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Introduction to Survival Analysis
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Interpretable Machine Learning

Gain global insights
Model Validation Grasp single predictions
Performance Evaluation Improve, debug, audit Decision-making
Prediction Justification & Fairness
Black Box

Model Humans



IML for Survival Analysis

\

Model-Agnostic
-explain arbitrary models-

ranger
1.00] ~——————
PDP , 080 :
Global T o060
. (] '
-explain overall ALE T ) 40
. O s
model behavior- = 0.20- |
PFI 0.00- “‘“' - "-"_"l
0 1 2 3 4 5




IML for Survival Analysis
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IML for Survival Analysis
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IML for Survival Analysis
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Functional Decomposition (SurvFD)
& Shapley Interactions (SurvSHAP-
Q) for Survival Models
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Survival Analysis Background

Survival Dataset:

) = {(x@'), 0 :i=1,...,n}

{ observed survival time 3 = min (¢, c(i))}
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Survival Dataset:
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Survival Analysis Background

Survival Dataset:
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Hazard function:
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Survival Analysis Background

Survival Dataset:

) = {(x ¢y §D):i=1, ..., n)

Hazard function: Survival function: .
A(tlx) = lim — =T StH AT 2 8 X) — transtormation—> §(¢]x) = exp (‘/ h(u|x)du>
At—0 At 0
Instantaneous risk of event at Probability of surviving longer

specified time than specified time



Survival Analysis Background

Survival Dataset:

) = {(x ¢y §D):i=1, ..., n)

Hazard function: Survival function: .
(t‘x) lim P(t <T <t+ At|T > t, X) Transformation —> S(t‘X) — exp (—/ h(’U,|X)d’U,>
At—0 At 0
Standard CoxPH model: (Cox, 1972)
G(t|x) = E :5937]
General multiplicative hazards model: 2
(Oakes, 1977) J€

G(t]x)
h(t|x) = ho(t) exp(G(t|x))



Survival Analysis Background

Survival Dataset:

) = {(x ¢y §D):i=1,...,n)

Hazard function: Survival function: .
(t‘x) ~ tim P(t <T<t+ At|T > t, X) Transformation —> S(t‘X) = exp (—/ h(’U,|X)d’U,>
At—0 At 0

Generalized risk score:

_ x) = Y Bu || loi(=;
General multiplicative hazards model: t| ’BM -

(Oakes, 1977) MCP jeM
G(t|x)

h(t|x) = ho(t) exp(G(t|x)) g;i(x;) (non-linear) feature transformation

lj(t) (non-linear) time-dependence
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Functional Decomposition for Survival (SurvFD) “

G rO U n d 'trUth ASS U m ptl O n S Generalized risk score:
G(t]x) = Z Bu H g;(z;)!

MCP jeM

Generalized
additiverisk G (t]|X) = E gM t\x | E gum(x
function MEId MEL-d
Lg Liq
Time-dependent Time-independent
feature set feature set

Effect on risk Effect on risk

changes over time constant over time




Functional Decomposition for Survival (SurvFD) “

G rO U n d 'trUth ASS U m ptl O n S Generalized risk score:
t|x Z Bum H g; 33]

. MCP jeEM
Generalized
additiverisk G (t]|X) = E gM t\x | E gum(x
function MEId MEIid
Lq Liq
Time-dependent Time-independent
feature set feature set

Effect on risk Effect on risk

changes over time constant over time

“Ground-truth” feature
effect separation



Functional Decomposition for Survival (SurvFD) “

Ground-truth Assumptions

Generalized ( } )
additiverisk G (t|x) = E g (t|x) E gm(X) || pwein
function MeT, McT,,

Hazard h(t|x) = ho(t) exp([G(t|X)J)

function




Functional Decomposition for Survival (SurvFD) “

Ground-truth Assumptions

Generalized
additive risk G(t|x) = Z g (t|x) Z gy (x)

function

log-trafo
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azard log h(t|x) = log(ho(t)) +G(t]x) | -

function




Functional Decomposition for Survival (SurvFD) “

Ground-truth Assumptions

Generalized
additive risk G(t|x) = Z g (t]|x) Z g (x)
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fl;lﬁiﬁgi h(t‘x) — hO (t) eXP(G(t|X)) transformation
Log-
hazard log h(t[x) = log(ho(t)) + G(t[x)

| ! t
1‘SlJL:1r(\:/’[I|\cl)ar1l S(t|x) =|exp (-/ (ho(t) eXp(G(t\x))du) .
0




Functional Decomposition for Survival (SurvFD) “

We summarize (log-)hazard and F(t‘X) — f@ (t) -+ Z fM(t‘X)

survival function as F'(t|x) :
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Example: P ={1,2,3}

