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Introduction to Survival Analysis 
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IML for Survival Analysis 
Model-Agnostic

-explain arbitrary models-

PDP
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Global
-explain overall
model behavior-

Local
-instance based
explanations-

Local
-instance based
explanations-

SHAP

LIME

ICE

Gradients

GradSHAP

IntGrad

Model-Specific
-explain specific models-

What about
Interactions?



Functional Decomposition (SurvFD)
& Shapley Interactions (SurvSHAP-

IQ) for Survival Models
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Survival Analysis Background
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Survival Analysis Background

Hazard function: Survival function:

Survival Dataset:
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Survival Analysis Background

Hazard function: Survival function:

General multiplicative hazards model:
(Oakes, 1977)

Generalized risk score: 

Survival Dataset:

Transformation

(non-linear) feature transformation

(non-linear) time-dependence

G(th|x)



5

Functional Decomposition for Survival (SurvFD)
Ground-truth Assumptions

Generalized
additive risk

function

Generalized risk score: 



5

Functional Decomposition for Survival (SurvFD)
Ground-truth Assumptions

Generalized
additive risk

function

Generalized risk score: 

Time-dependent
feature set

Time-independent
feature set

Effect on risk
changes over time

Effect on risk
constant over time



5

Functional Decomposition for Survival (SurvFD)
Ground-truth Assumptions

Generalized
additive risk

function

Generalized risk score: 

“Ground-truth” feature
effect separation
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Time-independent
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Effect on risk
changes over time

Effect on risk
constant over time
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Functional Decomposition for Survival (SurvFD)
Ground-truth Assumptions
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Functional Decomposition for Survival (SurvFD)

t
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Example: 
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Functional Decomposition for Survival (SurvFD)

 Time-dependent Effects 

t

Time-independent Effects

We summarize (log-)hazard and
survival function as

Example: 

Feature 2

t

Feature 1

Interaction 1-2

Interaction 2-3

Interaction 1-2-3

Interaction 1-3

Feature 3
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Functional Decomposition for Survival (SurvFD)
When do and 

Log-hazard function:

?

(1) G(t|x)  is linear in x including interactions (2) G(t x)   is an additive main effect model

Examples:
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Functional Decomposition for Survival (SurvFD)

(1) No superset of the true time-dependent
set in G(t  |x) can appear time-dependent

(no upward propagation)
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Log-hazard function:

Examples:
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Functional Decomposition for Survival (SurvFD)

(1) No superset of the true time-dependent
set in G(t  |x) can appear time-dependent

(no upward propagation)

(2) Any subset of the true time-dependent set
in G(t. |x) may also appear time-dependent

(downward propagation)

What about more general G(t|.  x?

Log-hazard function:

Examples:
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Functional Decomposition for Survival (SurvFD)

Hazard: Survival:

(1) Subsets and supersets of the true time-
independent set in G(th|x) can appear time-

dependent (upward & downward propagation)

Examples:

What about hazard and survival function?

(2) Even if G(t|xbbb) = x is a standard CoxPH
model the SurvFD exhibits interaction effects
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Functional Decomposition for Survival (SurvFD)

Hazard: Survival:

(1) Subsets and supersets of the true time-
independent set in G(th|x) can appear time-

dependent (upward & downward propagation)

(2) Even if G(t|xbbb) = x is a standard CoxPH
model the SurvFD exhibits interaction effects

Examples:

What about hazard and survival function?

Hazard and survival function naturally exhibit
interactions and time-dependency
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Shapley Interactions for Survival (SurvSHAP-IQ)

Vectorize over time!

How do we quantify the SurvFD effects?



Real-world Applications
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Survival Predictions for Uveal Melanoma 
Fit gradient-boosting model to predict uveal melanoma survival
227 patients and 9 clinical/histologic features
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Survival Predictions for Uveal Melanoma 
Fit gradient-boosting model to predict uveal melanoma survival
227 patients and 9 clinical/histologic features
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Survival Predictions for Uveal Melanoma 
Fit gradient-boosting model to predict uveal melanoma survival
227 patients and 9 clinical/histologic features

Interaction

Interaction cancels out main effects
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Survival Predictions for Uveal Melanoma 
Fit gradient-boosting model to predict uveal melanoma survival
227 patients and 9 clinical/histologic features

Interaction

Interaction amplifies main effects
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Multi-modal Survival Predictions (TCGA-BRCA)

Fit DeepHit survival neural network to predict breast cancer survival 
990 patients with histopathologial whole-slide images (WSIs) and 8 clinical
features
WSIs are embedding encoded using pre-trained vision transformer UNI2-h 
Patches are weighted using multi-instance learning attention mechanism

Biopsy Images Tabular Features

Menopause
Surgery

T-Stage
N-Stage

Stage

Age

Model predicts probability mass
function (PMF) P(T = t|x) blfrom
which discrete-time survival
probabilities S(t|x ) are computed
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Multi-modal Survival Predictions (TCGA-BRCA)
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Conclusion

Understanding feature effects and interactions in survival (machine learning)
models is essential
Baseline of methods for explaining feature effects (PDP, ALE, SurvSHAP(t),
GradSHAP(t)...)
SurvFD and SurvSHAP-IQ as a theoretically grounded approach to explain
interactions in survival models
We focus on interventional SHAP-IQ & explanations “true to the model” 
Interpreting the model vs. causal inference



Contact

www.leibniz-bips.de/en

Leibniz Institute for Prevention Research
and Epidemiology – BIPS

Achterstraße 30
D-28359 Bremen

Thank you for your attention!


