 0.6x_3$$



Hazard and survival function naturally exhibit **interactions and time-dependency**

Shapley Interactions for Survival (SurvSHAP-IQ)

12

How do we quantify the SurvFD effects?

shapiq: Shapley Interactions for Machine Learning

Maximilian Muschalik¹, Hubert Baniecki², Fabian Fumagalli³, Patrick Kolpaczki⁴, Barbara Hammer³, and Eyke Hüllermeier¹

How do I measure interactions between multiple features for black box models beyond feature attributions?

I want to use Shapley values for other ML applications. How do I compute them?

Explain Models with Shapley Interactions

Explaining models with shapiq is easy:

```
# get your data and model
X, model = ...
from shapiq import Explainer
# create an explainer object
explainer = Explainer(model=model, data=X, max_order=2)
# get the feature interactions for the first observation
interaction_values = explainer.explain(X[0], budget=1024)
# visualize the 2-order feature interactions
interaction_values.force_plot(feature_names=...)
```

"Does the **location** of my property affect its price?" "Why is this a **dog**?"

"How does my **language model** predict a positive sentiment?"

Game Theory for General ML Applications

Any Model (e.g., torch, sklearn, ...)
Any Value Function (as a callable) $\nu : \mathcal{P}(N) \rightarrow \mathbb{R}$

Any Model (e.g., xgboost, lightgbm, ...)
Tree Model (e.g., xgboost, lightgbm, ...)

shapiq includes:

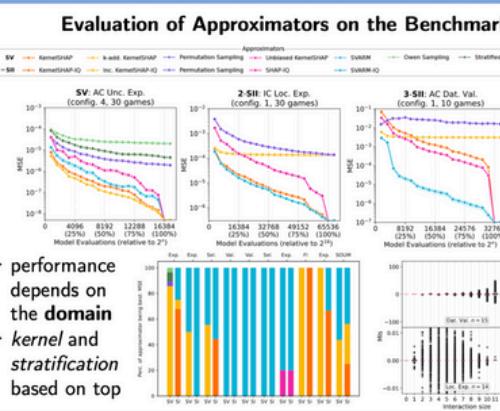
- 20 concepts (Shapley value and interactions, Banzhaf value and interactions, Faithful Shapley, Generalized values, Möbius, Core, ...)
- 14 state-of-the-art approximators and exact computers

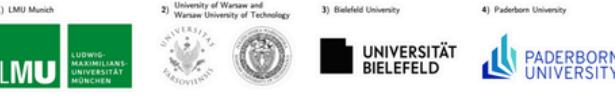
```
import shapiq
class CountGame(shapiq.Game):
    def __init__(self, n_players):
        self.n_players = n_players
    def value_function(self):
        return np.sum(self.coalitions, axis=1)
    def worth(self, coalition):
        return np.sum(self.coalitions[coalition])
    def approximate_STA(self, KernelSHAP_IQ):
        approx = shapiq.KernelSHAP_IQ(n=12)
        si = approx(game.game, budget=1000)
        # compute the Möbius transform exactly
        exact = shapiq.ExactComputer(game, 12)
        mi = exact(index='Möbius')
        print(mi[[3, 7]], mi[[3, 11]]) # get values
```

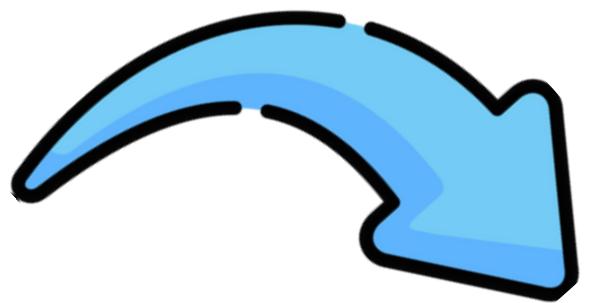
Class	Shapley Interactions	Shapley Values
Approximator	SHAP-IQ SVAR-IQ Permutation Sampling (SI) Permutation Sampling (STI) Stratified Sampling	KernelSHAP Inconsistent KernelSHAP k200-SHAP Faith-SHAP Onew Sampling Unbiased KernelSHAP SVARM
Computer	Möbius Converter Exact Computer	

Evaluation of Approximators on the Benchmark

Performance depends on the domain
kernel and stratification based on top



1) LMU Munich 2) University of Warsaw and Warsaw University of Technology 3) Bielefeld University 4) Paderborn University

Funded by Deutsche Forschungsgemeinschaft German Research Foundation
 mmschlk/shapiq PR Welcome! pip install shapiq



Vectorize over time!

