

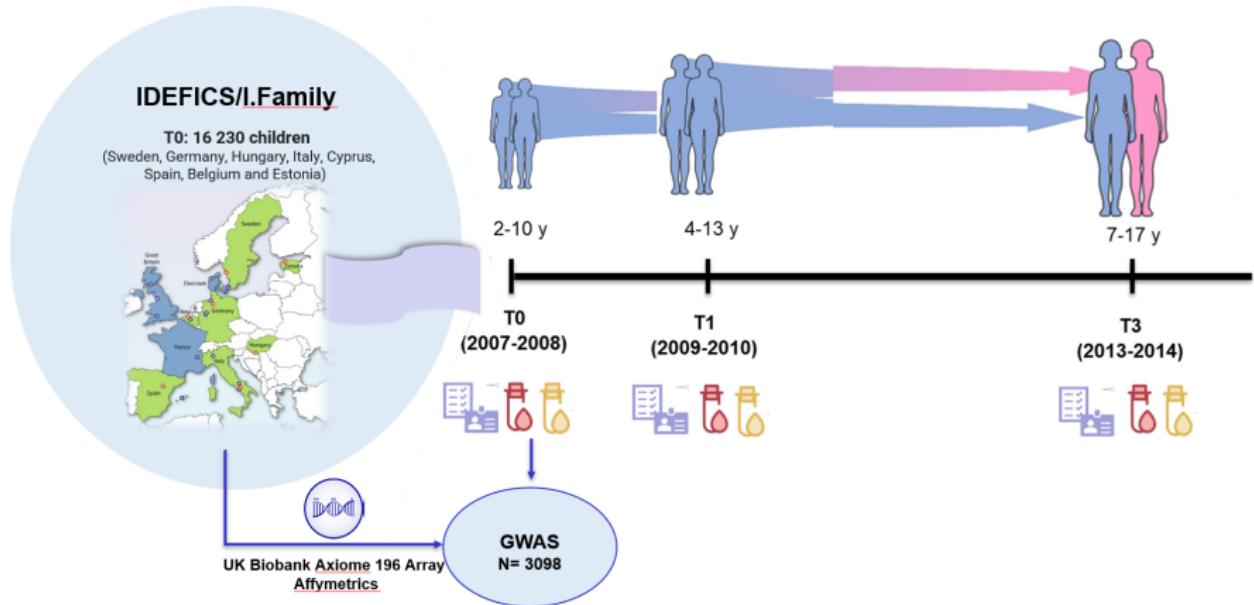
Functional Decomposition of Tree-Based Models

Marvin N. Wright

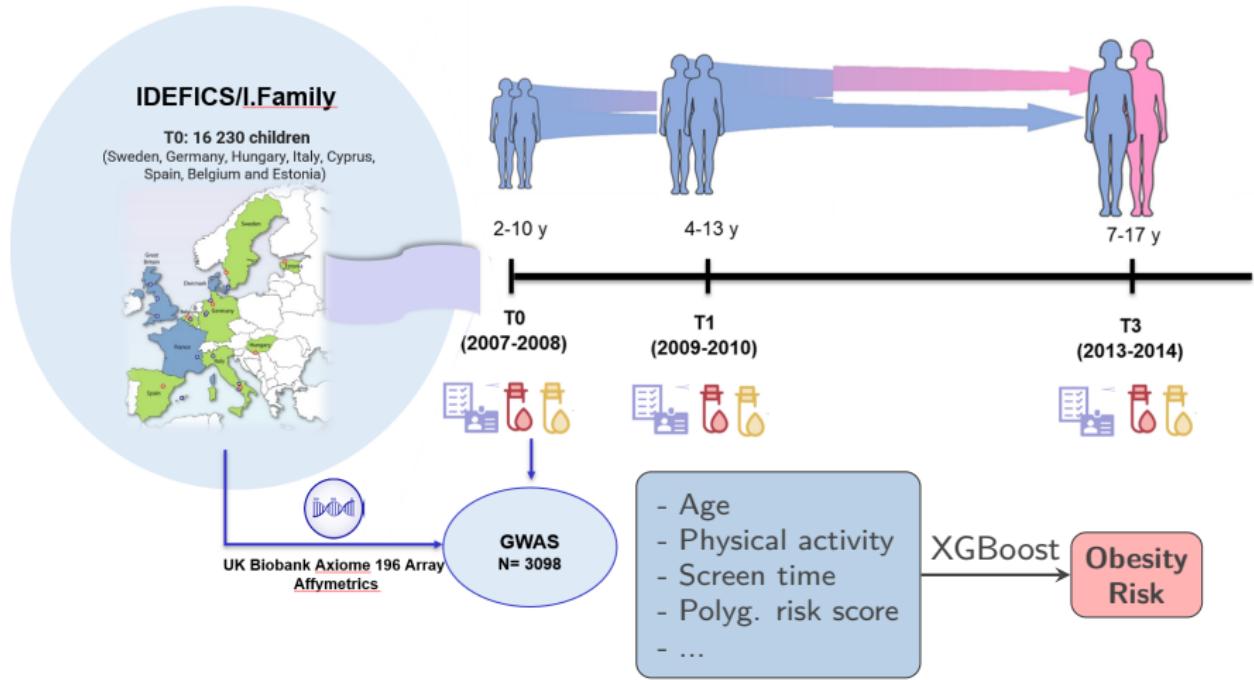
Leibniz Institute for Prevention Research & Epidemiology – BIPS
University of Bremen

Amsterdam, February 2026

Motivating Example



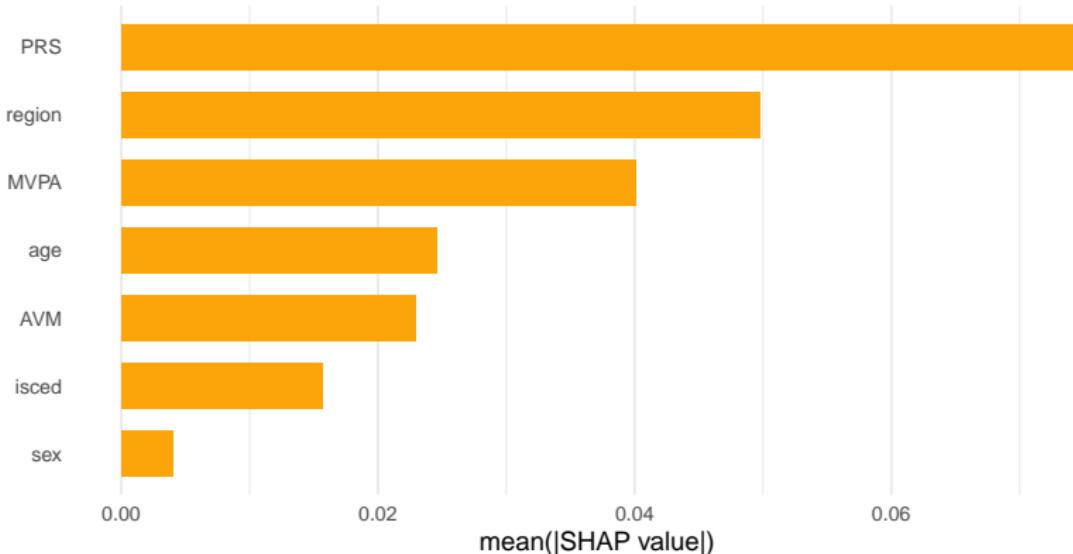
Motivating Example



Motivating Example

SHAP values

Feature Importance (global)

