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Christiaan Huygens early survival analysis
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Event history analysis 101




Counting Process Formulation of Event History Process

Event history process models occurrence of events over time.
@ Event Time t: observation time.
e Event Indicator 0;(t): indicator whether event i occurred at time t.

N1 (t)
* ¢ * Time
t1.7 trs 3.3
Na(t)
* ¢ * Time
t1s 2.2 3.1

Mathematical Formulation:
Given observations from countable marked point process { T;}7_;,

Ni(t) =) 8i(y)
j=1

N;(t) = cumulative count of events of type i up to time t.




Doob-Meyer Decomposition

Doob-Meyer decomposes a general stochastic process into
@ a predictable process (the “model™).
@ and a martingale (“noise”)

Doob-Meyer Decomposition of counting process N;:

Ni(t) = Mi(t) + Ni(t)

e M;(t): Martingale component representing the unpredictable part.
@ A;(t): Predictable component capturing the systematic part.

Common assumption:
Events cannot happen simultaneously a.s., and therefore

Ai(E) = /OtA,-(s) ds

cumulative hazard written as a integral of some hazard function




Cox Proportional Hazards Model

@ Introduced by David R. Cox in 1972.

@ Allows for analysis of effect of covariates on hazard function.

Mathematical Formulation:

A(t|x) = Yi(t)Ao(t)ePratioet +hx

where:

@ A(t|x): Hazard function at time t given covariates x.

@ Yi(t): Indicator whether event type i is at risk at time t.
@ \o(t): Baseline hazard function.

@ (1,02,..., Bk Regression coefficients.

(]

X1, X2, ...,xk. Covariates. @ Ig:,,v:rm
Svizzera




Partial Likelihood Formulation

Full likelihood of observed event types {i; 1 at times {tj}J’-’Zl,
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Partial Likelihood Formulation

Full likelihood of observed event types {i; 1 at times {tj}le,

n
L = HP(ijatj | icjs t<j)
j=1

n
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The Partial Likelihood for Cox PH is defined as:

T exp(BTx;)

L —
P(F) i1 ZieR(tj) exp(B7 ;)

where R(t;) = >-F_, Yi(tj) is risk set at time ¢;.



Challenges and Tricks




Challenges in Inference of Event History Models

@ Growing Risk Set: for big studies with many event types.

e Time-varying covariates: requires artificial censoring in software.
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TRICK 1: nested-case control sampling

When R(t) gets too big, then Borgan (1995) suggests alternative:

exp(87 x;)
ZieS(tj) exp(87x;)

where S(t;) is a randomly sampled subset of R(t;) including event i.

Lyce(B) = H
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TRICK 1: nested-case control sampling

When R(t) gets too big, then Borgan (1995) suggests alternative:

n exp(B7x;,)
L _ J
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where S(t;) is a randomly sampled subset of R(t;) including event i.

If we sample only 1 non- event * for each event j;, then

n

xp(B " xi;
Lnce(B) = Hexp(ﬁTi,l;(—i—expzﬂTX:)

exp(87 (xi; — xi+))
11t exp(BT (xi; — xi*))

Il
.
s |l
E —

J

Logistic regression

This is logistic regression with only successes and covariates Ax; = x; — Xx; J
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TRICK 2: Generalized additive model for event history data

Consider we want to model hazard as

Ai(t) = )\0(t)ex,-1(t)ﬁ(t)—i-f(X;z(f))JrZi(t)'Y

i
with
@ time-varying covariates x;j1(t), xj2(t), zi(t).
@ time-varying effect 5(t)
@ non-linear effect f
o random effect v ~ N(0, 0?) (frailty)
with observed data {(ij, tj)} with j=1,...,n.