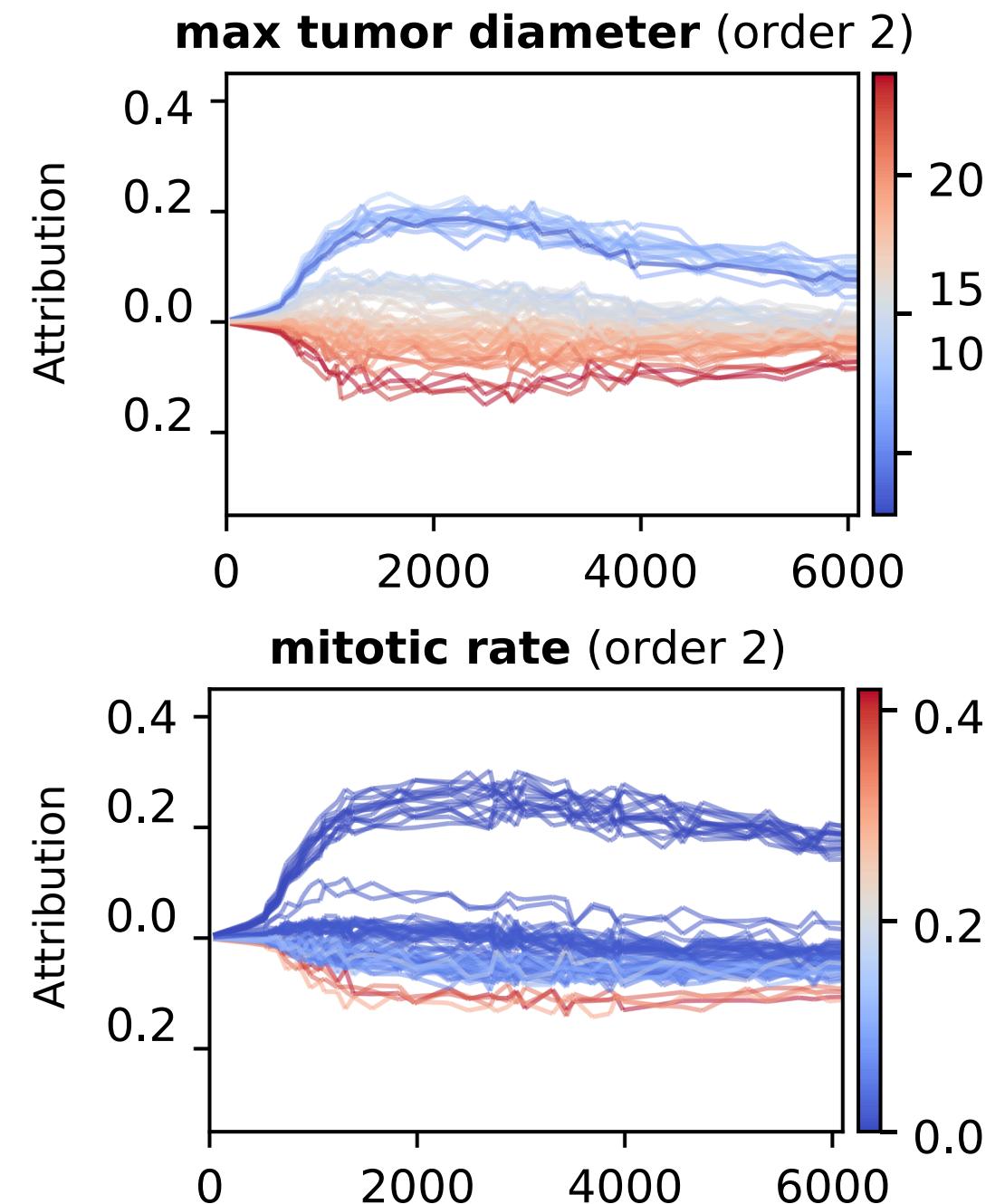
