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Motivating Example

IDEFICS/I.Family
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Motivating Example D

SHAP values 3
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Motivating Example

SHAP values

Waterfall Plots (local)
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SHAP values

Dependence Plot (global)
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Motivating Example

SHAP values
Dependence Plot (global)
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Local vs. Global Explanations

Local explanation

Each subset of features S < {1,...,d} receives a descriptive
function ¢s : RY — R which may depend on all values of x € RY
Example: Shapley values

Global explanation

Each feature j € {1,...,d} receives a single descriptive value v; € R
which does not depend on x € R?

Example: Feature importance
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Local vs. Global Explanations

Local explanation

Each subset of features S < {1, ..., d} receives a descriptive
function ¢s : R? — R which may depend on all values of x € RY
Example: Shapley values

Single-value global explanation
Each feature j € {1,...,d} receives a single descriptive value v; € R

which does not depend on x € R?
Example: Feature importance

(Truly) Global explanation

Each subset of features S < {1, ..., d} receives a descriptive
function ms : R> — R which only depends on values

Xs = {Xr : R € S} and not on other values x_s = {x; : j ¢ S}.



Local vs. Global Explanations

"A local explanation that explicitly considers all
interactions is a global explanation.”



Functional Decomposition

Functional decomposition of model m(x) 6
d
M(x) = Mo+ D M) + D Mt (X X) + -+ + M1 (X)
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Functional Decomposition

Functional decomposition of model m(x) 6
d
M(x) = Mo+ D M) + D Mt (X X) + -+ + M1 (X)
k=1

k<l
= Z m5<X5).

Scil,...,d}

Huge number of components

27 = 128 for the example above
220 — 1,048, 576 for 20 features



Functional Decomposition

Functional decomposition of model m(x) 6
d
M(x) = Mo+ D M) + D Mt (X X) + -+ + M1 (X)
k=1

k<l
= Z m5<X5).

Scil,...,d}

Gradient-boosted trees
Ensemble of low-dimensional structures

q << d with g = max{|S| : ms # 0}



Functional Decomposition

Functional decomposition of model m(x) 6
d
M(x) = Mo+ D M) + D Mt (X X) + -+ + M1 (X)
k=1

k<l
= Z m5<X5).

Scil,...,d}

Right-hand side not identified

Possible to change components on the right without altering the
left-hand side



Functional Decomposition

Functional decomposition of model m(x) 6
d
M(x) = Mo+ D M) + D Mt (X X) + -+ + M1 (X)
k=1

k<l
= Z m5<X5).

Scil,...,d}

Different identifications proposed
Baseline,

Marginal (aka interventional),
Conditional (aka observational)



Connection to SHAP values

SHAP values
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Connection to SHAP values >

SHAP values

d
M (X0) = ¢o + Y, r(Xo)

k=1

with xg € RY and constants ®0, 91(X0), - - - 7¢d(X0)

Right-hand side not identified

Different identifications lead to different SHAP values with
different value functions, e.g. interventional SHAP or observational
SHAP



Connection to SHAP values

SHAP values

d
M (X0) = ¢o + Y, r(Xo)

k=1

with xg € RY and constants oo, (251()(0), . 7¢d(X0)

Where are the interactions?




Connection to SHAP values >

SHAP values can be calculated from decomposition

SHAP values are weighted averages of the corresponding
components, where an interaction component is equally split to all
involved features

N 1 R 1.
Pr(X) = M (Xe) + 52 Migk) + -+ oMi | (x,..d)
J






Connection to SHAP values >

Shapley
& Values



Connection to SHAP values

S Shapley
* Interactions
(order 2)




Connection to SHAP values

Shapley
= Interactions
(order 2)

d-interaction SHAP is the full functional decomposition



Connection to Partial Dependence >

10
Partial dependence function

&=, mp

ucs

where &5 is be the partial dependence plot for a set of features S.

Single feature S = {k}

Er(Xp) = Mg + My (Xe)



Connection to Partial Dependence >

10
Partial dependence function

&=, mp

ucs

where &5 is be the partial dependence plot for a set of features S.

Single feature S = {k}

Er(Xp) = Mg + My (Xe)

Interventional SHAP
SHAP with PD value function = interventional SHAP



TreeSHAP algorithms

11

Algorithm for (gradient-boosted) trees

Decomposition can be calculated from tree structures with a single
recursion through each tree

TreeSHAP algorithm

e |eaf: Return leaf prediction
¢ Internal node:
® |f split feature in subset U: Apply splitting criterion of node
and continue with respective child node
® |f not: Continue in both the left and right children nodes, each
weighted by the coverage



TreeSHAP algorithms

Method FD Consistent Complexity 12
VanillaPD v v/ O(R2%neny)

Friedman (2001) v X 0(292%n,)
TreeSHAP-path X X 0(D?2Pn,)
TreeSHAP-int X v 0(D2Pneny)

Zern (2023) X v 0(2°ny + 3°Dne)
FastPD v v 02+ (ne + np))

Ne: evaluation samples, np: background samples, d: number of
features, D: depth of tree, F: number of features the tree splits on,

R: model evaluations
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TreeSHAP algorithms

Method FD Consistent Complexity 12
VanillaPD v v O(R2%nenp) Slow
Friedman (2001) v X 0(292°n,) Fast
TreeSHAP-path X X O(D22D Ne) Fast
TreeSHAP-int X v 0(D2°neny,) Slow