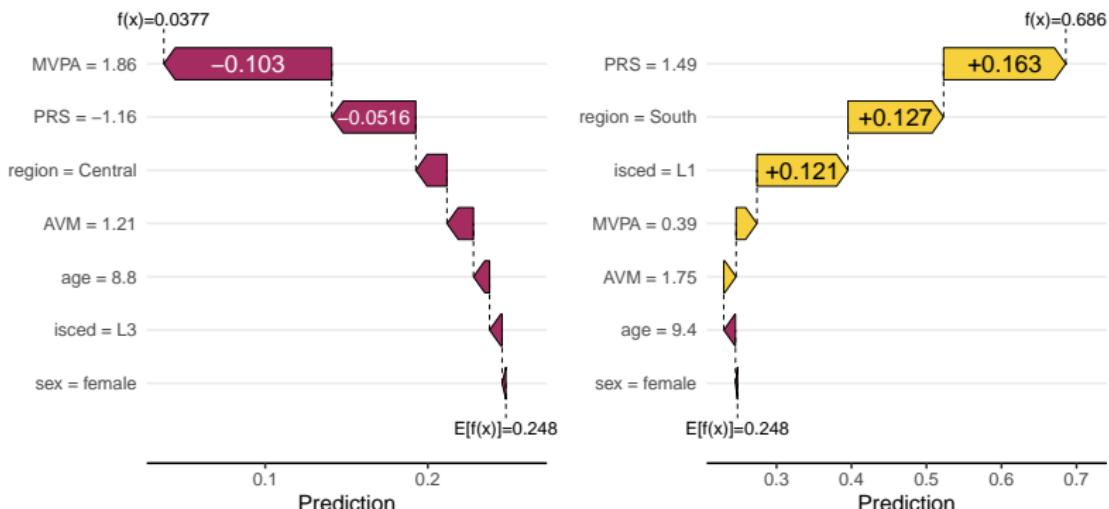


Motivating Example

SHAP values

3

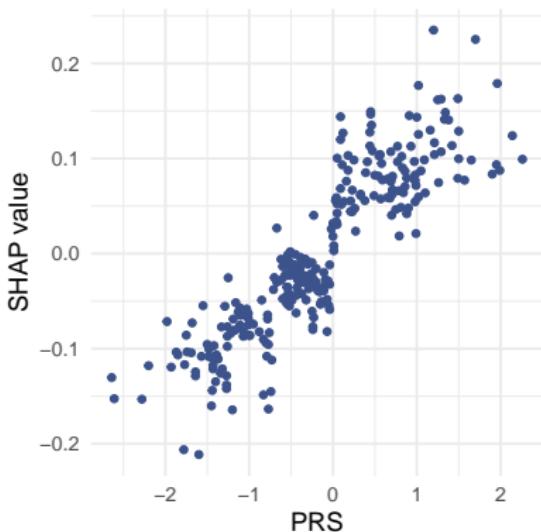
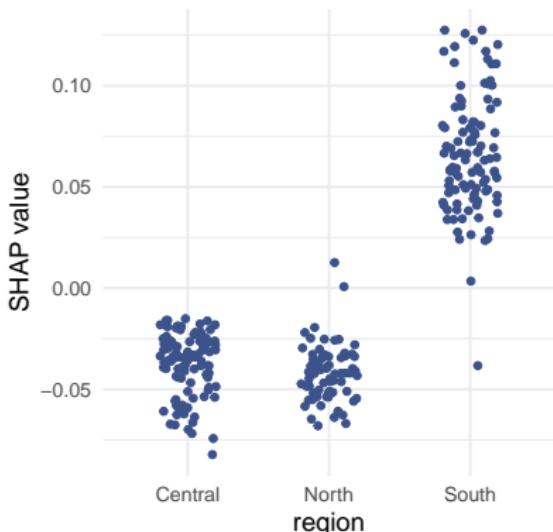
Waterfall Plots (local)



Motivating Example

SHAP values

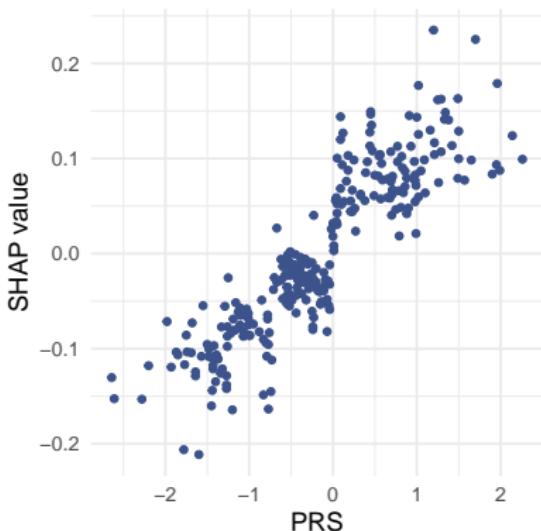
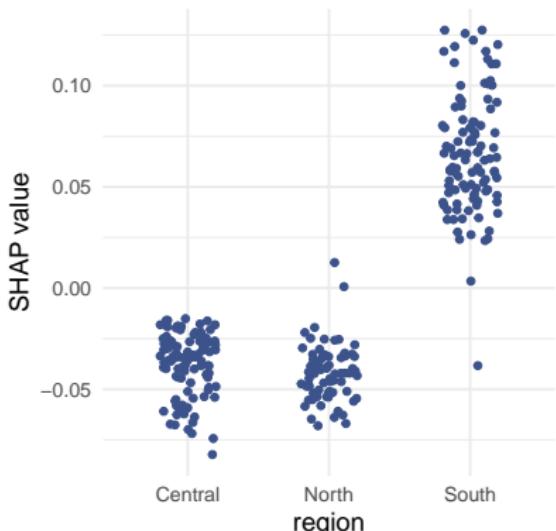
Dependence Plot (global)



Motivating Example

SHAP values

Dependence Plot (global)



What about interactions?

Local explanation

Each subset of features $S \subseteq \{1, \dots, d\}$ receives a descriptive function $\phi_S : \mathbb{R}^d \rightarrow \mathbb{R}$ which may depend on all values of $x \in \mathbb{R}^d$

Example: Shapley values

Global explanation

Each feature $j \in \{1, \dots, d\}$ receives a single descriptive value $v_j \in \mathbb{R}$ which does not depend on $x \in \mathbb{R}^d$

Example: Feature importance

Local explanation

Each subset of features $S \subseteq \{1, \dots, d\}$ receives a descriptive function $\phi_S : \mathbb{R}^d \rightarrow \mathbb{R}$ which may **depend on all values of $x \in \mathbb{R}^d$**

Example: Shapley values

Global explanation

Each feature $j \in \{1, \dots, d\}$ receives a single descriptive value $v_j \in \mathbb{R}$ which does not depend on $x \in \mathbb{R}^d$

Example: Feature importance

Local explanation

Each subset of features $S \subseteq \{1, \dots, d\}$ receives a descriptive function $\phi_S : \mathbb{R}^d \rightarrow \mathbb{R}$ which may **depend on all values of $x \in \mathbb{R}^d$**

Example: Shapley values

Single-value global explanation

Each feature $j \in \{1, \dots, d\}$ receives a single descriptive value $v_j \in \mathbb{R}$ which does not depend on $x \in \mathbb{R}^d$

Example: Feature importance

Local explanation

Each subset of features $S \subseteq \{1, \dots, d\}$ receives a descriptive function $\phi_S : \mathbb{R}^d \rightarrow \mathbb{R}$ which may **depend on all values of $x \in \mathbb{R}^d$**

Example: Shapley values

Single-value global explanation

Each feature $j \in \{1, \dots, d\}$ receives a single descriptive value $v_j \in \mathbb{R}$ which does not depend on $x \in \mathbb{R}^d$

Example: Feature importance

(Truly) Global explanation

Each subset of features $S \subseteq \{1, \dots, d\}$ receives a descriptive function $m_S : \mathbb{R}^S \rightarrow \mathbb{R}$ which only depends on values $x_S = \{x_k : k \in S\}$ and not on other values $x_{-S} = \{x_j : j \notin S\}$.

Local explanation

Each subset of features $S \subseteq \{1, \dots, d\}$ receives a descriptive function $\phi_S : \mathbb{R}^d \rightarrow \mathbb{R}$ which may **depend on all values of $x \in \mathbb{R}^d$**

Example: Shapley values

Single-value global explanation

Each feature $j \in \{1, \dots, d\}$ receives a single descriptive value $v_j \in \mathbb{R}$ which does not depend on $x \in \mathbb{R}^d$

Example: Feature importance

(Truly) Global explanation

Each subset of features $S \subseteq \{1, \dots, d\}$ receives a descriptive function $m_S : \mathbb{R}^S \rightarrow \mathbb{R}$ which **only depends on values**

$x_S = \{x_k : k \in S\}$ and not on other values $x_{-S} = \{x_j : j \notin S\}$.

Local vs. Global Explanations

"A local explanation that explicitly considers all interactions is a global explanation."