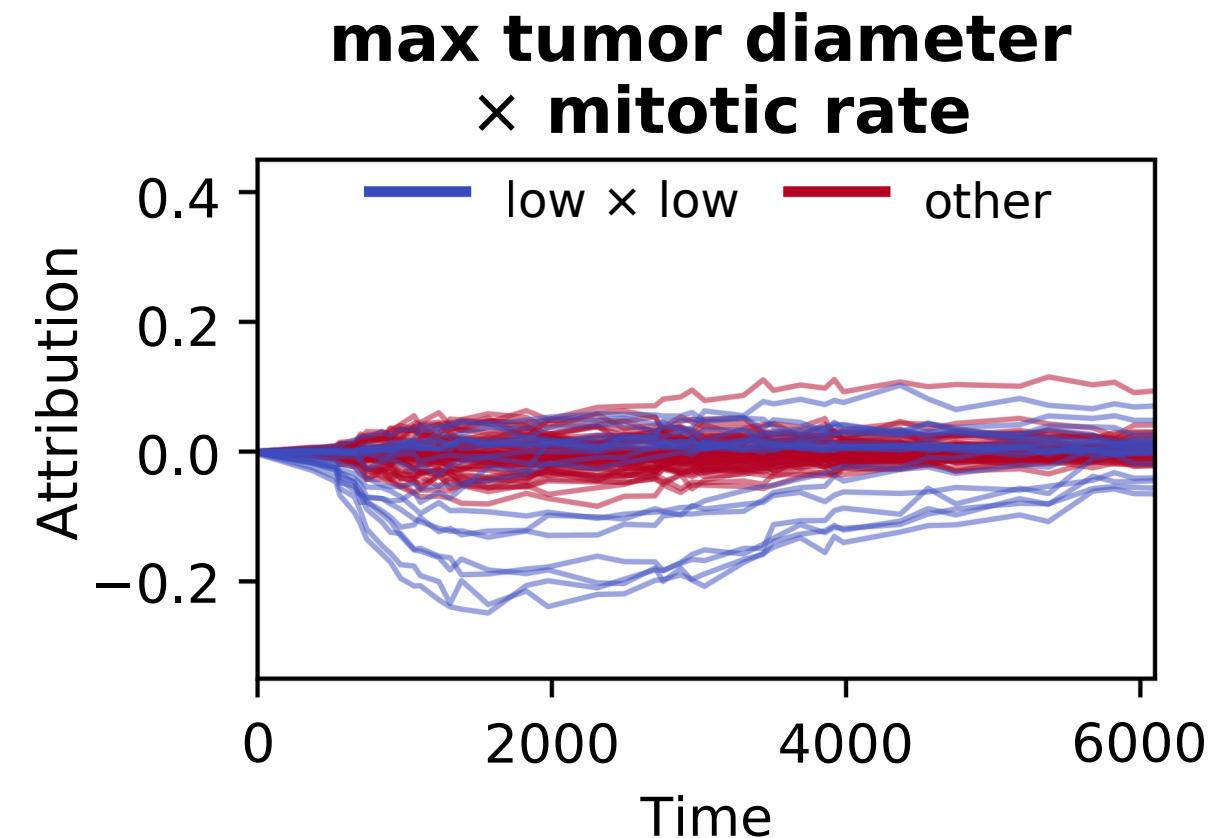
Real-world Applications