Zern (2023) X 4 0(2°n;, + 3PDne) Fast
FastPD v v 0(2P+F(ne + np)) Fast

Ne: evaluation samples, np: background samples, d: number of
features, D: depth of tree, F: number of features the tree splits on,
R: model evaluations

FastPD the only algorithm that provides a full
functional decomposition, is consistent and fast



TreeSHAP algorithms

Runtime 13
1000.0 - Slope: 2.0005
Method
. ~®- VanillaPD
92}
o Slope: 1.985 - TreeSHAP-int
=t 10.04 A
= - FastPD
= Slope (FastPD): 0.96 - Zern et al.
¢ (Zern et al.): 0.993 ~©- TreeSHAP-path
0.14
Slope: 0.8623

T T T
1000 3000 5000
Tp, Ne



TreeSHAP algorithms
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TreeSHAP algorithms

Consistency — Simulation 15
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TreeSHAP algorithms

16
Consistency — Example

FastPD Friedman-path
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Example from the adult dataset



Application

Feature importance (single-value global) 17
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Application

Feature importance (single-value global), by degree 17
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Application

Decomposition - main effects (global) 17
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Application

Decomposition - main effects (global) 17
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Application

Decomposition - 2-way interactions (global) 17
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Application

Decomposition - 3-way interactions (global) 17
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Application

Waterfall Plots (local)

1(x)=0.0377

PRS =-1.16

region = Central

MVPA = 1.86, region = Central

MVPA = 1.86, PRS = -1.16

122 other feature combinations

E[f(x)]=0.248
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0.2
Prediction

0.3
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isced = L1

region = South

isced = L1, PRS = 1.49

PRS = 1.49, region = South

122 other feature combinations

E[f(x)]=0.248
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Conclusion & Outlook

Conclusion 18

® Proposed a marginal identification that connects functional
decomposition, SHAP values and partial dependence

¢ Global explanation by functional decomposition
® New perspective on Shapley values without game theory

e Fast algorithm and implementations for gradient-boosted trees
(e.g. XGBoost), random forest and random planted forest

Outlook

¢ Further application: Post-hoc feature removal
— Plug-in debiasing

¢ Implementations for other learning algorithms
¢ Implementation in SHAP-IQ



Literature & Software

Literature 19

® Hiabu M, Meyer JT & Wright MN (2023). Unifying local and
global model explanations by functional decomposition of low
dimensional structures. AISTATS 2023.
https://proceedings.mlr.press/v206/hiabu23a.html.

e Liu J, Steensgaard T, Wright MN, Pfister N & Hiabu M
(2025). Fast estimation of partial dependence functions using
trees. ICML 2025.
https://proceedings.mlr.press/v267/1iu25bm.html.

Software
® R (+Rcpp): https://github.com/PlantedML/glex

® Python (+Rust): https://github.com/jyliuu/glex-rust
(experimental)


https://proceedings.mlr.press/v206/hiabu23a.html
https://proceedings.mlr.press/v267/liu25bm.html
https://github.com/PlantedML/glex
https://github.com/jyliuu/glex-rust

Backup slides



FastPD algorithm

21

Dg — D”b

Dy « D

D1 « Dy
Dy « Dglx1 < 0]

Dy « Dl = 0]

Da « Dgy
Di,2 < D1
Dy « Dglxa < 0]
Dy « Dyfxe < 0]

T: {xa}
Dy « Dgy
D1,2 « Dy P3 = {DgaDl}
Dy « Dglxa = 0]
D1 « Dilx2 = 0]

T1 = {X1,x2} To = {x1,x2}
Py = {Dg,D1,D2,D1 2} Pa = {Dg,D1,D2,D1,2}



Inconsistency of TreeSHAP-path w

22

(L1: 500) (L2: 250] Ls: 250 )(La: 1500 (L1: 500 ) (Ls: 250] Lo: 250 ](La: 1500)

The two trees have the same leaves hence predict the same values,
but their explanations differ when obtained via TreeSHAP-path.
The number on each leaf is the number of observations landing in

that leaf.



Application: Post-hoc Feature Removal ﬁ

Simulation 23
Predict a person’s salary, based on sex and weekly working hours.
Simulation: Average of 40 hours for men and 30 hours for women
Y =20 Xsex + 1~ Xworking hours +N(07 1)
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Application: Post-hoc Feature Removal W

Simulation 23
Predict a person’s salary, based on sex and weekly working hours.
Simulation: Average of 40 hours for men and 30 hours for women
Y =20 Xsex + 1~ Xworking hours +N(07 1)
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Motivating Example

Predict childhood obesity

Data from the IDEFICS/Il.Family
cohort

Children from 7 European countries
Aged 2-9 years at baseline

Sample size: 828 (552 train, 276
test)

Predict overweight/obesity after 4
years

XGBoost, AUC 0.93 (train), 0.65
(test)

Features

24

Age

Sex

European region
Parental education

Physical activity
(MVPA)

Screentime (AVM)

Polygenic risk score
(PRS) P

@ ideficsstudy
ifandily

Ahrens et al. 2011 Int J Obes 35:3 e Ahrens et al. 2017 Int J Epidemiol 46:1394 e Hiils et al. 2021 Int J Obes 45:1321
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