Functional Decomposition

Functional decomposition of model $\hat{m}(x)$

6

$$\begin{aligned}\hat{m}(x) &= \hat{m}_0 + \sum_{k=1}^d \hat{m}_k(x_k) + \sum_{k < l} \hat{m}_{kl}(x_k, x_l) + \cdots + \hat{m}_{1,\dots,d}(x) \\ &= \sum_{S \subseteq \{1,\dots,d\}} \hat{m}_S(x_S).\end{aligned}$$

Functional decomposition of model $\hat{m}(x)$

$$\begin{aligned}\hat{m}(x) &= \hat{m}_0 + \sum_{k=1}^d \hat{m}_k(x_k) + \sum_{k < l} \hat{m}_{kl}(x_k, x_l) + \cdots + \hat{m}_{1,\dots,d}(x) \\ &= \sum_{S \subseteq \{1,\dots,d\}} \hat{m}_S(x_S).\end{aligned}$$

Huge number of components

$2^7 = 128$ for the example above

$2^{20} = 1,048,576$ for 20 features

...

Functional decomposition of model $\hat{m}(x)$

6

$$\begin{aligned}\hat{m}(x) &= \hat{m}_0 + \sum_{k=1}^d \hat{m}_k(x_k) + \sum_{k < l} \hat{m}_{kl}(x_k, x_l) + \cdots + \hat{m}_{1,\dots,d}(x) \\ &= \sum_{S \subseteq \{1,\dots,d\}} \hat{m}_S(x_S).\end{aligned}$$

Gradient-boosted trees

Ensemble of low-dimensional structures

$q \ll d$ with $q = \max\{|S| : m_S \neq 0\}$

Functional decomposition of model $\hat{m}(x)$

6

$$\begin{aligned}\hat{m}(x) &= \hat{m}_0 + \sum_{k=1}^d \hat{m}_k(x_k) + \sum_{k < l} \hat{m}_{kl}(x_k, x_l) + \cdots + \hat{m}_{1,\dots,d}(x) \\ &= \sum_{S \subseteq \{1,\dots,d\}} \hat{m}_S(x_S).\end{aligned}$$

Right-hand side not identified

Possible to change components on the right without altering the left-hand side

Functional decomposition of model $\hat{m}(x)$

6

$$\begin{aligned}\hat{m}(x) &= \hat{m}_0 + \sum_{k=1}^d \hat{m}_k(x_k) + \sum_{k < l} \hat{m}_{kl}(x_k, x_l) + \cdots + \hat{m}_{1,\dots,d}(x) \\ &= \sum_{S \subseteq \{1,\dots,d\}} \hat{m}_S(x_S).\end{aligned}$$

Different identifications proposed

Baseline,
Marginal (aka interventional),
Conditional (aka observational)

Connection to SHAP values

SHAP values

$$\hat{m}(x_0) = \phi_0 + \sum_{k=1}^d \phi_k(x_0)$$

with $x_0 \in \mathbb{R}^d$ and constants $\phi_0, \phi_1(x_0), \dots, \phi_d(x_0)$

SHAP values

$$\hat{m}(x_0) = \phi_0 + \sum_{k=1}^d \phi_k(x_0)$$

with $x_0 \in \mathbb{R}^d$ and constants $\phi_0, \phi_1(x_0), \dots, \phi_d(x_0)$

Right-hand side not identified

Different identifications lead to different SHAP values with different value functions, e.g. interventional SHAP or observational SHAP

Connection to SHAP values

SHAP values

$$\hat{m}(x_0) = \phi_0 + \sum_{k=1}^d \phi_k(x_0)$$

with $x_0 \in \mathbb{R}^d$ and constants $\phi_0, \phi_1(x_0), \dots, \phi_d(x_0)$

Where are the interactions?

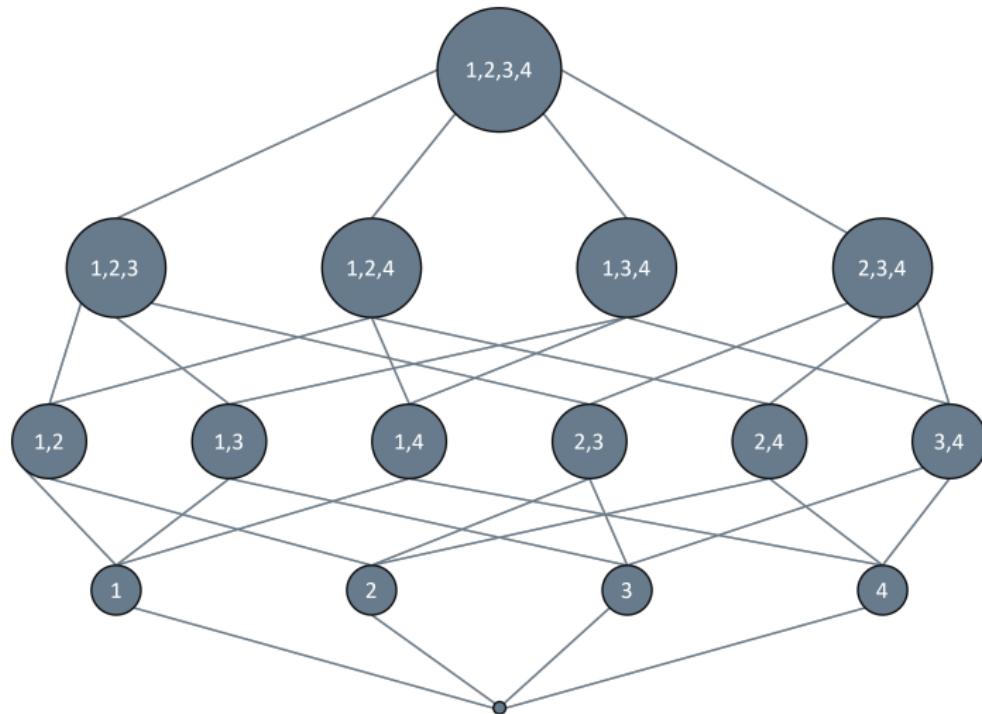
Connection to SHAP values

SHAP values can be calculated from decomposition

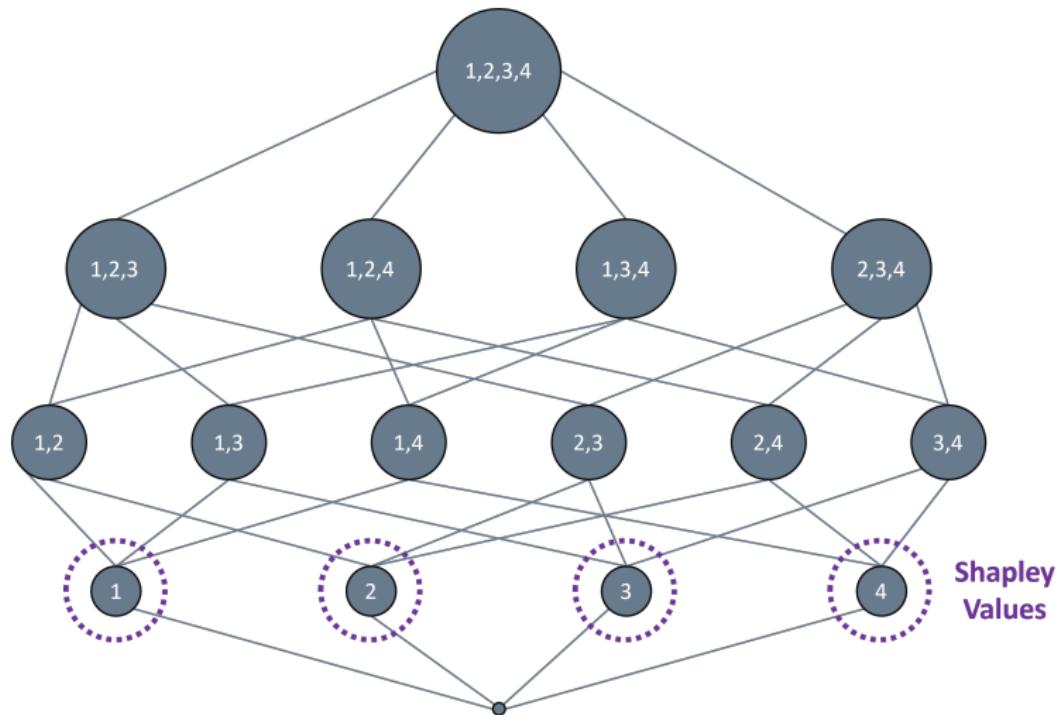
SHAP values are weighted averages of the corresponding components, where an interaction component is equally split to all involved features

$$\phi_k(x) = \hat{m}_k^*(x_k) + \frac{1}{2} \sum_j \hat{m}_{kj}^*(x_{kj}) + \cdots + \frac{1}{d} \hat{m}_{1,\dots,d}^*(x_{1,\dots,d})$$