Survival Predictions for Uveal Melanoma

- Fit **gradient-boosting model** to predict **uveal melanoma** survival
- 227 patients and **9 clinical/histologic features**

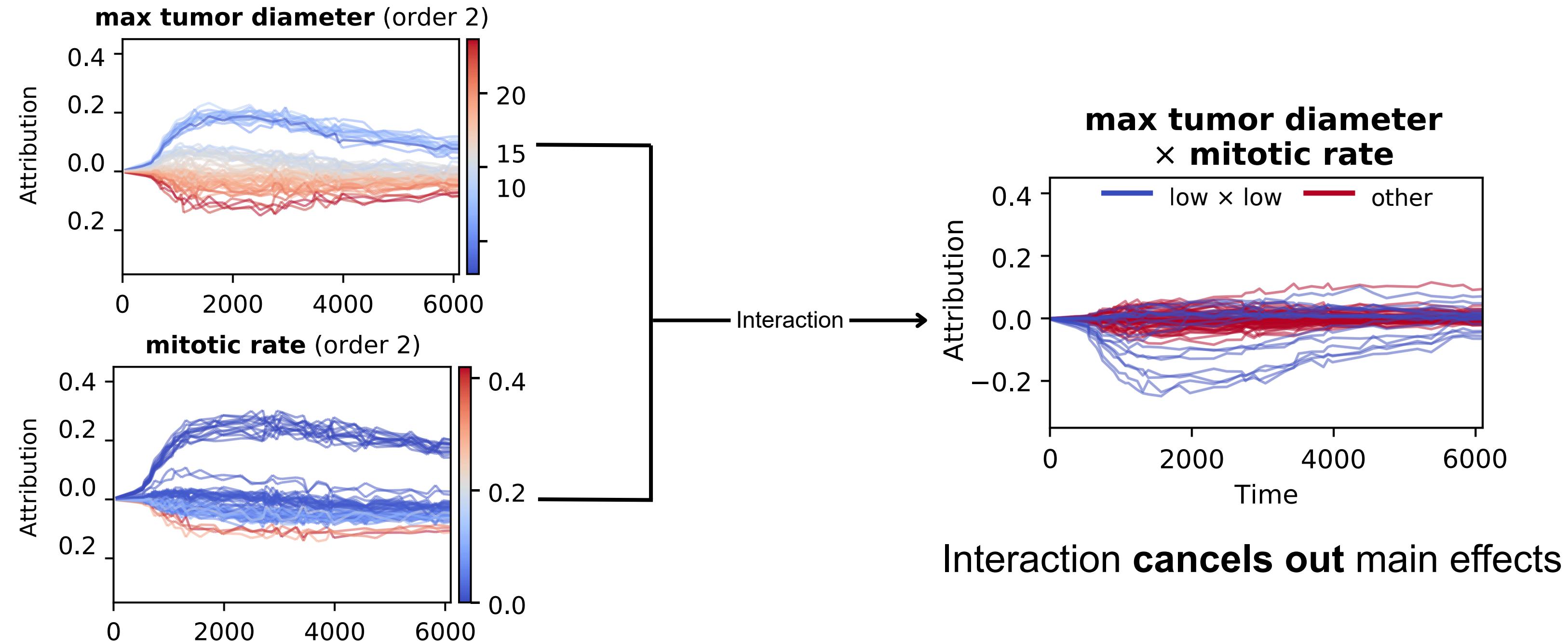
Survival Predictions for Uveal Melanoma

- Fit gradient-boosting model to predict uveal melanoma survival
- 227 patients and 9 clinical/histologic features