Effects of Order 1
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fi(tlx)
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We summarize (log-)hazard and F(t‘X) — f@ (t) -+ Z fM(t‘X)

survival function as F'(t|x) :
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Functional Decomposition for Survival (SurvFD) “

We summarize (log-)hazard and F(t‘X) — f@ (t) -+ Z fM(t‘X)

survival function as F'(t|x) :

Example: P ={1,2,3}

Effects of Order 1 Effects of Order 2 Effects of Order 3
M < {1,2,3} M € {{1,2},{1,3},{2,3}} M e {{1,2,3}}

— /),
Feature 3 oy,
o |
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Functional Decomposition for Survival (SurvFD) “

We summarize (log-)hazard and F(t‘X) — f@ (t) -+ Z fM(t‘X)

survival function as F'(t|x) :



Functional Decomposition for Survival (SurvFD) “

We summarize (log-)hazard and E !
survival function as F'(t|x) : (t‘X @ _I_ fM t‘X
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Functional Decomposition for Survival (SurvFD) “

F(t}x) = fo(t) + > fu(tx)




Functional Decomposition for Survival (SurvFD) “

F(t}x) = fo(t) + > fu(tx)

04MCP
— f@(t) -+ Z fM(t‘X) + Z fM(X)
MET? MET?,




Functional Decomposition for Survival (SurvFD) “

Whendo Z), =Z;,y and Z] =14 ?

Log-hazard function: log h(t|x) = log(ho(t)) + Z gm(t|x) + Z gm(x)
MeZy MeZ;,

(1) G(t|x) is linear in x including interactions (G(t]x))




Functional Decomposition for Survival (SurvFD) “

Whendo Z); =T,y and Z] =1, ?
Log-hazard function: log h(t|x) = log(ho(t)) + Z gm(t|x) + Z gm(x

MEId MeZ;,

(1) G(t|x) is linear in x including interactions (G(t]x) )
Examples:

G(t|x) = 0.4z; — 0.8z9 — 0.6x3 + 0.2x 23 log(t + 1)
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Functional Decomposition for Survival (SurvFD) ﬁ

Whendo Z); =T,y and Z] =1, ?
Log-hazard function: log h(t|x) = log(ho(t)) + Z gm(t|x) + Z gm(x
MeZy MeZ;,
(1) G(t|x) is linear in x including interactions (2) G(t|x) is an additive main effect model

Examples:

2
G(t|x) = 0.4x; — 0.8x2 — 0.6z3 + 0.2z1x3log(t + 1) G(t|x) = 0.4z7log(t + 1) — 0.8—arctan(0.7x3) — 0.6x3
T
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Functional Decomposition for Survival (SurvFD) ﬁ

What about more general G(t|x)?

Log-hazard function: log h(t|x) = log(ho(t)) + Z gum(t|x) + Z gnr(x
Mel, MeZq

(1) No superset of the true time-dependent
set in G(t|x) can appear time-dependent
(no upward propagation)

Examples:
2
G(t|x) = 0.4x7log(t + 1) — 0.8 —arctan(0.7z3) — 0.6x3 — 0.5z125 + 0.2z 23
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Functional Decomposition for Survival (SurvFD) “

What about more general G(t|x)?

Log-hazard function: log h(t|x) = log(ho(t)) + Z gm(t|x) + Z gm(x

MeZly MeZ;,
(1) No superset of the true time-dependent (2) Any subset of the true time-dependent set
set in G(t|x) can appear time-dependent In G(t|x) may also appear time-dependent
(no upward propagation) (downward propagation)
Examples:
G(t|x) = 0.4z% log(t + 1) — O.8£arctan(0.7a:2) —0.6x3 — 0.5z125 + 0.2z, 23 G(t|x) = 0.4z — O.8%arctan(0.7a:2) —0.6z3 — 0.5z 25 + 0.2z123 log(t + 1)

T
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Functional Decomposition for Survival (SurvFD) ﬁ

What about hazard and survival function?
t
Hazard: h(t|x) = ho(t) exp(G(t|x)) Survival: S(t|x) = exp (—/ h(u|x)du>
0