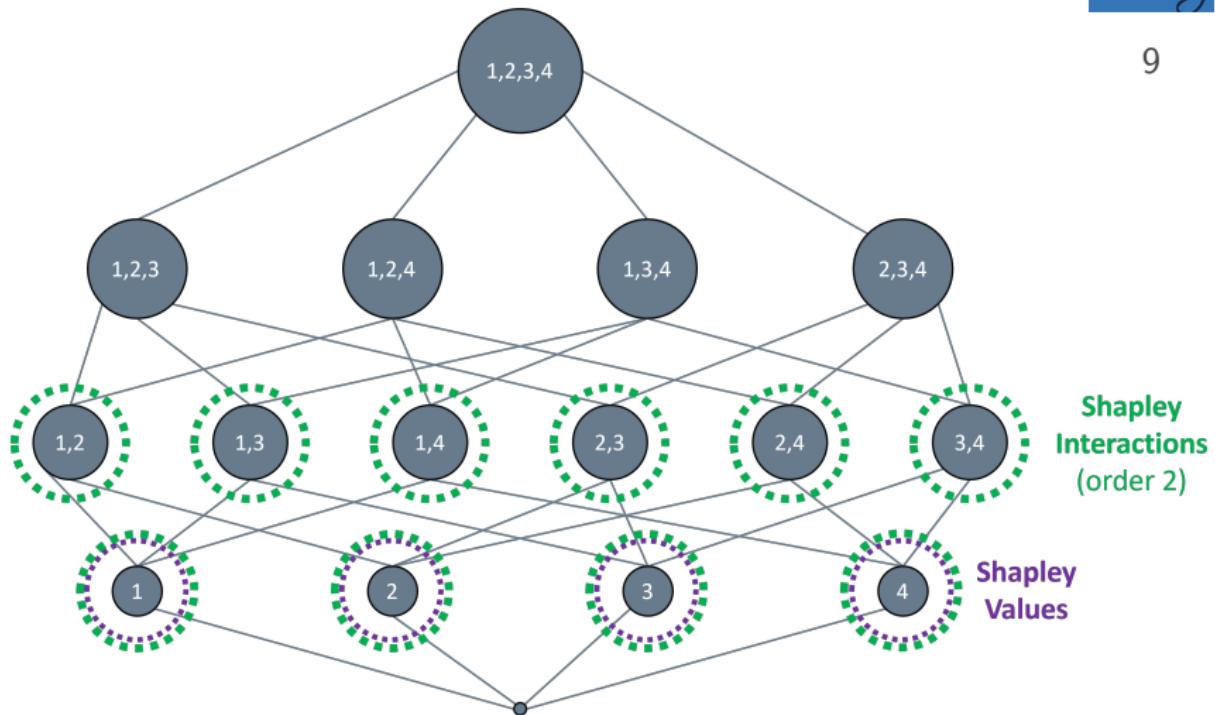
Connection to SHAP values



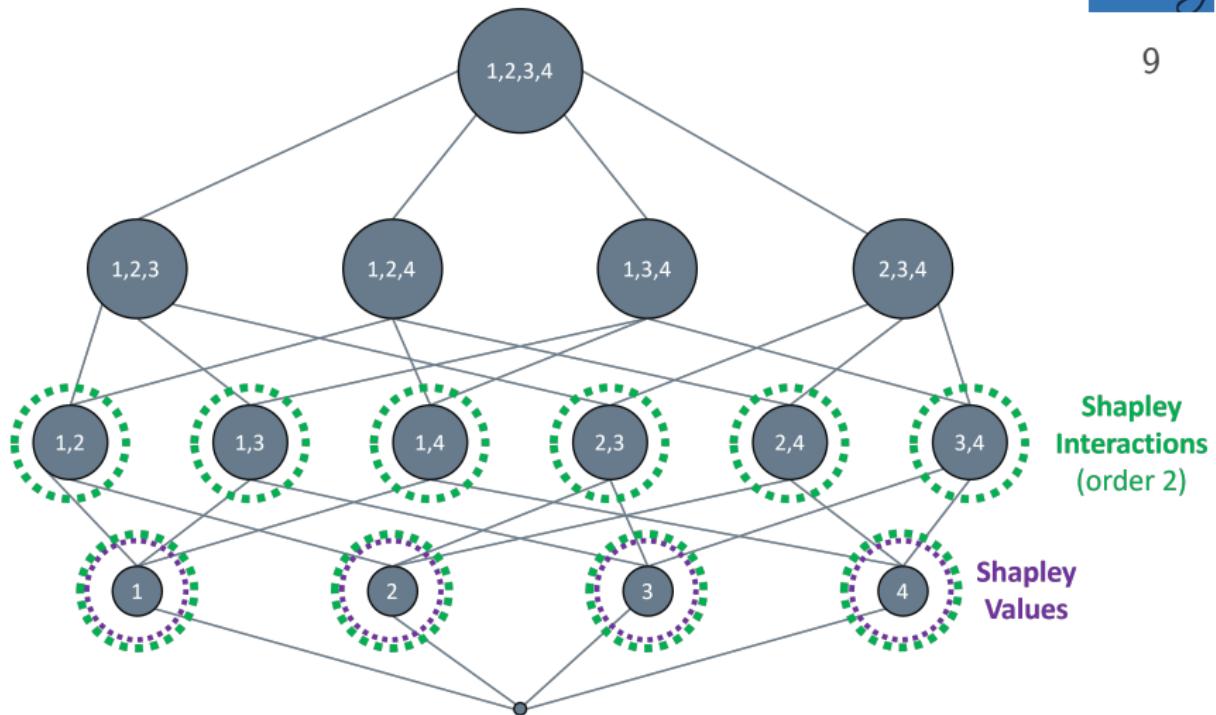
Connection to SHAP values



Connection to SHAP values



Connection to SHAP values



d-interaction SHAP is the full functional decomposition

Partial dependence function

$$\xi_S = \sum_{U \subseteq S} \hat{m}_U^*$$

where ξ_S is be the partial dependence plot for a set of features S .

Single feature $S = \{k\}$

$$\xi_k(x_k) = \hat{m}_0^* + \hat{m}_k^*(x_k)$$

Partial dependence function

$$\xi_S = \sum_{U \subseteq S} \hat{m}_U^*$$

where ξ_S is be the partial dependence plot for a set of features S .

Single feature $S = \{k\}$

$$\xi_k(x_k) = \hat{m}_0^* + \hat{m}_k^*(x_k)$$

Interventional SHAP

SHAP with PD value function = interventional SHAP

Algorithm for (gradient-boosted) trees

Decomposition can be calculated from tree structures with a single recursion through each tree

TreeSHAP algorithm

- Leaf: Return leaf prediction
- Internal node:
 - If split feature in subset U : Apply splitting criterion of node and continue with respective child node
 - If not: Continue in both the left and right children nodes, each weighted by the coverage

TreeSHAP algorithms

Method	FD	Consistent	Complexity
VanillaPD	✓	✓	$O(R2^d n_e n_b)$
Friedman (2001)	✓	✗	$O(2^d 2^D n_e)$
TreeSHAP-path	✗	✗	$O(D^2 2^D n_e)$
TreeSHAP-int	✗	✓	$O(D2^D n_e n_b)$
Zern (2023)	✗	✓	$O(2^D n_b + 3^D D n_e)$
FastPD	✓	✓	$O(2^{D+F}(n_e + n_b))$

n_e : evaluation samples, n_b : background samples, d : number of features, D : depth of tree, F : number of features the tree splits on, R : model evaluations

TreeSHAP algorithms

Method	FD	Consistent	Complexity	
VanillaPD	✓	✓	$O(R2^d n_e n_b)$	Slow
Friedman (2001)	✓	✗	$O(2^d 2^D n_e)$	Fast
TreeSHAP-path	✗	✗	$O(D^2 2^D n_e)$	Fast
TreeSHAP-int	✗	✓	$O(D2^D n_e n_b)$	Slow
Zern (2023)	✗	✓	$O(2^D n_b + 3^D D n_e)$	Fast
FastPD	✓	✓	$O(2^{D+F}(n_e + n_b))$	Fast

n_e : evaluation samples, n_b : background samples, d : number of features, D : depth of tree, F : number of features the tree splits on, R : model evaluations