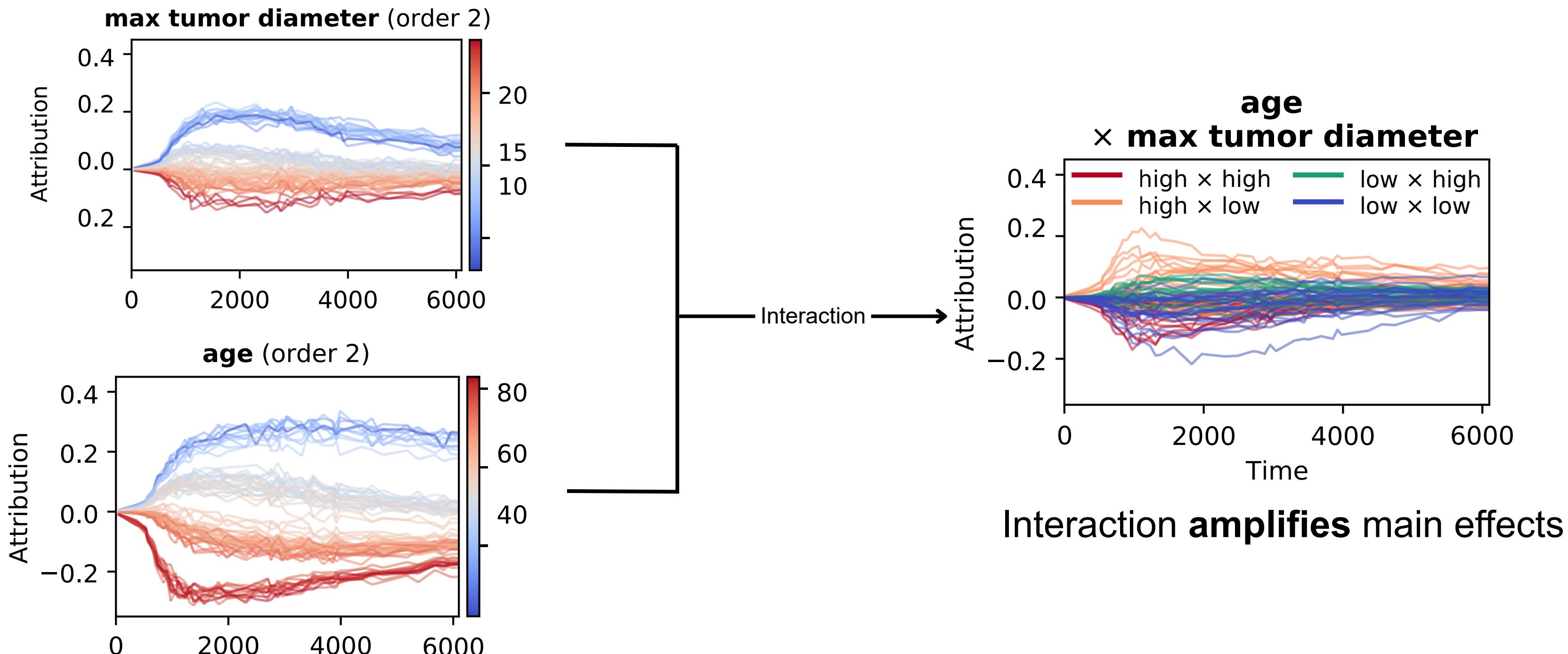
Survival Predictions for Uveal Melanoma

- Fit gradient-boosting model to predict uveal melanoma survival
- 227 patients and 9 clinical/histologic features



