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Motivating Example

- Age
- Physical activity
- Screen time
- Polyg. risk score
- ...

Obesity
Risk

XGBoost

Ahrens et al. 2011 Int J Obes 35:3 
 Ahrens et al. 2017 Int J Epidemiol 46:1394 
 Hüls et al. 2021 Int J Obes 45:1321
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Motivating Example

SHAP values

�

Feature Importance (global)

sex

isced

AVM

age

MVPA

region

PRS

0.00 0.02 0.04 0.06

mean(|SHAP value|)

What about interactions?
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Motivating Example

SHAP values

�

Waterfall Plots (local)
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What about interactions?
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Motivating Example

SHAP values

�

Dependence Plot (global)
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Local vs. Global Explanations

Local explanation
Each subset of features S � t1, . . . ,du receives a descriptive
function ϕS : Rd Ñ R which may depend on all values of x P Rd
Example: Shapley values

Global explanation
Each feature j P t1, . . . ,du receives a single descriptive value vj P R
which does not depend on x P Rd
Example: Feature importance

(Truly) Global explanation
Each subset of features S � t1, . . . ,du receives a descriptive
function mS : RS Ñ R which only depends on values
xS = txk : k P Su and not on other values x�S = txj : j R Su.
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Local vs. Global Explanations

”A local explanation that explicitly considers all
interactions is a global explanation.”
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Functional Decomposition

Functional decomposition of model m̂(x)

m̂(x) = m̂0 +
ḑ

k=1

m̂k(xk) +
¸

k l
m̂kl(xk, xl) + � � �+ m̂1,...,d(x)

=
¸

S�t1,...,du
m̂S(xS).

�
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=
¸

S�t1,...,du
m̂S(xS).

�

Huge number of components
27 = 128 for the example above
220 = 1, 048, 576 for 20 features
...
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Functional Decomposition

Functional decomposition of model m̂(x)

m̂(x) = m̂0 +
ḑ

k=1

m̂k(xk) +
¸

k l
m̂kl(xk, xl) + � � �+ m̂1,...,d(x)

=
¸

S�t1,...,du
m̂S(xS).

�

Gradient-boosted trees
Ensemble of low-dimensional structures

q    d with q = maxt|S| : mS � 0u
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Functional Decomposition

Functional decomposition of model m̂(x)

m̂(x) = m̂0 +
ḑ

k=1

m̂k(xk) +
¸

k l
m̂kl(xk, xl) + � � �+ m̂1,...,d(x)

=
¸

S�t1,...,du
m̂S(xS).

�

Right-hand side not identified
Possible to change components on the right without altering the
left-hand side
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Functional Decomposition

Functional decomposition of model m̂(x)

m̂(x) = m̂0 +
ḑ

k=1

m̂k(xk) +
¸

k l
m̂kl(xk, xl) + � � �+ m̂1,...,d(x)

=
¸

S�t1,...,du
m̂S(xS).

�

Different identifications proposed
Baseline,
Marginal (aka interventional),
Conditional (aka observational)
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Connection to SHAP values

SHAP values

m̂ (x0) = ϕ0 +
ḑ

k=1

ϕk(x0)

with x0 P Rd and constants ϕ0, ϕ1(x0), . . . , ϕd(x0)

�
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Connection to SHAP values

SHAP values

m̂ (x0) = ϕ0 +
ḑ

k=1

ϕk(x0)

with x0 P Rd and constants ϕ0, ϕ1(x0), . . . , ϕd(x0)

�

Right-hand side not identified
Different identifications lead to different SHAP values with
different value functions, e.g. interventional SHAP or observational
SHAP
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Connection to SHAP values

SHAP values

m̂ (x0) = ϕ0 +
ḑ

k=1

ϕk(x0)

with x0 P Rd and constants ϕ0, ϕ1(x0), . . . , ϕd(x0)

�

Where are the interactions?



8

Connection to SHAP values

SHAP values can be calculated from decomposition
SHAP values are weighted averages of the corresponding
components, where an interaction component is equally split to all
involved features

ϕk(x) = m̂�
k(xk) +

1

2

¸

j
m̂�
kj(xkj) + � � �+

1

dm̂
�
1,...,d(x1,...,d)
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Connection to SHAP values

�

d-interaction SHAP is the full functional decomposition



9

Connection to SHAP values

�

d-interaction SHAP is the full functional decomposition



9

Connection to SHAP values

�

d-interaction SHAP is the full functional decomposition



9

Connection to SHAP values

�

d-interaction SHAP is the full functional decomposition



10

Connection to Partial Dependence

Partial dependence function

ξS =
¸

U�S
m̂�
U

where ξS is be the partial dependence plot for a set of features S.

