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Motivation

In many settings we are interested in effects of time-varying
treatments or exposures.

Our exploration of this area stems from analysis of an RCT in
diabetes where patients may in addition to randomised treatment,
take rescue treatment, or discontinue randomised treatment.

Thus treatment(s) received by patients varied over time.

We were interested in estimating effects of randomised treatment
in the hypothetical scenario where patients remain on randomised
treatment throughout follow-up and are not given rescue
treatment.

There are of course also many settings where treatment or
exposure varies over time and in which there is no randomisation.
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Motivation

To estimate effects of treatment strategies/sequences, we must
consider confounding.

Not just baseline confounders, but also time-varying confounders.

To do this ‘correctly’ requires use of so called G-methods,
developed by Jamie Robins and co-workers [3, 2].

This talk will be about one of these methods G-formula (or
sometimes G-computation).

We wanted to apply G-formula, but the dataset had missing values.

How to handle the missing values in the context of a
G-formula analysis?
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Time-varying treatments and confounders

The setting under consideration is the ‘standard’ time-varying
treatment and confounding setup.

Ak denotes treatment at time/visit k, k = 0, . . . ,K .

Lk denotes time-varying confounders at visit k.

Y denotes the final outcome of interest.
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Directed acyclic graph (DAG)

L0

A0 A1 A2

L1 L2

Y
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Potential outcomes and estimands

Let Y a0,a1,a2 = Y ā denote potential outcome if treatment is set to
ā = (a0, a1, a2).

Causal estimands are then contrasts of aspects of the distributions
of Y ā for different values of ā.

For example, the effect of treatment at all times versus no
treatment is

E (Y 1,1,1)− E (Y 0,0,0)
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Identification assumptions

Consistency: Interventions on treatment/exposure well defined so
that we can assume Y = Y ā if Ā = ā.

Conditional exchangeability:

Y ā |= Ak |Āk−1 = āk−1, L̄k for k = 0, 1, . . . ,K

Positivity: If f (āk−1, l̄k) > 0 then

P(Ak = ak |Āk−1 = āk−1, L̄k = l̄k) > 0
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G-formula
In G-formula, estimation of E (Y ā) = E (Y a0,a1,a2) is based on

E(Y ā) =

∫
l0

∫
l1

∫
l2

E(Y |a0, a1, a2, l0, l1, l2)f (l2|a0, a1, l0, l1)f (l1|a0, l0)f (l0)dl2dl1dl0

This requires we specify and fit models for

• f (L0) (in fact, we typically empirically average across this, avoiding need for a model)

• f (L1|A0, L0)

• f (L2|A0,A1, L0, L1)

• f (Y |A0,A1,A2, L0, L1, L2) (in fact, all we need is a model for

E(Y |A0, A1, A2, L0, L1, L2))

In the above we have separate models for time-varying confounders
at each time point.

In fact, implementations (e.g. gfoRmula in R) fit pooled long data
form models for time-varying confounders.
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G-formula by Monte-Carlo integration/simulation

The integrals are generally analytically intractable.

Thus software implementations use Monte-Carlo
integration/simulation.

To estimate E (Y a0,a1,a2), based on fitted models, for every
individual we:

• simulate L∗0 from f (L0) (or just use original, i.e. L∗0 = L0)

• simulate L∗1 from f (L1|A0 = a0, L
∗
0)

• simulate L∗2 from f (L2|A0 = a0,A1 = a1, L
∗
0, L

∗
1)

• simulate Y ∗ from f (Y |A0 = a0,A1 = a1,A2 = a2, L
∗
0, L

∗
1, L

∗
2)

(or just calculate E(Y |A0 = a0, A1 = a1, A2 = a2, L
∗
0 , L

∗
1 , L

∗
2 )

• calculate mean of Y ∗ across individuals
(or average E(Y |A0 = a0, A1 = a1, A2 = a2, L

∗
0 , L

∗
1 , L

∗
2 ) across individuals)
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G-formula inference

Inference for such a G-formula estimator is usually performed using
bootstrapping:

• take B bootstrap samples of original data

• apply G-formula to each bootstrap sample

• construct bootstrap SEs / confidence intervals
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G-formula with missing data

What if we have some missing data?