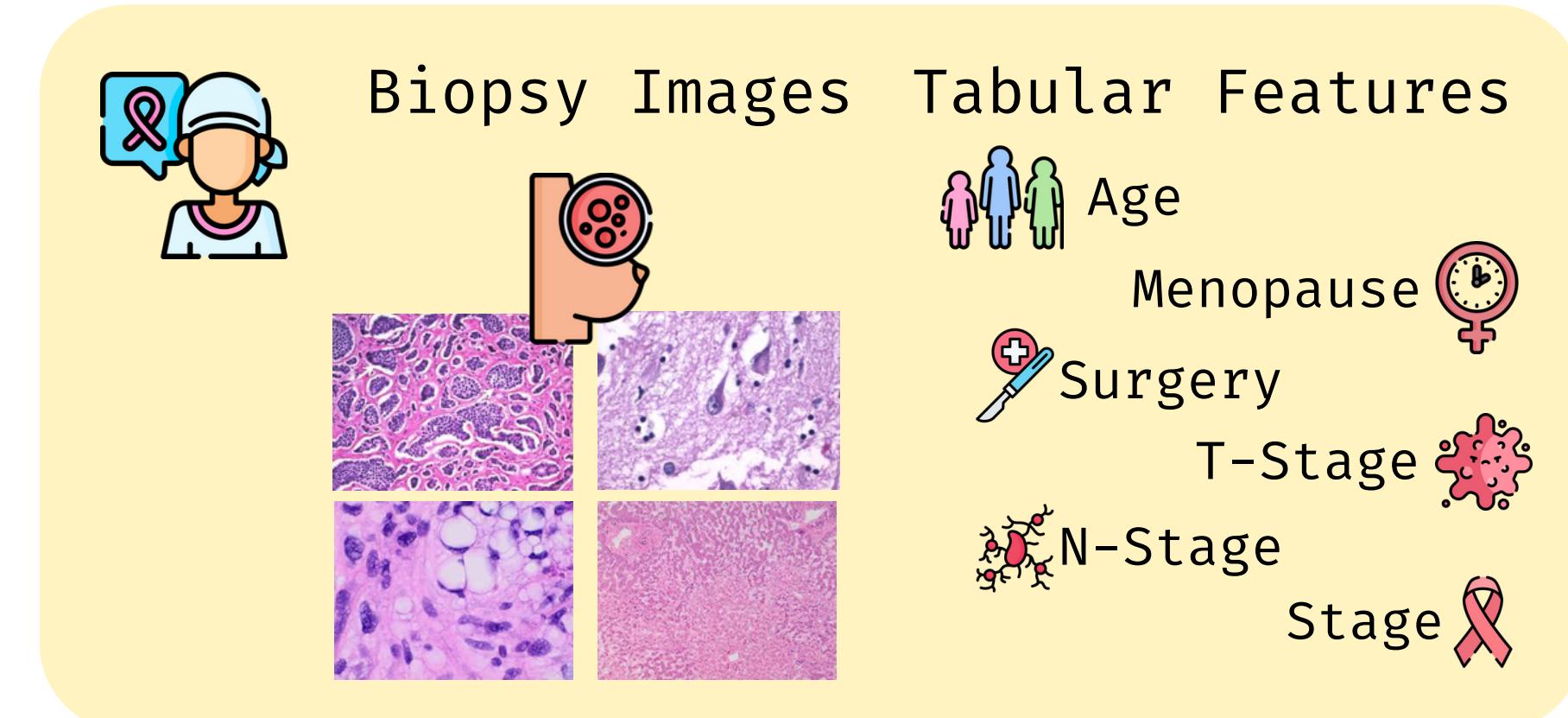
Survival Predictions for Uveal Melanoma

- Fit gradient-boosting model to predict **uveal melanoma** survival
- 227 patients and **9 clinical/histologic features**



