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Variable Importance Measures (VIM)

How can we define / learn the importance of each covariate X j with
respect to an outcome y?

X y
� Try to study their relationship using a ML model:

pm ∈ argmin
f∈F

pE [L (f (X ),y)] . (1)

Assumption (Identifiability): X j is not a function of X−j .
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What does it mean to be important?
“Feature importance as how much predictive power it provides
to the model. We can then define “important” features as those
whose absence degrades m’s performance.”

Covert et al. (2020) NeurIPS

� Gap between variable importance and variable selection.
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Motivation
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Feature importance for y = X0 + 2X1 X2
4 + X7X8, R2 = 0.99

Method
Sobol-CPI(1)
Sobol-CPI(100)
PFI
CFI
cSAGEvf
scSAGEj
mSAGEvf
cSAGE
mSAGE
LOCO
LOCO-W
LOCI

1 From X0: How to compare VIMs?

Type-I errorEstimationTheoretical index

2 From X2: What’s the minimum for a VIM?

• Minimal axiom: ψ(j ,P) = 0 if and only if X j ⊥⊥ y | X−j .
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LOCO and PFI

LOCO

X 1 X 2 X j Y

drop column X j

X 1 X 2 Y

Refit model pm−j

∆LOCO = perf(refit pm−j )−perf(orig pm)

Dtrain

PFI

X 1 X 2 X j Y

permute column X j

X1 X2 X j (perm.) Y

Trained model pm

∆PFI = perf( pm(perm X (j)))−perf( pm(orig X) )

Dtest
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How can we compare VIMs?

Leave One Covariate Out(LOCO):

pψ
j
LOCO =

1
ntest

ntest

∑
i=1

L (yi , pm−j(x
−j
i ))−L (yi , pm(xi)).

Permutation Feature Importance(PFI):

pψ
j
PFI =

1
ntest

ntest

∑
i=1

L (yi , pm(x (j)
i ))−L (yi , pm(xi)).

where the j-th covariate is permuted.

� LOCO uses refitting and PFI uses perturbation.
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How can we compare VIMs?

“LOCO differs from the other methods [...] since most
of the other methods don’t require retraining the model.
However, due to retraining the model, the interpretation shifts
from only interpreting that one single model to interpreting the
learner and how model training reacts to changes in the fea-
tures.”

Molnar (2025), Interpretable Machine Learning, 3rd Edition

Basically, compare VIMs based on the inference procedure used.
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Inconsistencies in comparison by inference

The Total Sobol Index can be estimated in many different ways!

ψTSI : = E
[
Var(y | X−j)

]

= E
[(

m−j(X−j)−y
)2

]
−E

[
(m(X )−y)2

]
refitting

=
1
2

(
E
[(

m(X̃ (j))−y
)2

]
−E

[
(m(X )−y)2

])
perturbation

= E
[(

E
[
m(X ) | X−j

]
−y

)2
]
−E

[
(m(X )−y)2

]
marginalization

= E
[
(m−j(X−j)−m(X ))2

]
variance

= σ
2(R2

−j −R2).
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General pipeline

Type-I errorEstimationTheoretical index

1 Theoretical Index:
• Define goals and choose a matching theoretical quantity.
• Verify if it satisfies the minimal axiom.

2 Estimation:
• Select a procedure aligned with your desired inference properties:

▶ E.g., double robustness, computational feasibility, extrapolation
issues, benefit from unlabeled data, or simpler relationships between
inputs than between inputs and outputs, . . .

3 Type-I error:
• Provide statistical guarantees for the important covariates.
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Simulated data
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Feature importance for y = X0 + 2X1 X2
4 + X7X8, R2 = 0.99

Method
Sobol-CPI(1)
Sobol-CPI(100)
PFI
CFI
cSAGEvf
scSAGEj
mSAGEvf
cSAGE
mSAGE
LOCO
LOCO-W
LOCI

From X0:
• Sobol-CPI(1)≃ Sobol-CPI(100)≃ CFI ≃ scSAGEj ≃ LOCO(W).
• cSAGEvf ≃ LOCI.