• gformula in Stata imputes missing values once stochastically

• gfoRmula in R fits models for time-varying confounders using
‘complete cases’

We wanted to explore how multiple imputation (MI) could be used
to impute missing data, followed by G-formula for estimation of
causal effects.
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Multiple imputation

• Multiple imputation (MI) is a flexible and now very popular
approach for handling missing data.

• It relies (at least in its usual form) on assuming data are
missing at random.

• Here I will briefly introduce it in a simple setting with one
variable containing missing values.
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Parametric imputation model

Let Y contain missing values and X be fully observed.

We want to generate imputations of missing values of Y that

• have the same distribution as the original values had they
been observed, and

• have the ‘right’ relationship with X .

To do this we specify a parametric imputation model for
f (Y | X , ψ) with parameters ψ.

E.g. a linear model:

Y = α+ βX + ε, ε ∼ N (0, σ2),

so here ψ = (α, β, σ2).
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Single stochastic imputation

If Y is MAR given X , fitting f (Y | X , ψ) to those with Y observed
gives unbiased estimates ψ̂ = (α̂, β̂, σ̂2).

We can then draw (randomly) from f (Y | X , ψ̂) to impute the
missing values.

For the linear regression imputation model, for each missing Y
draw using

Y ∗ = α̂+ β̂X + ε∗, ε∗ ∼ N (0, σ̂2).

The imputed dataset can then be analysed using the analysis of
interest.
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Single vs. multiple imputation

There is nothing wrong with single stochastic imputation for point
estimation.

There are two problems however:

1. It is somewhat inefficient statistically, because of Monte-Carlo
error. Repeating the process (multiple imputation) and
averaging our final estimates reduces this.

2. Naive standard errors calculated on the imputed dataset(s)
ignore uncertainty due to the imputation process.

There are various ways of solving 2. Rubin’s Bayesian MI is one
convenient route.
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Bayesian MI and priors

Rubin’s MI is by construction Bayesian, but builds on the single
stochastic imputation method.

• Specify a prior distribution for the imputation model
parameters f (ψ).

• In the Bayesian paradigm, both parameters and missing values
are treated as random variables.

• The prior f (ψ) encodes prior belief/evidence about ψ before
we see the data.

• Implementations of MI are often based on so-called
‘non-informative’ priors.
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Bayesian predictive distribution

Let Ymis and Yobs denote missing and observed values of Y , and
X the (fully observed) X values.

To create imputations of Ymis perform two steps:

1. Draw ψ̃ from the posterior f (ψ | Yobs,X).

2. Impute Ymis from f (Ymis | Yobs,X, ψ̃).

Repeat these two steps M times to create M imputed datasets.

Step 1 is critical for Rubin’s simple combination rules to be valid.
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Bayesian imputation for linear regression

Consider the linear regression imputation model Y = α+ βX + ε.

1. Draw ψ̃ = (α̃, β̃, σ̃2) from f (ψ | Yobs,X).
With one variable missing, this step only depends on cases
with Y observed.

2. For each missing Y , impute

Y ∗ = α̃+ β̃X + ε∗, ε∗ ∼ N (0, σ̃2),

using that individual’s X value.

This creates the first imputed dataset. Repeat to create datasets
2, 3, 4, . . . ,M.
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Bayesian imputation using other models

Imputation can also be performed using other regression models
suited to the variable being imputed.

• e.g. logistic regression for binary variables.

The principles remain the same; only steps 1 and 2 change
depending on the model.

For more on different imputation methods in R see ?mice::mice.

The method obviously extends to the case where
X = (X1,X2, . . . ,Xp).