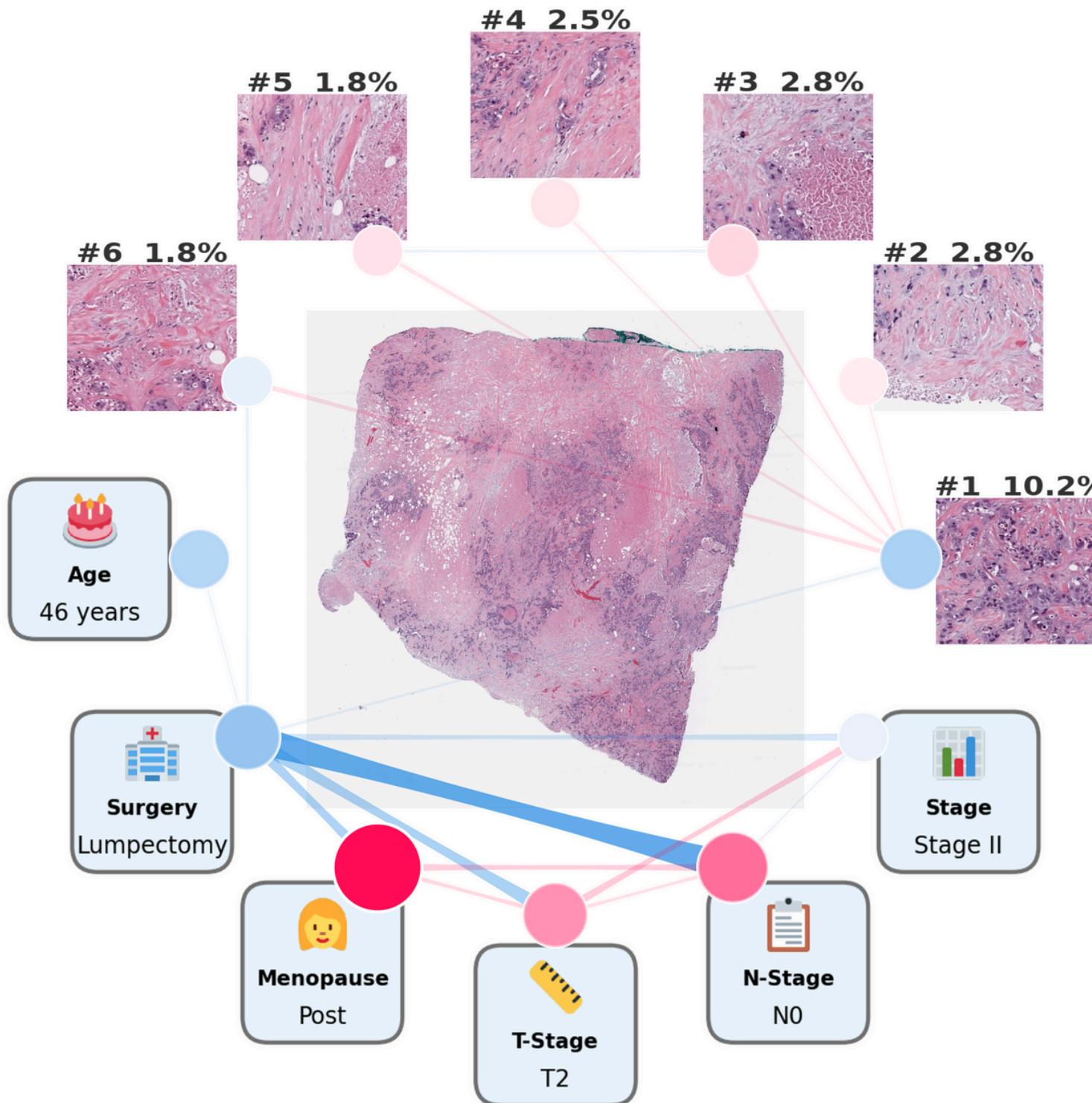
Multi-modal Survival Predictions (TCGA-BRCA)

- Fit DeepHit survival neural network to predict **breast cancer survival**
- 990 patients with **histopathological whole-slide images (WSIs)** and **8 clinical features**
- WSIs are **embedding encoded** using pre-trained vision transformer UNI2-h
- Patches are **weighted** using multi-instance learning **attention mechanism**
- Model predicts **probability mass function (PMF)** $P(T = t|\mathbf{x})$ from which discrete-time **survival probabilities** $S(t|\mathbf{x})$ are computed

