Some inference tricks in event history analysis

Ernst C. Wit

Università della Svizzera italiana, Lugano, Switzerland

Joint work with Ruta Juozaitiene, Martina Boschi, Edoardo Filippi-Mazzola

1 February 2024

Christiaan Huygens early survival analysis

Howard Wainer STATISTICAL GRAPHICS: Mapping the Pathways of Science.

Annual Review of Psychology. Vol. 52: 305-335.

Event history analysis 101

Counting Process Formulation of Event History Process

Event history process models occurrence of events over time.

- Event Time *t*: observation time.
- Event Indicator $\delta_i(t)$: indicator whether event *i* occurred at time *t*.

Mathematical Formulation:

Given observations from countable marked point process $\{T_j\}_{j=1}^n$,

$$N_i(t) = \sum_{j=1}^n \delta_i(t_j)$$

 $N_i(t)$ = cumulative count of events of type *i* up to time *t*.

Doob-Meyer Decomposition

Doob-Meyer decomposes a general stochastic process into

- a predictable process (the "model").
- and a martingale ("noise")

Doob-Meyer Decomposition of counting process N_i :

$$N_i(t) = M_i(t) + \Lambda_i(t)$$

- $M_i(t)$: Martingale component representing the unpredictable part.
- $\Lambda_i(t)$: Predictable component capturing the systematic part.

Common assumption:

Events cannot happen simultaneously a.s., and therefore

$$\Lambda_i(t) = \int_0^t \lambda_i(s) \, ds$$

cumulative hazard written as a integral of some hazard function.

Svizzera

Cox Proportional Hazards Model

- Introduced by David R. Cox in 1972.
- Allows for analysis of effect of covariates on hazard function.

Mathematical Formulation:

$$\lambda(t|x) = Y_i(t)\lambda_0(t)e^{\beta_1x_1+\beta_2x_2+\ldots+\beta_kx_k}$$

where:

- $\lambda(t|x)$: Hazard function at time t given covariates x.
- $Y_i(t)$: Indicator whether event type *i* is at risk at time *t*.
- $\lambda_0(t)$: Baseline hazard function.
- $\beta_1, \beta_2, \ldots, \beta_k$: Regression coefficients.
- x_1, x_2, \ldots, x_k : Covariates.

Full likelihood of observed event types $\{i_j\}_{j=1}^n$ at times $\{t_j\}_{j=1}^n$,

$$L = \prod_{j=1}^{n} p(i_j, t_j \mid i_{< j}, t_{< j})$$

Full likelihood of observed event types $\{i_j\}_{j=1}^n$ at times $\{t_j\}_{j=1}^n$,

$$L = \prod_{j=1}^{n} p(i_j, t_j \mid i_{< j}, t_{< j})$$

=
$$\prod_{j=1}^{n} p(t_j \mid i_{< j}, t_{< j}) \times P(i_j \mid i_{< j}, t_{\le j})$$

Full likelihood of observed event types $\{i_j\}_{j=1}^n$ at times $\{t_j\}_{j=1}^n$,

$$L = \prod_{j=1}^{n} p(i_{j}, t_{j} \mid i_{< j}, t_{< j})$$

=
$$\prod_{j=1}^{n} p(t_{j} \mid i_{< j}, t_{< j}) \times P(i_{j} \mid i_{< j}, t_{\le j})$$

=
$$\prod_{j=1}^{n} P(t_{j} \mid i_{< j}, t_{< j}) \times \frac{\lambda_{i_{j}}(t_{j})}{\sum_{i \in \mathcal{R}(t_{j})} \lambda_{i}(t_{j})}$$

Full likelihood of observed event types $\{i_j\}_{j=1}^n$ at times $\{t_j\}_{j=1}^n$,

$$\begin{split} L &= \prod_{j=1}^{n} p(i_{j}, t_{j} \mid i_{< j}, t_{< j}) \\ &= \prod_{j=1}^{n} p(t_{j} \mid i_{< j}, t_{< j}) \times P(i_{j} \mid i_{< j}, t_{\le j}) \\ &= \prod_{j=1}^{n} P(t_{j} \mid i_{< j}, t_{< j}) \times \frac{\lambda_{i_{j}}(t_{j})}{\sum_{i \in \mathcal{R}(t_{j})} \lambda_{i}(t_{j})} \end{split}$$

The Partial Likelihood for Cox PH is defined as:

$$L_P(\beta) = \prod_{j=1}^n \frac{\exp(\beta^T x_{i_j})}{\sum_{i \in \mathcal{R}(t_j)} \exp(\beta^T x_i)}$$

where $\mathcal{R}(t_j) = \sum_{i=1}^{p} Y_i(t_j)$ is risk set at time t_j .