It can also be extended to impute missing values in multiple
variables (e.g. via the chained equations method).
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Analysing imputed datasets (Rubin’s rules)

We have created M imputed datasets that are now complete. How
do we analyse them?

Assume interest is in a parameter θ, e.g.:

• the mean or median of a variable

• a proportion in a particular category (level) of a factor variable

• a coefficient in a regression model

The approach is often referred to as ‘Rubin’s rules’.
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Step 1: analyse each imputation separately

Perform the analysis (e.g. estimate the mean or fit the regression)
on each imputed dataset separately.

From each we need the estimate θ̂m and its variance V̂ar(θ̂m).

Imputation Estimate Variance

1 3.9 0.25
2 4.3 0.31
. . . . . . . . .
M 4.5 0.29
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Step 2: combine the estimates

Pool the estimates using Rubin’s rules.

The MI estimate of θ is

θ̂MI =
1

M

M∑
m=1

θ̂m,

where θ̂m is the estimate from the mth imputed dataset.
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Step 3: between-imputation variance

To estimate the variance of θ̂MI we don’t simply average the
variances from each dataset.

First compute the between-imputation variance:

σ̂2b =
1

M − 1

M∑
m=1

(
θ̂m − θ̂MI

)2
.

This is the usual unbiased sample variance of θ̂1, . . . , θ̂M .

σ̂2b measures how much estimates of θ vary across imputations, i.e.
uncertainty due to missing data.
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Step 4: within-imputation variance

Next compute the within-imputation variance:

σ̂2w =
1

M

M∑
m=1

V̂ar(θ̂m),

where V̂ar(θ̂m) is the estimated variance from the mth analysis.

σ̂2w measures uncertainty from finite sample size (the usual source
of sampling variability).
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Step 5: variance of θ̂MI

Estimate the variance of θ̂MI by

σ̂2MI =

(
1 +

1

M

)
σ̂2b + σ̂2w .

So the uncertainty in θ̂MI is (essentially) the sum of between and
within imputation variances.
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MI and G-formula

Could we use MI to implement the G-formula method?

We could:

• use MI to generate (e.g. M = 10) completed datasets

• apply G-formula to each of the M datasets, yielding a point
estimate and SE

• pool estimates and SEs using Rubin’s rules

If bootstrapping is used for SE estimation in each imputed dataset,
the overall procedure is quite computationally costly!

Is there a faster alternative, avoiding bootstrapping?
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G-formula and imputation

For those (like me) more familar with missing data methods,
G-formula can be seen as a form of single stochastic imputation of
the longitudinal history under the treatment regime of interest.

In fact, to reduce Monte-Carlo error, implementations of G-formula
create multiple imputations of these, and then average the imputed
Y ∗ across individuals and across imputations.

The close links between MI and G-formula by simulation begs the
question - could we use Rubin’s combination rules, rather than
bootstrapping, for inference?
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G-formula via multiple imputation - earlier work
Westreich et al previously highlighted close connections between
G-formula and MI in single time point setting [8]:

L A Y 0 Y 1

2.5 0 3.4 NA
7.3 1 NA 4.5
4.6 1 NA 5.7
4.2 0 4.2 NA

Impute Y 0 for those with A = 1, using L. Impute Y 1 for those
with A = 0, using L.

Calculate difference in means of Y 1 and Y 0 in imputed datasets.

Westreich et al stated that Rubin’s variance estimator cannot be
used because each individual contributes to both treated and
untreated calculations.
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G-formula via multiple imputation - earlier work

Here individual’s observed outcome is retained.

In the longitudinal setting, G-formula simulates confounders and
outcomes for all individuals afresh.

Indeed, in this setting, it may be that no individuals followed
precisely the treatment regime of interest.

We can nonetheless use MI to implement G-formula, exploiting
existing work on using MI to generate synthetic datasets.
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G-formula via MI

For the longitudinal setup earlier, we can use MI to estimate
µ = E (Y ā) in a G-formula type approach by:

1. Augment observed data with additional nsyn rows, setting
L0, L1, L2,Y to missing in the augmented rows to missing,
and A0,A1,A2 to value ā = (a0, a1, a2).