TreeSHAP algorithms

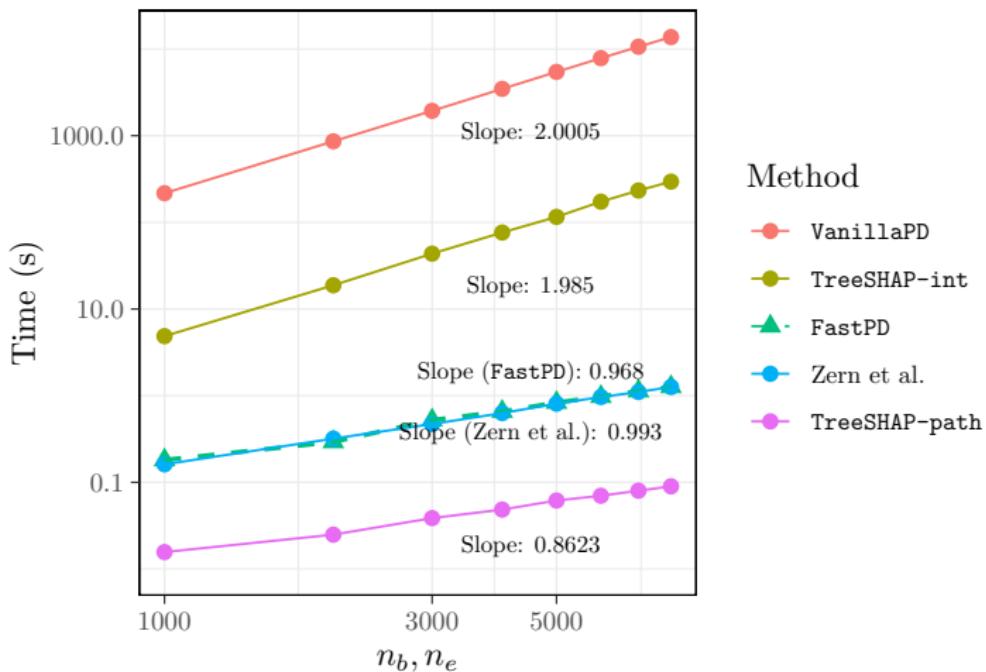
Method	FD	Consistent	Complexity	12
VanillaPD	✓	✓	$O(R2^d n_e n_b)$ Slow	
Friedman (2001)	✓	✗	$O(2^d 2^D n_e)$ Fast	
TreeSHAP-path	✗	✗	$O(D^2 2^D n_e)$ Fast	
TreeSHAP-int	✗	✓	$O(D2^D n_e n_b)$ Slow	
Zern (2023)	✗	✓	$O(2^D n_b + 3^D D n_e)$ Fast	
FastPD	✓	✓	$O(2^{D+F}(n_e + n_b))$ Fast	

n_e : evaluation samples, n_b : background samples, d : number of features, D : depth of tree, F : number of features the tree splits on, R : model evaluations

FastPD the only algorithm that provides a full functional decomposition, is consistent and fast