Challenges and Tricks

Challenges in Inference of Event History Models

Get rights and content 7

- Growing Risk Set: for big studies with many event types.
- Time-varying covariates: requires artificial censoring in software.

Child Abuse & Neglect Volume 28, Essue 9, September 2004, Pages 947-966

An event history analysis of recurrent child maltreatment reports in Florida

Abstract

Objective:

The purpose of this study was to (a) describe the timing of maltreatment recurrence and (b) measure associations between child demographics and characteristics of initial reports with recurrent maltreatment.

Method:

Using administrative data from the Florida Department of Children and Families, case histories of 189,375 children with an initial maltreatment report in 1998 or 1999 were

- Non-linear effects: either $x_i\beta(t)$ or $f(x_i)$
- Global covariates: either $x\beta$ or λ_0

TRICK 1: nested-case control sampling

When $\mathcal{R}(t)$ gets too big, then Borgan (1995) suggests alternative:

$$L_{NCC}(\beta) = \prod_{j=1}^{n} \frac{\exp(\beta^{T} x_{i_j})}{\sum_{i \in \mathcal{S}(t_j)} \exp(\beta^{T} x_i)}$$

where $S(t_j)$ is a randomly sampled subset of $\mathcal{R}(t_j)$ including event i_j .

TRICK 1: nested-case control sampling

When $\mathcal{R}(t)$ gets too big, then Borgan (1995) suggests alternative:

$$L_{NCC}(\beta) = \prod_{j=1}^{n} \frac{\exp(\beta^{T} x_{i_j})}{\sum_{i \in \mathcal{S}(t_j)} \exp(\beta^{T} x_i)}$$

where $S(t_j)$ is a randomly sampled subset of $\mathcal{R}(t_j)$ including event i_j .

If we sample only 1 non-event i_j^* for each event i_j , then

$$L_{NCC}(\beta) = \prod_{j=1}^{n} \frac{\exp(\beta^{T} x_{i_j})}{\exp(\beta^{T} x_{i_j}) + \exp(\beta^{T} x_{i_j^*})}$$

TRICK 1: nested-case control sampling

When $\mathcal{R}(t)$ gets too big, then Borgan (1995) suggests alternative:

$$L_{NCC}(\beta) = \prod_{j=1}^{n} \frac{\exp(\beta^{T} x_{i_j})}{\sum_{i \in \mathcal{S}(t_j)} \exp(\beta^{T} x_i)}$$

where $S(t_j)$ is a randomly sampled subset of $\mathcal{R}(t_j)$ including event i_j .

If we sample **only 1 non-event** i_i^* for each event i_j , then

$$L_{NCC}(\beta) = \prod_{j=1}^{n} \frac{\exp(\beta^{T} x_{i_{j}})}{\exp(\beta^{T} x_{i_{j}}) + \exp(\beta^{T} x_{i_{j}^{*}})}$$
$$= \prod_{j=1}^{n} \frac{\exp(\beta^{T} (x_{i_{j}} - x_{i_{j}^{*}}))}{1 + \exp(\beta^{T} (x_{i_{j}} - x_{i_{j}^{*}}))}$$

Logistic regression

This is logistic regression with only successes and covariates $\Delta x_i = x_i - x_{i^*}$.

Consider we want to model hazard as

$$\lambda_i(t) = \lambda_0(t)e^{x_{i1}(t)\beta(t)+f(x_{i2}(t))+z_i(t)\gamma}$$

with

- time-varying covariates $x_{i1}(t), x_{i2}(t), z_i(t)$.
- time-varying effect $\beta(t)$
- non-linear effect f
- random effect $\gamma \sim N(0, \sigma^2)$ (frailty)

with observed data $\{(i_j, t_j)\}$ with $j = 1, \ldots, n$.

TRICK 2: practical approach

For each event *i_j*, sample one non-event *i^{*}_j* from *R(t_j)*.
 Create new covariates:

•
$$\Delta z_j = z_{i_j} - z_{i_j^*}$$

• $\Delta x_{1j} = x_{i_j1} - x_{i_j^*1}$
• matrices $\Delta x_2 = \begin{bmatrix} x_{i_12} & x_{i_1^*2} \\ \vdots & \vdots \\ x_{i_n2} & x_{i_n^*2} \end{bmatrix}$ and $C = \begin{bmatrix} 1 & -1 \\ \vdots & \vdots \\ 1 & -1 \end{bmatrix}$
time variable $t = (t_1, \dots, t_n)$
pseudo response $y = c(1, \dots, 1)$

In R using mgcv package, we can now fit the event history model:

Application: Alien Species Invasions

Motivation: species invasions

Alien species are increasingly recognized as threat to native ecology.