TRICK 2: practical approach

O For each event ij, sample one non-event i from R(¢;).
@ Create new covariates:
> Azj =2z — z»
J J
> Ale = Xj1 — Xij*l

Xp2  Xir2 1 -1
> matrices Ax; = | : and C =
Xi2  Xix2 1 -1
© time variable t = (t1,...,ty)

© pseudo response y = ¢(1,...,1)

In R using mgcv package, we can now fit the event history model:

Tibrary(mgcv)
model <- gam(y ~ s(t,by=Deltaxl) + s(Deltax2, by=C)+ s(Deltaz,bs="re"),
family = binomial)

12/30



Application:
Alien Species Invasions




Motivation: species invasions

Alien species are increasingly recognized as threat to native ecology.

AZ . ea X,

Invasives harm e
our lands, waters 2 o 24
and native species 7. &%

meth

Grans.cap

Question
What are the main drivers of the invasive process of species?
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Data: Alien Species First Records

Primary data source: Alien Species First Records (Seebens et al., 2018)

H | 1 K L M N (o} P
QrigName LifeForm Region PresentStatus  FirstRecort FirstRecort DataQualit Source
Acanthophora muscoides Linnaeus, 175 Algae Turkey 1986 1986 Cinar et al. (2005)
Acanthophora nayadiformis Algae Cyprus alien 1937 1997 NEW_Befa DAISIE
Acanthophora nayadiformis (Delile) Pag Algae Turkey 1970 19570 Cinar et al. (2005)
Acanthophora spicifera Algae Hawaiian Islands 1952 1952 Carlton & Eldrege (2003)
Acetabularia calyculus Algae Israel established 1943 1943 NEW_Befo DAISIE
Acetabularia calyculus Algae Spain established 1957 1957 NEW_Befo DAISIE
Achnanthes pseudogroenlandica Algae Bulgaria 1984 1984 aquaNIs
Achnanthes pseudogroenlandica Algae Romania 1984 1984 aquaNIs
Achnanthes pseudogroenlandica Algae Ukraine 1984 1984 NEW_Befa DAISIE
Acrochaetium catenulatum Algae Netherlands 1967 1967 aguaNIS
Acrochaetium kylinii Algae Turkey 2007 2000 - 2005 NEW _rand aquaNIS
Acrochaetium leptonema Algae Bulgaria 2006 2000 - 2005 NEW_rand aquaNIS
Acrochaetium leptonema Algae Turkey 2007 2000 - 2005 NEW_rand aquaNIS

Effectively giving information for
@ for each species (inside 1 of 16 life forms)

@ for each “region” (of 275 regions) g

© First moment that species is recorded there.
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Dynamic two-mode species-region network

Native species

t =1880 t=1892 t=1895

In a dynamic two-mode species-region network:
@ species and regions are node-sets;
Edges in network are time-stamped invasions;
At time 0 (t = 1880) native species are indicated by edge; @ Is'"
Invasions may show spatial trend or co-occuring patterns.




Event history model for time-to-invasion

Formally, data for all species s € S and regions r € C:

Tsr = year in which species s appeared in region r.
@ native species: T, < 1880

e invasions: Ty € [1880,2005]
@ non-invasions: T > 2005

Define a Cox proportional hazards model:

Asr(t) = hazard of species s invading region r in year t.

by means of
)\sr(t) = Ao(t)exs/r(t)ﬁ(t)qu;r(t)fy

where \o(t) baseline hazard, x(t) fixed effect, zs(t) random effect.




Idea behind event history model

o Let S; = {rattus, cuniculus} be all species for life form L = mammals.
o Let C = {Germany, France} be all regions.
o Let rattus be native to Germany.

We consider a “race” between T,r, Tc and T (T, already arrived!):
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Possible drivers of species invasions: fixed effects

Most drivers change in time:

I.(t): landuse in region r at time t.

ds(t): distance to region nearest to r invaded by s by time t.

trer(t): annual trade between r and regions invaded by s by time t.

dts(t): diff in temperature between r and regions invaded by s by time t.

ks (t): presence of s at time t in colonial power to which r belongs.