TreeSHAP algorithms

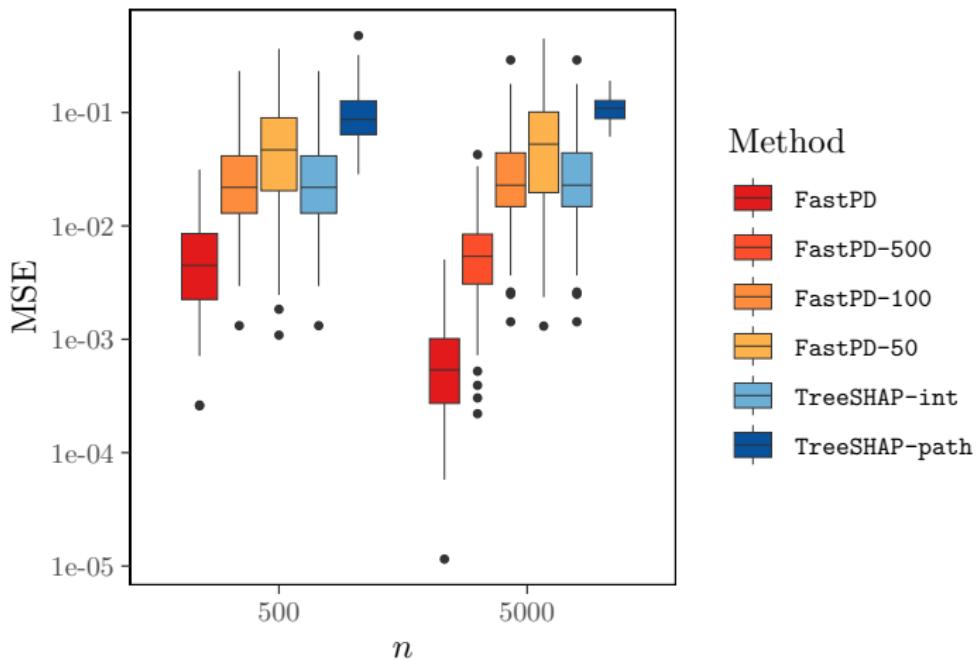
Runtime



TreeSHAP algorithms

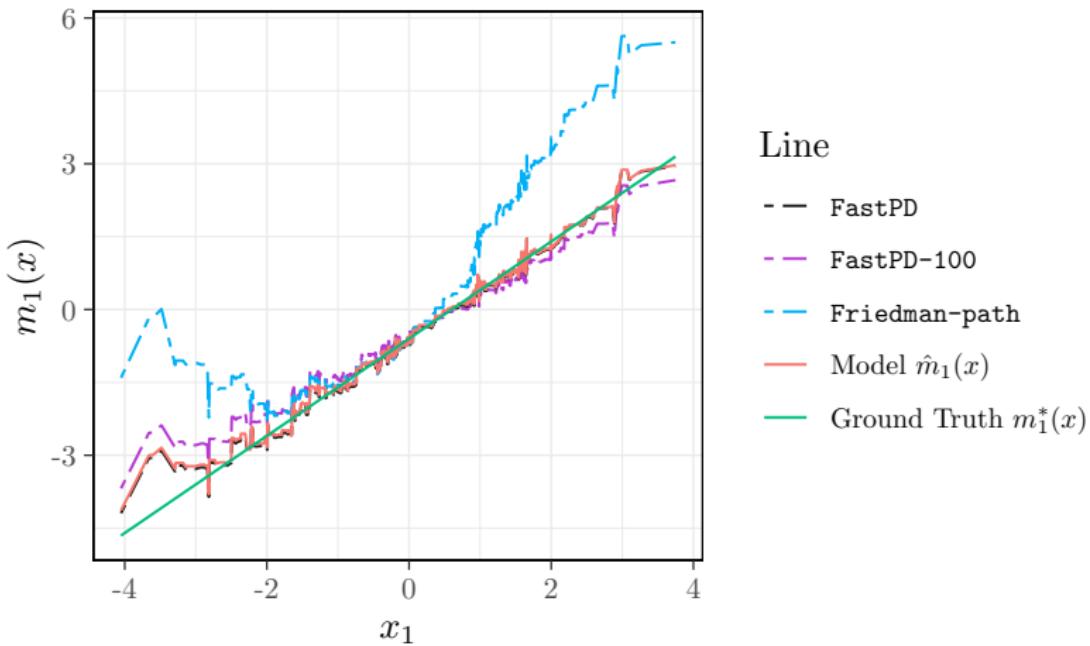
Consistency

14

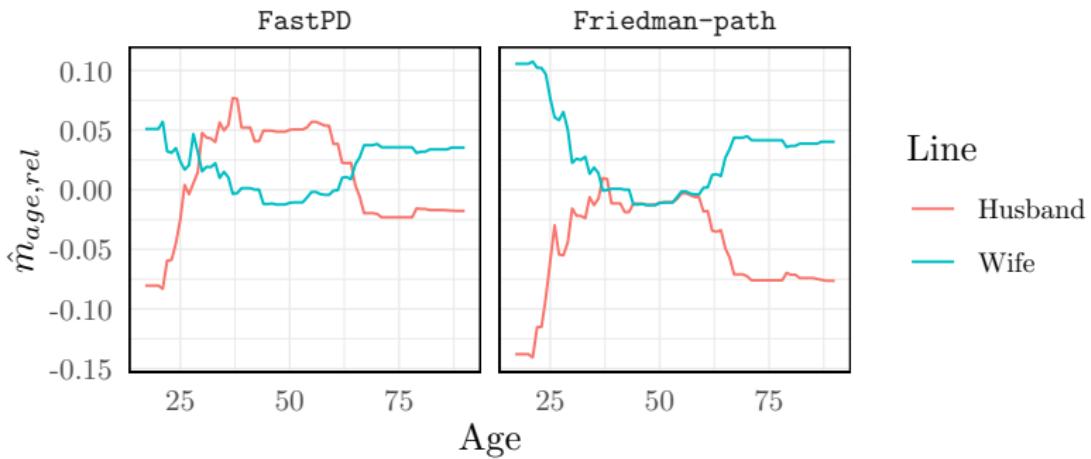


Consistency – Simulation

15



Consistency – Example

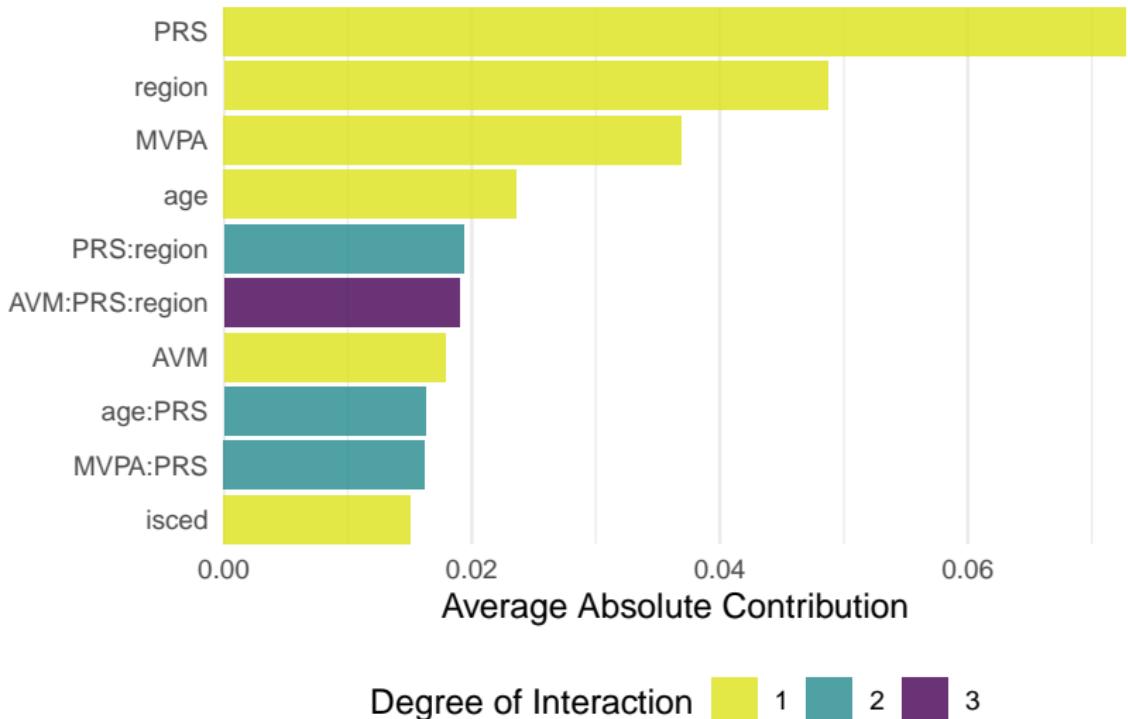


Example from the adult dataset

Application

Feature importance (single-value global)

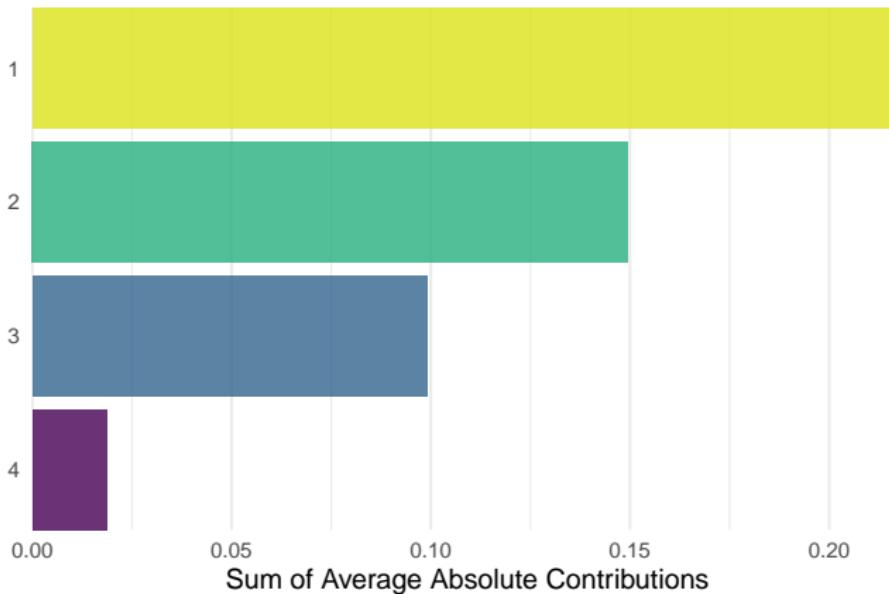
17



Application

Feature importance (single-value global), by degree

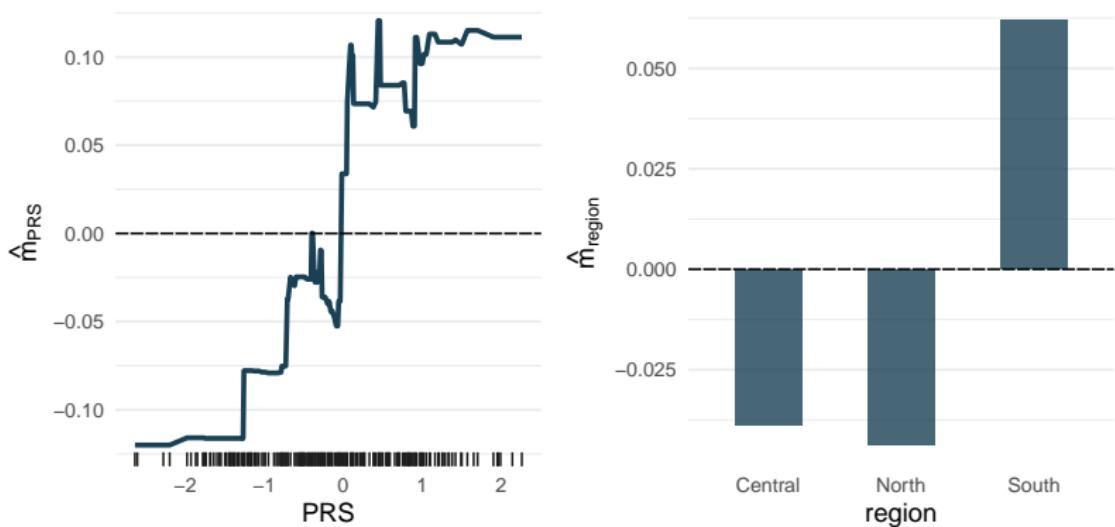
17



Application

Decomposition - main effects (global)