(1) Subsets and supersets of the true time- (2) Even if G(t|x) = x0 is a standard CoxPH
independent set in G(¢|x) can appear time- model the SurvFD exhibits interaction effects

dependent (upward & downward propagation)

Examples:
G(t|x) = 0.4z1 — 0.8x9 — 0.6x3
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Functional Decomposition for Survival (SurvFD) ﬁ

What about hazard and survival function?
t
Hazard: h(t|x) = ho(t) exp(G(t|x)) Survival: S(t|x) = exp (—/ h(u|x)du>
0

(1) Subsets and supersets of the true time- (2) Even if G(t|x) = x0 is a standard CoxPH
independent set in G(¢|x) can appear time- model the SurvFD exhibits interaction effects

dependent (upward & downward propagation)

Examples:
G(t|x) = 0.4z1 — 0.8x9 — 0.6x3

(1) GT: Linear G(t|x) TI

R Hazard and survival function naturally exhibit
interactions and time-dependency

Attribution 5(t|x)
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Time
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Shapley Interactions for Survival (SurvSHAP-IQ)

How do we quantify the SurvFD effects?

shapiq: Shapley Interactions for Machine Learning }g”:?‘*féf;ﬁ.“pogmﬂm

PROCESSING SYSTEMS

Maximilian Muschalik!, Hubert Baniecki?, Fabian Fumagalli3, Patrick Kolpaczki®, Barbara Hammer?®, and Eyke Hiillermeiert .'-I', ‘;.

How do | measure interactions between
| want to use Shapley values for other ML

multiple features for black box models L ] ll' ) Al
beyond feature attributions? m SLA 5 applications. How do | compute them?

Explain Models with Shapley Interactions Game Theory for General ML Applications

ini t your da model Any Model P
Explaining models B (e 2 Py Aivw Vaia shapiq includes:
with shapiq is easy: from shaply ::zr::"!:-:pm::r sk-fa;rn } e ,lru:t'l:m ¥ 20 concepts (Shapley value and interactions, Banzhaf value and
; ; create an ez r object uncti : : : .
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igntgbm, ) J dof __init__(self, n_players): ... KernalSHAP.IQ L
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Fermulation Sampling (SII)  Permutation Samplisg (5V)

Vectorize over time!

# compute the Noebius transfors ezactly Permutation Sampling (STH) Stratified Sampling
| exect = shapiq.ExactComputer(game, 12) Mt Comrerter
i mi = exact(index='Mosbiua’) Computer X
print(ail(3, 701, mi[(3,)]) # get values Bract Compater

EEES SHAP-IQ

"How does my language model predict a positive sentiment?”
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Real-world Applications



Survival Predictions for Uveal Melanoma

e Fit gradient-boosting model to predict uveal melanoma survival
o 227 patients and 9 clinical/histologic features



Survival Predictions for Uveal Melanoma

e Fit gradient-boosting model to predict uveal melanoma survival
o 227 patients and 9 clinical/histologic features

max tumor diameter (order 2)
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Survival Predictions for Uveal Melanoma

e Fit gradient-boosting model to predict uveal melanoma survival
o 227 patients and 9 clinical/histologic features

Attribution

Attribution

max tumor diameter (order
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Survival Predictions for Uveal Melanoma

e Fit gradient-boosting model to predict uveal melanoma survival
o 227 patients and 9 clinical/histologic features

max tumor diameter (order 2)
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e Fit DeepHit survival neural network to predict breast cancer survival

e 990 patients with histopathologial whole-slide images (WSIs) and 8 clinical
features

e WSIs are embedding encoded using pre-trained vision transformer UNI2-h

 Patches are weighted using multi-instance learning attention mechanism

 Model predicts probability mass
function (PMF) P(T — t|x) from AU~ Biopsy Images Tabular Features
which discrete-time survival %
probabilities S(t|x) are computed




Multi-modal Survival Predict

Probability Mass Function Survival Probability
(t = 4.24 years) (t = 4.24 years)
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Conclusion

18

 Understanding feature effects and interactions in survival (machine learning)
models is essential

« Baseline of methods for explaining feature effects (PDP, ALE, SurvSHAP(t),
GradSHAP(t)...)

e SurvFD and SurvSHAP-IQ as a theoretically grounded approach to explain
interactions in survival models

e We focus on interventional SHAP-IQ & explanations “true to the model”

e Interpreting the model vs. causal inference
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