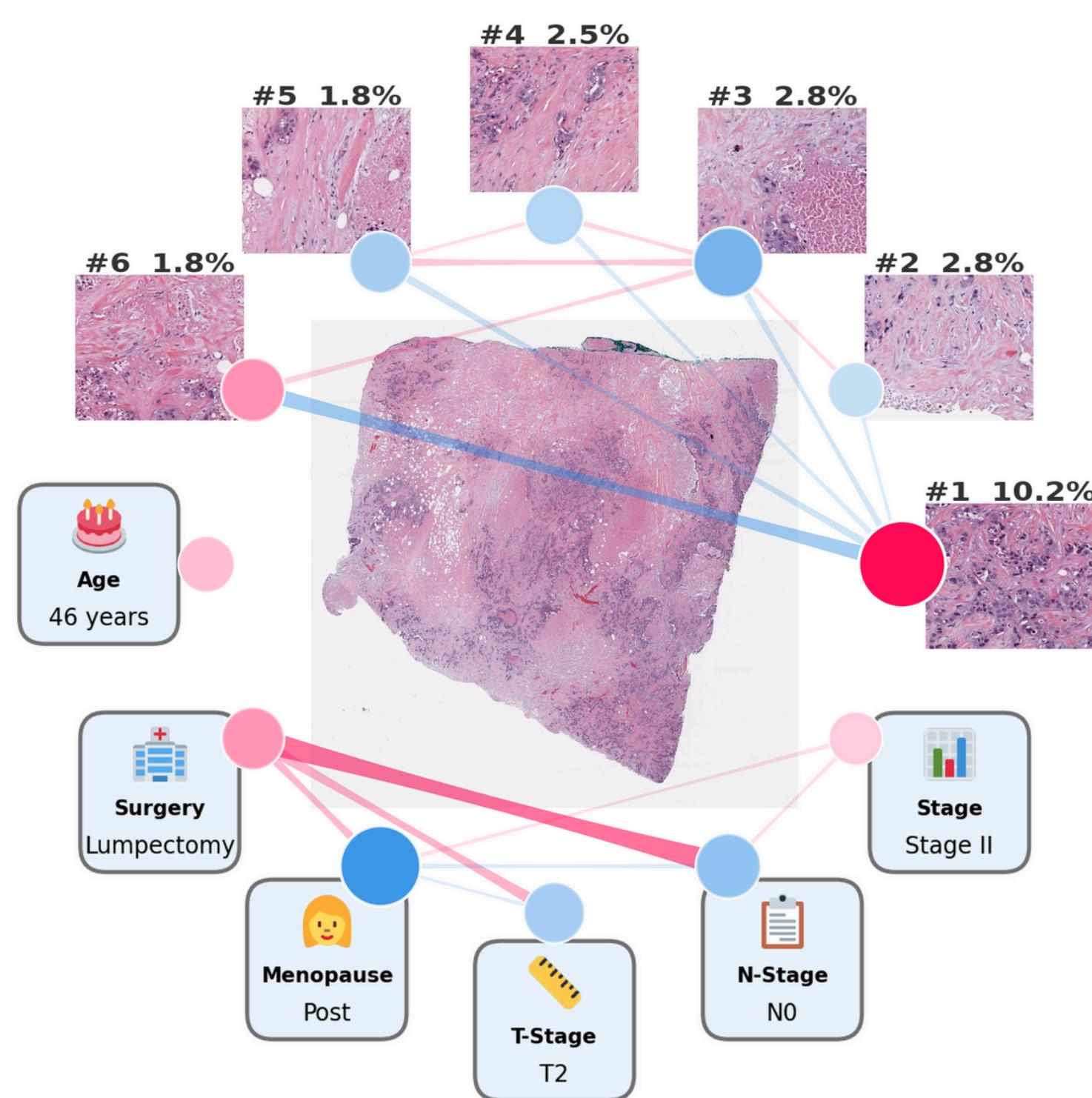


Multi-modal Survival Predictions (TCGA-BRCA)

**Probability Mass Function
($t = 4.24$ years)**



**Survival Probability
($t = 4.24$ years)**



Conclusion

- **Understanding feature effects and interactions in survival** (machine learning) models is essential
- **Baseline** of methods for **explaining feature effects** (PDP, ALE, SurvSHAP(t), GradSHAP(t)...)
- **SurvFD** and **SurvSHAP-IQ** as a theoretically grounded approach to **explain interactions** in survival models
- We focus on **interventional SHAP-IQ** & explanations “**true to the model**”
- **Interpreting the model vs. causal inference**

Thank you for your attention!

www.leibniz-bips.de/en

Contact

Leibniz Institute for Prevention Research
and Epidemiology – BIPS
Achterstraße 30
D-28359 Bremen