<

d (1880) = 780km
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Possible drivers of species invasions: fixed effects

Most drivers change in time:

I.(t): landuse in region r at time t.

ds(t): distance to region nearest to r invaded by s by time t.

trer(t): annual trade between r and regions invaded by s by time t.

dts(t): diff in temperature between r and regions invaded by s by time t.

ks (t): presence of s at time t in colonial power to which r belongs.

lff

d (1880) = 780km rF(1883) =780km  d,(1889) = 570km




Possible drivers of species invasions: random effects (1)

Random effects are used for large number of “nuisance” factors:

o Invasiveness. Different species may vary in their invasive behaviour,
beyond fixed effects. We model species invasiveness by:

Vs ~ N(O,a-2 ).

nv

@ Popularity. Certain regions may be more “popular” destinations than
others, beyond fixed effects. We model region popularity by:

Ye ~ N(O, 0'|230p)-




Possible drivers of species invasions: random effects (II)

Species interaction network

Could it be that certain species co-invade a region?
Or, reversely, avoid each other in their invasions?

We define:

ic(t) = last species to invade r before t.
and

~ss = affinity of species s for species s’




There are a number of estimation paradigms:
@ MLE: Computationally intractable even for small networks.
e Partial likelihood: Denominator of PL is sum of |S| x |C| terms.

Case-control Partial Likelihood:

Randomly sample 1 non-event (t;, s*, r}') for each event (t;, s;, r;).

(8 N ) - e*siri Bt 2sir Y
= argmin H
3 2y
i—1

eXsi r B—i—zsi Y + eXsl.* ri* B“l‘zsl?k rlf“ Y

This is equivalent with logistics regression
e for which responses are ones, y = (1,1,...,1)

o for which covariates are differences, xs;r, — X5 and zg,, — Zsx,».
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Model selection

Model Selection: Corrected AIC for the evaluated Model Formulations

4000 Model Complexity

Colonial ties, Agricultural and/or Urban Land-Coverage

Trade and one or more amon:
Colonial ties, Agricultural and Urban Land-Coverage

Climatic Dissimilarity and one or more among
Colonial ties, Agricultural and Urban Land-Coverage

w
Q
a
S

Distance and one or more amon
Colonial ties, Agricultural and Urban Land-Coverage

Corrected AIC

Trade and Distance together or
Trade and Climatic Dissimilarity together

Distance and Climatic Dissimilarity together
3500

Distance, Trade, and Climatic Dissimilarity together

3250

Universita
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izzer
italiana
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Results: fixed effects

Birds | Plants | Insects | Mammals
Colonial ties 0.16 -0.09 0.31 0.13
Difference in temperature | -0.08 | -0.04 -0.11 -0.07

Climatic effect
All life forms diffuse to “similar climatic” regions:
@ Strongest for insects

@ Weakest for plants

Colonial history

Insects: less diffusion among countries related by colonial history.
Birds, insects and mammals: there is more.
@ |sz::z:z:.v-
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Results: distance reduces invasions

Time—Varying Effect of Log—Distance
Insects and Vascular Plants
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Results: trade is becoming less important

Time—Varying Effect of Log-Trade
Insects and Vascular Plants
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Results: Random effects for species and countries

Application

Frankliniella occidentalis
(western flower thrip)
most invasive insect

Chromolaena
odorata

(siam weed)
most invasive plant

Australia, Canada, South Africa,
United States, and New Zealand
most invasible regions
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Results: Random interaction effects between species

Negative co-invasion effect for

Ap p 1 i Cat i O n Frankliniella occidentalis when Achyranthes

aspera (chaff-flower) is in the region
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Chromolaena
odorata
(siam weed)
most invasive plant

co-invasion effect
for Phenacoccus manihoti (cassava mealybug)
when Chromolaena odoratas is in the region




Results: Species have a tendency to coinvade
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e Event history analyis is an important tool in Biostatistics
o Computational tricks model big data in a more realistic way:

» Nested-case control improves computational efficiency

> Logistic formulation allows use of non-linear modelling via GAMs.
@ Species invasions as temporal two-mode dynamic process.

» Surprising similarities in dynamics for various life forms.

» Trade, geographic and climatic distance are important drivers.
» Significant variation in invasiveness of species and regions.

» Species networks hint at joint invasion dynamics.
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