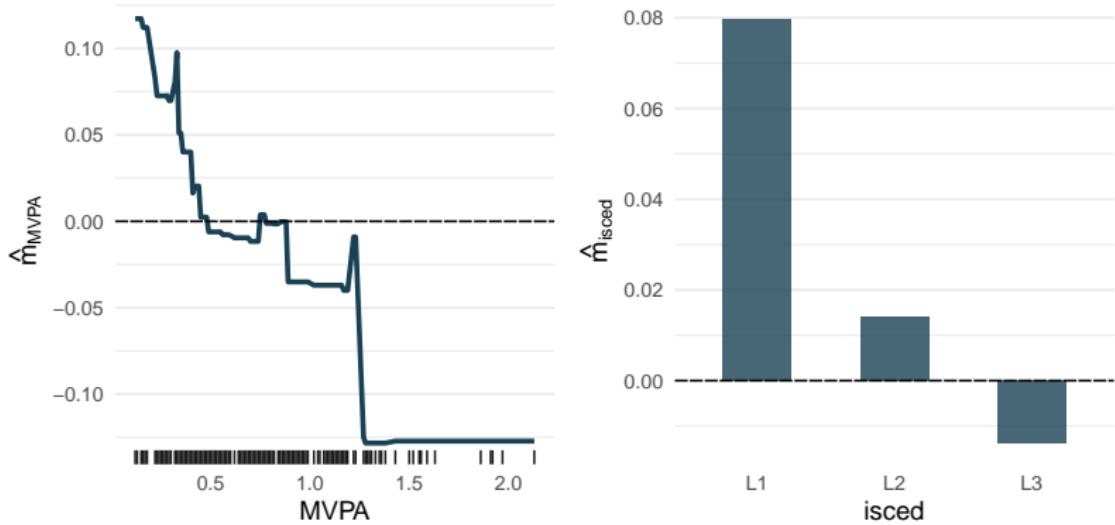
17



Application

Decomposition - main effects (global)

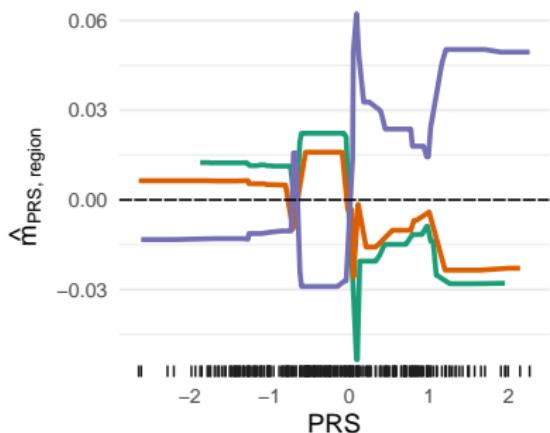
17



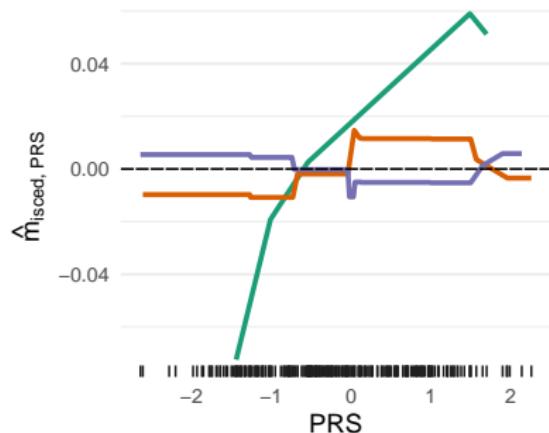
Application

Decomposition - 2-way interactions (global)

17



region Central North South

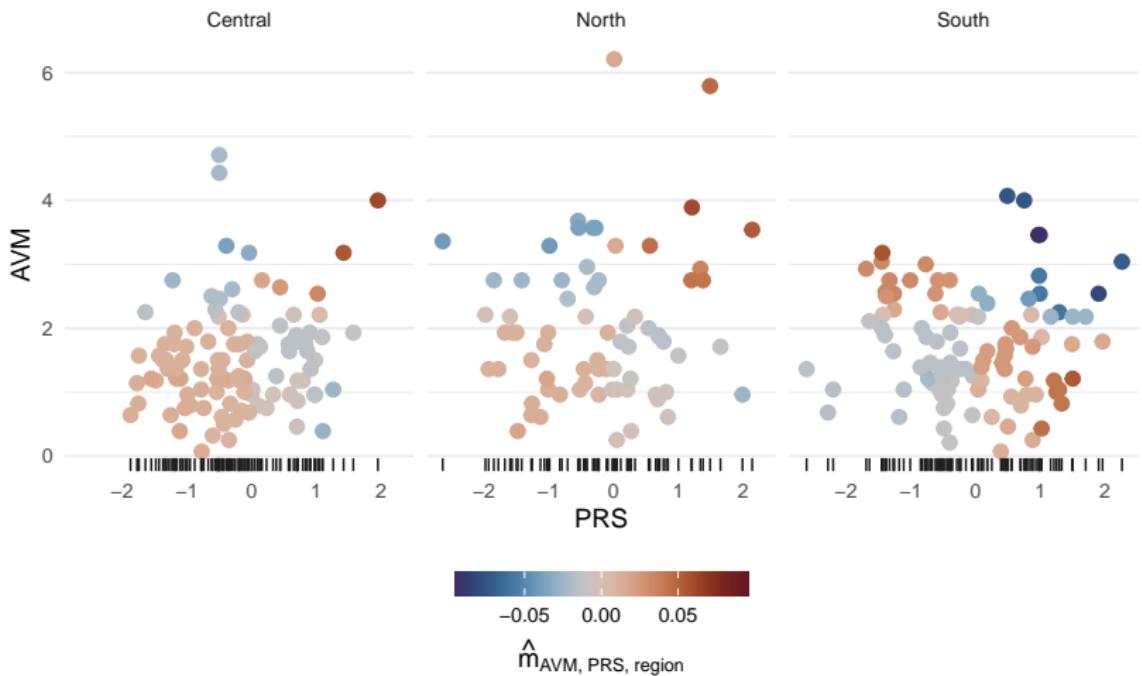


isced L1 L2 L3

Application

Decomposition - 3-way interactions (global)

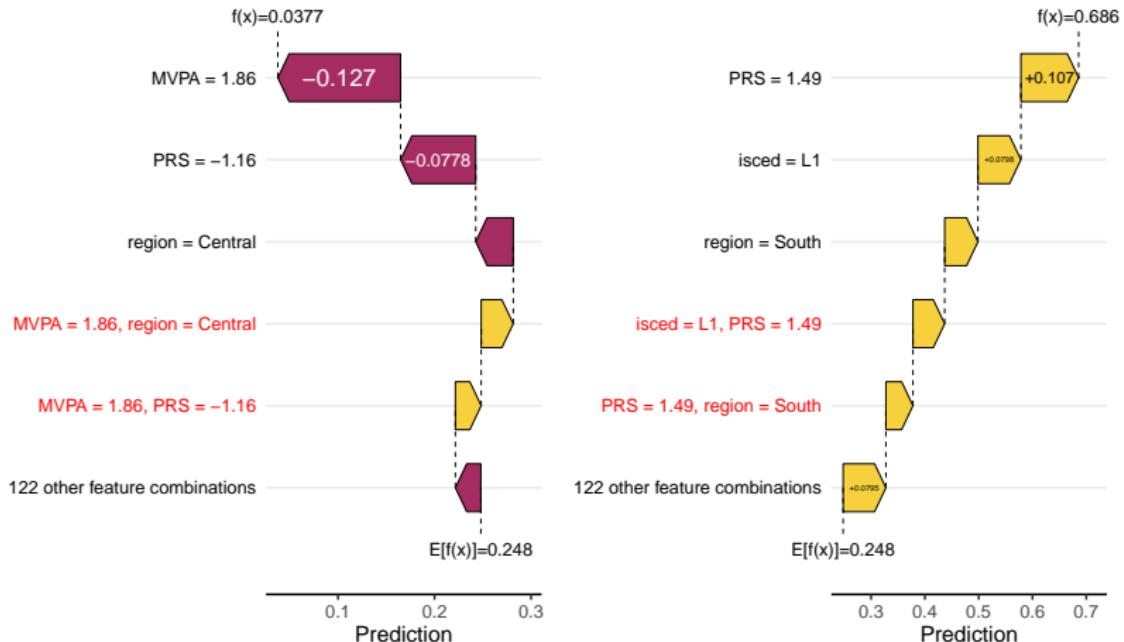
17



Application

Waterfall Plots (local)

17



Conclusion

18

- Proposed a marginal identification that connects functional decomposition, SHAP values and partial dependence
- Global explanation by functional decomposition
- New perspective on Shapley values without game theory
- Fast algorithm and implementations for gradient-boosted trees (e.g. XGBoost), random forest and random planted forest

Outlook

- Further application: Post-hoc feature removal
→ Plug-in debiasing
- Implementations for other learning algorithms
- Implementation in SHAP-IQ