From X2:
• cSAGEvf, cSAGE and LOCI do not satisfy the minimal axiom!

Angel REYERO (IMT & Inria Paris-Saclay) Comparing Variable Importance Measures February 4, 2025 14 / 25



Bike dataset
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Figure 1: Boxplots of the VIMs for the feature year : Methods satisfying the
minimal axiom assign no importance to this variable.
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Bike dataset
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Figure 2: Boxplots of the VIMs estimating ψTSI for all features: Refitting
approaches exhibit poorer inference properties.
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Breast Cancer data with a correlated artificial null
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Figure 3: Double robustness and inference: Sobol-CPI assigns zero
importance to the null. Sobol-CPI(1)-Wilcoxon makes discoveries while
controlling error and staying efficient.
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Conclusion

1 How to compare VIMs?

Type-I errorEstimationTheoretical index

1 Conceptual comparison in the theoretical index.
2 Inference comparison in the estimation.
3 Statistical guarantees for the selected features.
✓ We provide a guide to help practitioners select a meaningful VIM.

2 What’s the minimum for a VIM?
• Minimal axiom: ψ(j ,P) = 0 if and only if X j ⊥⊥ y | X−j .
✓ Intuitive: Important if its absence degrades the model.
✓ Link between variable selection and variable importance!
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Thank you — Questions?

hidimstat package Article
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Theoretical indices

Index Definition MA
ψTSI E

[
ℓ(m−j (X−j ),y)

]
−E [ℓ(m(X),y)] Yes

ψSAGE ∑S⊂−{j} wS

(
E
[
ℓ(y ,E

[
m(X) | X S])]−E

[
ℓ(y ,E

[
m(X) | X S∪{j}

]
)
])

No

ψLOCI E [ℓ(y ,E [y ])]−E
[
ℓ(y ,mj (X j ))

]
No

ψmSAGEvf E [ℓ(y ,E [y ])]−E
[
ℓ(y ,E

[
m(X (−j))

]
)
]

Yes

ψmSAGE ∑S⊂−{j} wS

(
E
[
ℓ(y ,E

[
m(X (−S)) | X S

]
)
]
−E

[
ℓ(y ,E

[
m(X (−S)) | X S∪{j}

]
)
])

Yes

ψPFI E
[
ℓ(m(X (j)),y)

]
−E [ℓ(m(X),y)] Yes
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Inference

Method Theoretical quantity Index Estim
cSAGE ∑S⊂−{j} wS (v(S∪{j})−v(S)) ψSAGE M

cSAGEvf v({j}) ψLOCI M
mSAGEvf vm({j}) ψmSAGEvf M
mSAGE ∑S⊂−{j} wS (vm(S∪{j})−vm(S)) ψmSAGE M

scSAGEvf v(−{j}∪{j})−v(−{j}) ψTSI M
LOCO E

[
ℓ(m−j (X−j ),y)

]
−E [ℓ(m(X),y)] ψTSI R

LOCO-W E
[
ℓ(m−j (X−j ),y)

]
−E [ℓ(m(X),y)] ψTSI R

LOCI E
[
ℓ(mj (X j ),y)

]
−E [ℓ(m(X),y)] ψLOCI R

PFI E
[
ℓ(m(X (j)),y)

]
−E [ℓ(m(X),y)] ψPFI P

CFI E
[
ℓ(m(X̃ (j)),y)

]
−E [ℓ(m(X),y)] ψTSI P

Sobol-CPI(n-cal) ncal
ncal+1

(
E
[
ℓ( 1

ncal
∑

ncal
k=1 m(X̃ (j)

k ),y)
]
−E [ℓ(m(X),y)]

)
ψTSI P/M
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