2. Run MI on the augmented dataset, generating M imputations.

3. For imputation m (m = 1, . . . ,M), calculate mean of Y from
the augmented part of the dataset.

4. Average estimated means across M imputations (denoted µ̂)
as estimator of µ = E (Y ā).
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G-formula via MI - data structure

E.g. data structure for ā = (1, 1, 1) is

R L0 A0 L1 A1 L2 A2 Y

1 -0.3 0 0.5 0 2.2 1 1.3
1 2.3 1 4.2 1 4.6 1 5.5
1 -0.5 1 0.4 0 0.8 1 1.9

0 NA 1 NA 1 NA 1 NA
0 NA 1 NA 1 NA 1 NA
0 NA 1 NA 1 NA 1 NA

R = 1 indicates originally observed data

R = 0 indicates augmented data
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G-formula via MI - implementation details

We have a block monotone missingness pattern in the augmented
dataset.

Due to our earlier model assumptions, we can impute sequentially
moving forwards in time:

1. Impute L0

2. Impute L1|A0, L0

3. Impute L2|A0,A1, L0, L1

4. Impute Y |A0,A1,A2, L0, L1, L2

This means if we use for example chained equations MI software,
there is no need to iterate around models.

We specify imputation equations as per above, and set iterations
to 1.
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Contrasts of treatment regimes

In practice we are interested in contrasts of the form E (ā1)− E (ā2)
for regimes ā1 and ā2.

To estimate this, add augmented rows with Ā = ā1 and another
set with Ā = ā2.

In the imputed datasets, calculate difference in sample means.
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Inference for G-formula via MI estimator

How to estimate Var(µ̂) and conduct inference?

Ordinarily with MI we use Rubin’s rules.

Estimate variance in each imputation and average these, yielding
within-imputation variance V̂ .

Estimate variance of estimated means across M imputations,
yielding between-imputation variance B̂.

Then V̂ar(µ̂) = (1 +M−1)B̂ + V̂ .

Unfortunately this does not work here - Rubin’s variance estimator
is much larger than the true Var(µ̂).

This is due to a form of uncongeniality - the imputation and
analysis models are being fitted to different portions of the dataset.
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Multiple imputation for synthetic
samples/populations

Within the survey sampling field, there is an established literature
on using MI to impute partially or fully synthetic datasets.

The motivation here is concern over confidentiality if survey data
were released to analysts.

MI is used to impute/simulate variables for new/synthetic
individuals, ensuring confidentiality of original participants.
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Variance estimation for synthetic MI

An unbiased variance estimator developed by Raghunathan, Reiter
and Rubin [5] for this synthetic MI setting is

(1 +M−1)B̂−V̂ .

In our paper, we use asymptotic theory for MI estimators of Robins
and Wang [6] to show that the above variance estimator is
asymptotically unbiased for the ‘G-formula via MI’ estimator.
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Simulation setup

To evaluate G-formula via MI approach, we performed simulations.

nobs = nsyn = 500

10, 000 simulations per scenario.

We simulated with two intermediate follow-ups and a final
outcome Y .

Sequential imputation using mice package in R, with M synthetic
imputations.
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Simulation setup

L0 ∼ N(0, 1)

P(A0 = 1|L0) = expit(L0)

L1 ∼ N(A0 + L0, 1)

P(A1 = 1|A0, L0, L1) = expit(A0 + L1)

L2 ∼ N(A1 + L1, 1)

P(A2 = 1|A0,A1, L0, L1, L2) = expit(A1 + L2)

Y ∼ N(A2 + L2, 1)

We target E (Y 1,1,1)− E (Y 0,0,0), which has true value 3.
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Number of imputations M

The variance estimator (1 +M−1)B̂ − V̂ can be negative, due to
noise in B̂ as estimate of true between-imputation variance.

