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Christiaan Huygens early survival analysis

Huygens’ 1669 survival curve for 100 people.

Howard Wainer STATISTICAL GRAPHICS: Mapping the Pathways of Science.

Annual Review of Psychology. Vol. 52: 305-335.
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Event history analysis 101
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Counting Process Formulation of Event History Process

Event history process models occurrence of events over time.

Event Time t: observation time.

Event Indicator δi (t): indicator whether event i occurred at time t.

Time

Time

t1.7 t2.5 t3.3

t1.5 t2.2 t3.1

N1(t)

N2(t)

Mathematical Formulation:
Given observations from countable marked point process {Tj}nj=1,

Ni (t) =
n∑

j=1

δi (tj)

Ni (t) = cumulative count of events of type i up to time t.
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Doob-Meyer Decomposition

Doob-Meyer decomposes a general stochastic process into

a predictable process (the “model”).

and a martingale (“noise”)

Doob-Meyer Decomposition of counting process Ni :

Ni (t) = Mi (t) + Λi (t)

Mi (t): Martingale component representing the unpredictable part.

Λi (t): Predictable component capturing the systematic part.

Common assumption:
Events cannot happen simultaneously a.s., and therefore

Λi (t) =

∫ t

0
λi (s) ds

cumulative hazard written as a integral of some hazard function.
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Cox Proportional Hazards Model

Introduced by David R. Cox in 1972.

Allows for analysis of effect of covariates on hazard function.

Mathematical Formulation:

λ(t|x) = Yi (t)λ0(t)e
β1x1+β2x2+...+βkxk

where:

λ(t|x): Hazard function at time t given covariates x .

Yi (t): Indicator whether event type i is at risk at time t.

λ0(t): Baseline hazard function.

β1, β2, . . . , βk : Regression coefficients.

x1, x2, . . . , xk : Covariates.
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Partial Likelihood Formulation

Full likelihood of observed event types {ij}nj=1 at times {tj}nj=1,

L =
n∏

j=1

p(ij , tj | i<j , t<j)

=
n∏

j=1

p(tj | i<j , t<j)× P(ij | i<j , t≤j)

=
n∏

j=1

P(tj | i<j , t<j)×
λij (tj)∑

i∈R(tj )
λi (tj)

The Partial Likelihood for Cox PH is defined as:

LP(β) =
n∏

j=1

exp(βT xij )∑
i∈R(tj )

exp(βT xi )

where R(tj) =
∑p

i=1 Yi (tj) is risk set at time tj .
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Challenges and Tricks
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Challenges in Inference of Event History Models

Growing Risk Set: for big studies with many event types.

Time-varying covariates: requires artificial censoring in software.

Non-linear effects: either xiβ(t) or f (xi )

Global covariates: either xβ or λ0
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TRICK 1: nested-case control sampling

When R(t) gets too big, then Borgan (1995) suggests alternative:

LNCC (β) =
n∏

j=1

exp(βT xij )∑
i∈S(tj ) exp(β

T xi )

where S(tj) is a randomly sampled subset of R(tj) including event ij .

If we sample only 1 non-event i∗j for each event ij , then

LNCC (β) =
n∏

j=1

exp(βT xij )

exp(βT xij ) + exp(βT xij∗)

=
n∏

j=1

exp(βT (xij − xij∗))

1 + exp(βT (xij − xij∗))

Logistic regression

This is logistic regression with only successes and covariates ∆xi = xi − xi∗ .
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TRICK 2: Generalized additive model for event history data

Consider we want to model hazard as

λi (t) = λ0(t)e
xi1(t)β(t)+f (xi2(t))+zi (t)γ

with

time-varying covariates xi1(t), xi2(t), zi (t).

time-varying effect β(t)

non-linear effect f

random effect γ ∼ N(0, σ2) (frailty)

with observed data {(ij , tj)} with j = 1, . . . , n.
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TRICK 2: practical approach

1 For each event ij , sample one non-event i∗j from R(tj).

2 Create new covariates:
▶ ∆zj = zij − zi∗j
▶ ∆x1j = xij1 − xi∗j 1

▶ matrices ∆x2 =

xi12 xi∗1 2
...

...
xin2 xi∗n 2

 and C =

1 −1
...

...
1 −1


3 time variable t = (t1, . . . , tn)

4 pseudo response y = c(1, . . . , 1)

In R using mgcv package, we can now fit the event history model:
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Application:
Alien Species Invasions
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Motivation: species invasions

Alien species are increasingly recognized as threat to native ecology.