Single feature S = tku

ξk(xk) = m̂�
0 + m̂�

k(xk)

Interventional SHAP
SHAP with PD value function = interventional SHAP
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TreeSHAP algorithms

Algorithm for (gradient-boosted) trees
Decomposition can be calculated from tree structures with a single
recursion through each tree

TreeSHAP algorithm

 Leaf: Return leaf prediction

 Internal node:


 If split feature in subset U: Apply splitting criterion of node
and continue with respective child node


 If not: Continue in both the left and right children nodes, each
weighted by the coverage
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TreeSHAP algorithms

Method FD Consistent Complexity
VanillaPD 3 3 O(R2dnenb)

Slow

Friedman (2001) 3 7 O(2d2Dne)

Fast

TreeSHAP-path 7 7 O(D22Dne)

Fast

TreeSHAP-int 7 3 O(D2Dnenb)

Slow

Zern (2023) 7 3 O(2Dnb + 3DDne)

Fast

FastPD 3 3 O(2D+F(ne + nb))

Fast

ne: evaluation samples, nb: background samples, d: number of
features, D: depth of tree, F: number of features the tree splits on,
R: model evaluations

FastPD the only algorithm that provides a full
functional decomposition, is consistent and fast
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TreeSHAP algorithms

Runtime

Slope: 1.985

Slope (FastPD): 0.968

Slope (Zern et al.): 0.993

Slope: 0.8623

Slope: 2.0005

0.1

10.0

1000.0

1000 3000 5000

nb, ne

T
im

e
(s
)

Method

VanillaPD

TreeSHAP-int

FastPD

Zern et al.

TreeSHAP-path



14

TreeSHAP algorithms

Consistency

1e-05
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TreeSHAP algorithms

Consistency – Simulation
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TreeSHAP algorithms

Consistency – Example
FastPD Friedman-path

25 50 75 25 50 75
-0.15

-0.10

-0.05

0.00
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0.10

Age

m̂
a
g
e
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Wife

Example from the adult dataset
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Application

�

Feature importance (single-value global)
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age:PRS
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Application

�

Feature importance (single-value global), by degree
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Application

�

Decomposition - main effects (global)
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Application

�

Decomposition - main effects (global)
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Application

�

Decomposition - 2-way interactions (global)
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Application

�

Decomposition - 3-way interactions (global)
Central North South
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Application

�

Waterfall Plots (local)
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f(x)=0.0377
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region = Central
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Conclusion & Outlook

Conclusion

 Proposed a marginal identification that connects functional

decomposition, SHAP values and partial dependence

 Global explanation by functional decomposition

 New perspective on Shapley values without game theory

 Fast algorithm and implementations for gradient-boosted trees

(e.g. XGBoost), random forest and random planted forest

Outlook

 Further application: Post-hoc feature removal
Ñ Plug-in debiasing


 Implementations for other learning algorithms

 Implementation in SHAP-IQ
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Literature & Software

Literature

 Hiabu M, Meyer JT & Wright MN (2023). Unifying local and

global model explanations by functional decomposition of low
dimensional structures. AISTATS 2023.
https://proceedings.mlr.press/v206/hiabu23a.html.


 Liu J, Steensgaard T, Wright MN, Pfister N & Hiabu M
(2025). Fast estimation of partial dependence functions using
trees. ICML 2025.
https://proceedings.mlr.press/v267/liu25bm.html.

Software

 R (+Rcpp): https://github.com/PlantedML/glex

 Python (+Rust): https://github.com/jyliuu/glex-rust

(experimental)

https://proceedings.mlr.press/v206/hiabu23a.html
https://proceedings.mlr.press/v267/liu25bm.html
https://github.com/PlantedML/glex
https://github.com/jyliuu/glex-rust


Backup slides
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FastPD algorithm

x1   0

DH Ð Dnb

x2   0

x1   0 ^ x2   0

T1 = tx1, x2u
P1 = tDH, D1, D2, D1,2u

x1   0 ^ x2 ¥ 0

T2 = tx1, x2u
P2 = tDH, D1, D2, D1,2u

x1 ¥ 0

T3 = tx1u
P3 = tDH, D1u

D1 Ð DH
DH Ð DH[x1   0]

D1 Ð DH
DH Ð DH[x1 ¥ 0]

D2 Ð DH
D1,2 Ð D1
DH Ð DH[x2   0]
D1 Ð D1[x2   0]

D2 Ð DH
D1,2 Ð D1
DH Ð DH[x2 ¥ 0]
D1 Ð D1[x2 ¥ 0]
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Inconsistency of TreeSHAP-path

x1   0.5

x2   0.3

L1: 500 L2: 250

x2   0.3

L3: 250 L4: 1500

x2   0.3

x1   0.5

L1: 500 L3: 250

x1   0.5

L2: 250 L4: 1500

The two trees have the same leaves hence predict the same values,
but their explanations differ when obtained via TreeSHAP-path.
The number on each leaf is the number of observations landing in
that leaf.
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Application: Post-hoc Feature Removal

Simulation
Predict a person’s salary, based on sex and weekly working hours.
Simulation: Average of 40 hours for men and 30 hours for women
y = 20 � xsex + 1 � xworking hours +N (0, 1)

Simulation Adult

Female Male Female Male

0.00
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0.50

0.75

30

40
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60

Sex                                                                                         

P
re

di
ct

io
n

Model Full Refitted Decomposed
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Motivating Example

Predict childhood obesity

 Data from the IDEFICS/I.Family

cohort

 Children from 7 European countries

 Aged 2-9 years at baseline

 Sample size: 828 (552 train, 276

test)

 Predict overweight/obesity after 4

years

 XGBoost, AUC 0.93 (train), 0.65

(test)

Features

 Age

 Sex

 European region

 Parental education

 Physical activity

(MVPA)

 Screentime (AVM)

 Polygenic risk score

(PRS)

Ahrens et al. 2011 Int J Obes 35:3 
 Ahrens et al. 2017 Int J Epidemiol 46:1394 
 Hüls et al. 2021 Int J Obes 45:1321
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