To examine how large M needs to be to avoid this, we evaluated
M = {5, 10, 25, 50, 100}.

If on a given dataset the estimated variance was negative, we
added new sets of M imputations until it became non-negative.

We report the mean and max. value of M required across the
10, 000 simulations.
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Simulation results

M Bias Emp. SE Est. SE 95% CI Mean M Max M

5 -0.002 0.242 0.236 99.4 6.2 25
10 0.001 0.229 0.223 98.4 10.4 30
25 0.000 0.223 0.220 95.6 25.0 50
50 0.000 0.217 0.219 95.2 50.0 50

100 0.004 0.218 0.219 95.0 100.0 100

• Estimates are unbiased for true effect (= 3).

• For M ≥ 25 95% coverage is reasonable.

• Negative variance issue is rare with M as low as 25, and never
occurred with M ≥ 50.
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Interim conclusions

MI provides a potentially convenient route to performing G-formula
without need for bootstrapping.

Inference seems reliable for M as low as 25, which is
computationally far fewer than number of bootstraps typically used
(e.g. 1, 000).

Fairly easy to implement manually using mice in R, but we also
provide a package gFormulaMI to facilitate the method.
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G-formula and missing data

Our original motivation was how to combine MI to handle missing
data with G-formula to estimate the causal effects of interest.

Given we’ve seen that MI can be used to perform G-formula when
data are complete, can we use it to impute any missing data as
well?

Yes. We impute the combination of the missing actual data and
the missing potential outcome data (in the augmented part).
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Imputing missing data with MI G-formula

There are (at least) two approaches:

1. Impute missing actual data and missing potential outcome
data in one go.

2. First impute missing actual data, then impute missing
potential outcome data conditional on these imputations.

We believe option 2 is more attractive.

We only have to impute the (usually) small amount of missing
actual data to create a monotone pattern. The remaining missing
(potential outcome) values are then imputed as before, with no
iterations required at the second stage.

This approach is well established in the context of using MI with
longitudinal data where the missingness pattern is almost
monotone.
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Simulation setup

To the previous setup, we made some values in L1, A1, L2, A2, Y
independently missing completely at random.

We varied the probability p = {0.05, 0.1, 0.25, 0.5} that values in
each were missing. Note p refers to the marginal probability that
values in each variable are missing.

We imputed missing values M = 50 using mice with default
settings.

For each imputed dataset, we then augmented as described
previously, and imputed missing potential outcomes once as
described earlier.

Inferences were then again based on Raghunathan’s variance
estimator.
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Simulation results

π Bias Emp. SE Mean est. SE 95% CI

0.05 -0.001 0.225 0.224 95.4
0.10 -0.003 0.231 0.231 95.3
0.25 -0.008 0.259 0.258 95.4
0.50 -0.011 0.360 0.361 95.0

• As expected, estimator becomes more variable with increasing
missingness.

• Raghunathan variance estimator and 95% CI performing well.
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Discussion

• MI seems like an attractive route to implementing G-formula,
particularly when some data are missing.

• Exploits connections between causal inference and missing
data and software developed for the latter.

• See our paper [1] for more details.

• Our R package gFormulaMI which utilises mice, is available
on CRAN.

• Application of the approach for the diabetes RCT mentioned
at the start is reported in [4].
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Discussion

I have not mentioned various important things, including:

• The ‘complete case’ assumption made by gfoRmula may be
plausible than the MAR assumption relied upon by MI.

• Often a large portion of missingness is due to
dropout/censoring, and this can be viewed as part of the
time-varying treatment [2]. Nevertheless,
sporadic/intermittent missingness is often also present.

• Iterative conditional expectation (ICE) version of G-formula
avoids Monte-Carlo simulation/integration [7].

• ICE moreover permits variance estimation using estimating
equation theory, avoiding the need for bootstrap [9].
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