Question

What are the main drivers of the invasive process of species?
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Data: Alien Species First Records

Primary data source: Alien Species First Records (Seebens et al., 2018)

Effectively giving information for

1 for each species (inside 1 of 16 life forms)

2 for each “region” (of 275 regions)

3 First moment that species is recorded there.
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Dynamic two-mode species-region network

In a dynamic two-mode species-region network:

species and regions are node-sets;

Edges in network are time-stamped invasions;

At time 0 (t = 1880) native species are indicated by edge;

Invasions may show spatial trend or co-occuring patterns.
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Event history model for time-to-invasion

Formally, data for all species s ∈ S and regions r ∈ C:

Tsr = year in which species s appeared in region r .
native species: Tsr < 1880

invasions: Tsr ∈ [1880, 2005]

non-invasions: T > 2005

Define a Cox proportional hazards model:

λsr (t) = hazard of species s invading region r in year t.

by means of
λsr (t) = λ0(t)e

x ′sr (t)β(t)+z ′sr (t)γ

where λ0(t) baseline hazard, xsr (t) fixed effect, zsr (t) random effect.
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Idea behind event history model

Let SL = {rattus, cuniculus} be all species for life form L = mammals.

Let C = {Germany, France} be all regions.

Let rattus be native to Germany.

We consider a “race” between TrF , TcG and TcF (TrG already arrived!):

18 / 30



Idea behind event history model

Let SL = {rattus, cuniculus} be all species for life form L = mammals.

Let C = {Germany, France} be all regions.

Let rattus be native to Germany.

We consider a “race” between TrF , TcG and TcF (TrG already arrived!):

18 / 30



Idea behind event history model

Let SL = {rattus, cuniculus} be all species for life form L = mammals.

Let C = {Germany, France} be all regions.

Let rattus be native to Germany.

We consider a “race” between TrF , TcG and TcF (TrG already arrived!):

18 / 30



Idea behind event history model

Let SL = {rattus, cuniculus} be all species for life form L = mammals.

Let C = {Germany, France} be all regions.

Let rattus be native to Germany.

We consider a “race” between TrF , TcG and TcF (TrG already arrived!):

18 / 30



Possible drivers of species invasions: fixed effects

Most drivers change in time:

lr (t): landuse in region r at time t.

dsr (t): distance to region nearest to r invaded by s by time t.

trsr (t): annual trade between r and regions invaded by s by time t.

dtsr (t): diff in temperature between r and regions invaded by s by time t.

ksr (t): presence of s at time t in colonial power to which r belongs.
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Possible drivers of species invasions: random effects (I)

Random effects are used for large number of “nuisance” factors:

Invasiveness. Different species may vary in their invasive behaviour,
beyond fixed effects. We model species invasiveness by:

γs ∼ N(0, σ2
inv).

Popularity. Certain regions may be more “popular” destinations than
others, beyond fixed effects. We model region popularity by:

γc ∼ N(0, σ2
pop).
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Possible drivers of species invasions: random effects (II)

Species interaction network

Could it be that certain species co-invade a region?
Or, reversely, avoid each other in their invasions?

We define:
ic(t) = last species to invade r before t.

and
γss′ = affinity of species s for species s ′
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Estimation

There are a number of estimation paradigms:

MLE: Computationally intractable even for small networks.

Partial likelihood: Denominator of PL is sum of |S| × |C| terms.

Case-control Partial Likelihood:

Randomly sample 1 non-event (ti , s
∗
i , r

∗
i ) for each event (ti , si , ri ).

(β̂, Σ̂γ) = argmin
n∏

i=1

exsi ri β+zsi ri γ

exsi ri β+zsi ri γ + e
xs∗

i
r∗
i
β+zs∗

i
r∗
i
γ

This is equivalent with logistics regression

for which responses are ones, y = (1, 1, . . . , 1)

for which covariates are differences, xsi ri − xs∗i r
∗
i
and zsi ri − zs∗i r

∗
i
.
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Model selection
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Model Selection: Corrected AIC for the evaluated Model Formulations

23 / 30



Results: fixed effects

Birds Plants Insects Mammals
Colonial ties 0.16 -0.09 0.31 0.13

Difference in temperature -0.08 -0.04 -0.11 -0.07

Climatic effect

All life forms diffuse to “similar climatic” regions:

1 Strongest for insects

2 Weakest for plants

Colonial history

Insects: less diffusion among countries related by colonial history.
Birds, insects and mammals: there is more.
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Results: distance reduces invasions
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Distance effect is negative and quite constant
over period 1880-2005.
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Results: trade is becoming less important
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Results: Random effects for species and countries
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Results: Random interaction effects between species
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Results: Species have a tendency to coinvade
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Summary

Event history analyis is an important tool in Biostatistics

Computational tricks model big data in a more realistic way:
▶ Nested-case control improves computational efficiency
▶ Logistic formulation allows use of non-linear modelling via GAMs.

Species invasions as temporal two-mode dynamic process.
▶ Surprising similarities in dynamics for various life forms.
▶ Trade, geographic and climatic distance are important drivers.
▶ Significant variation in invasiveness of species and regions.
▶ Species networks hint at joint invasion dynamics.
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