Literature

19

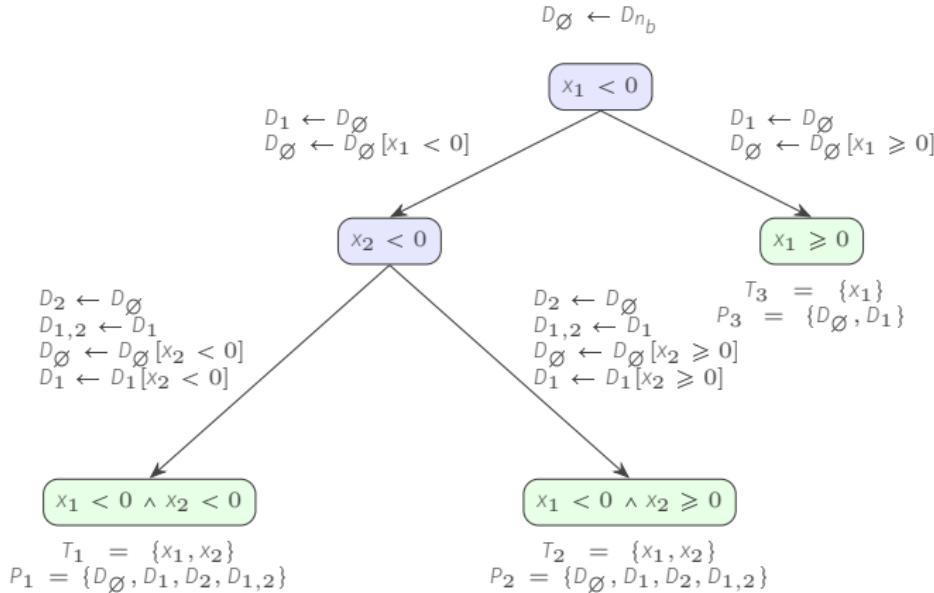
- Hiabu M, Meyer JT & Wright MN (2023). Unifying local and global model explanations by functional decomposition of low dimensional structures. AISTATS 2023.
<https://proceedings.mlr.press/v206/hiabu23a.html>.
- Liu J, Steensgaard T, Wright MN, Pfister N & Hiabu M (2025). Fast estimation of partial dependence functions using trees. ICML 2025.
<https://proceedings.mlr.press/v267/liu25bm.html>.

Software

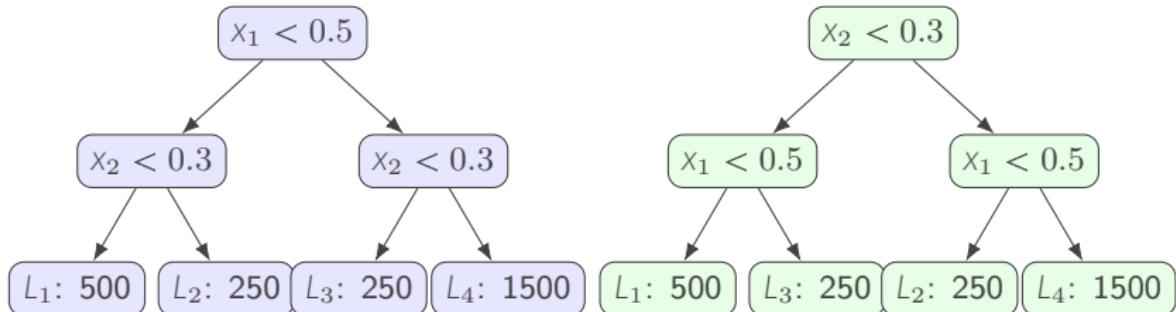
- R (+Rcpp): <https://github.com/PlantedML/glex>
- Python (+Rust): <https://github.com/jyliuu/glex-rust> (experimental)

Backup slides

FastPD algorithm



Inconsistency of TreeSHAP-path



The two trees have the same leaves hence predict the same values, but their explanations differ when obtained via TreeSHAP-path. The number on each leaf is the number of observations landing in that leaf.

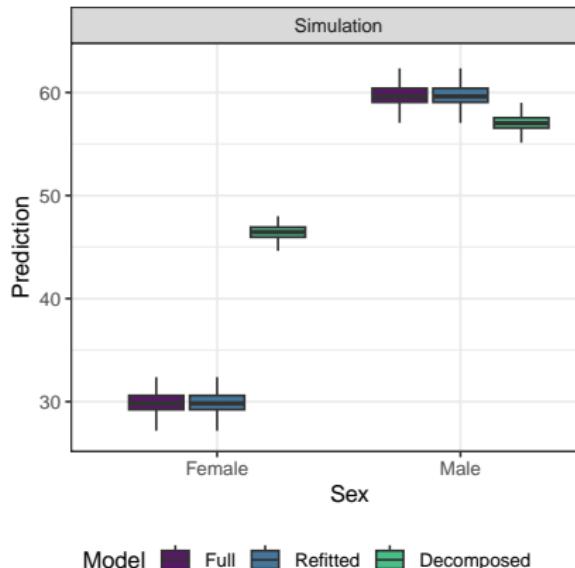
Application: Post-hoc Feature Removal

Simulation

Predict a person's salary, based on sex and weekly working hours.

Simulation: Average of 40 hours for men and 30 hours for women

$$y = 20 \cdot x_{\text{sex}} + 1 \cdot x_{\text{working hours}} + \mathcal{N}(0, 1)$$



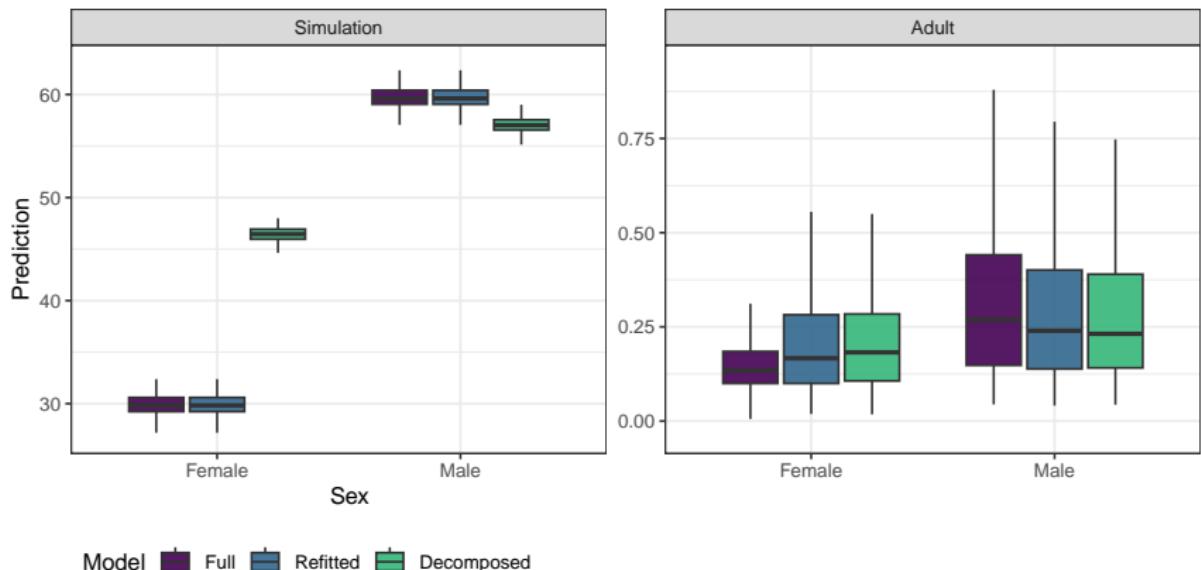
Application: Post-hoc Feature Removal

Simulation

Predict a person's salary, based on sex and weekly working hours.

Simulation: Average of 40 hours for men and 30 hours for women

$$y = 20 \cdot x_{\text{sex}} + 1 \cdot x_{\text{working hours}} + \mathcal{N}(0, 1)$$



Predict childhood obesity

24

- Data from the IDEFICS/I.Family cohort
- Children from 7 European countries
- Aged 2-9 years at baseline
- Sample size: 828 (552 train, 276 test)
- Predict overweight/obesity after 4 years
- XGBoost, AUC 0.93 (train), 0.65 (test)

Features

- Age
- Sex
- European region
- Parental education
- Physical activity (MVPA)
- Screen time (AVM)
- Polygenic risk score (PRS)