Question

What are the main drivers of the invasive process of species?

Data: Alien Species First Records

Primary data source: Alien Species First Records (Seebens et al., 2018)

н	1	J	к	L	М	N	0	P
OrigName	LifeForm	Region	PresentStatus	FirstRecor	FirstRecord	DataQualit	Source	
Acanthophora muscoides Linnaeus, 175	Algae	Turkey		1986	1986		Cinar et al.	(2005)
Acanthophora nayadiformis	Algae	Cyprus	alien	1997	1997	NEW_Befo	DAISIE	
Acanthophora nayadiformis (Delile) Pap	Algae	Turkey		1970	1970		Cinar et al.	(2005)
Acanthophora spicifera	Algae	Hawaiian	Islands	1952	1952		Carlton & E	Idrege (2009
Acetabularia calyculus	Algae	Israel	established	1943	1943	NEW_Befo	DAISIE	
Acetabularia calyculus	Algae	Spain	established	1957	1957	NEW_Befo	DAISIE	
Achnanthes pseudogroenlandica	Algae	Bulgaria		1984	1984		aquaNIS	
Achnanthes pseudogroenlandica	Algae	Romania		1984	1984		aquaNIS	
Achnanthes pseudogroenlandica	Algae	Ukraine		1984	1984	NEW_Befo	DAISIE	
Acrochaetium catenulatum	Algae	Netherlar	lds	1967	1967		aquaNIS	
Acrochaetium kylinii	Algae	Turkey		2007	2000 - 2009	NEW_rand	aquaNIS	
Acrochaetium leptonema	Algae	Bulgaria		2006	2000 - 2009	NEW_rand	aquaNIS	
Acrochaetium leptonema	Algae	Turkey		2007	2000 - 2009	NEW_rand	aquaNIS	

Effectively giving information for

- for each **species** (inside 1 of 16 life forms)
- If for each "region" (of 275 regions)
- **§** First moment that species is recorded there.

Dynamic two-mode species-region network

t = 1880 t = 1892

t = 1895

In a dynamic two-mode species-region network:

- species and regions are node-sets;
- Edges in network are time-stamped invasions;
- At time 0 (t = 1880) native species are indicated by edge;
- U s

della Svizzera italiana

• Invasions may show spatial trend or co-occuring patterns.

Formally, **data** for all species $s \in S$ and regions $r \in C$:

 T_{sr} = year in which species s appeared in region r.

- native species: $T_{sr} < 1880$
- invasions: $T_{sr} \in [1880, 2005]$
- non-invasions: T > 2005

Define a Cox proportional hazards model:

 $\lambda_{sr}(t) = hazard of species s invading region r in year t.$

by means of

$$\lambda_{sr}(t) = \lambda_0(t) e^{x_{sr}'(t)\beta(t) + z_{sr}'(t)\gamma}$$

where $\lambda_0(t)$ baseline hazard, $x_{sr}(t)$ fixed effect, $z_{sr}(t)$ random effect.

- Let $S_L = \{$ rattus, cuniculus $\}$ be all species for life form L = mammals.
- Let $C = \{\text{Germany, France}\}\ \text{be all regions.}$
- Let rattus be native to Germany.

We consider a "race" between T_{rF} , T_{cG} and T_{cF} (T_{rG} already arrived!):

- Let $S_L = \{$ rattus, cuniculus $\}$ be all species for life form L = mammals.
- Let $C = \{\text{Germany, France}\}\ \text{be all regions.}$
- Let rattus be native to Germany.

We consider a "race" between T_{rF} , T_{cG} and T_{cF} (T_{rG} already arrived!):

- Let $S_L = \{$ rattus, cuniculus $\}$ be all species for life form L = mammals.
- Let $C = \{\text{Germany, France}\}\ \text{be all regions.}$
- Let rattus be native to Germany.

We consider a "race" between T_{rF} , T_{cG} and T_{cF} (T_{rG} already arrived!):

Svizzera

- Let $S_L = \{$ rattus, cuniculus $\}$ be all species for life form L = mammals.
- Let $C = \{\text{Germany, France}\}\ \text{be all regions.}$
- Let rattus be native to Germany.

We consider a "race" between T_{rF} , T_{cG} and T_{cF} (T_{rG} already arrived!):

Possible drivers of species invasions: fixed effects

Most drivers change in time:

- $l_r(t)$: landuse in region r at time t.
- $d_{sr}(t)$: distance to region nearest to r invaded by s by time t.
- $tr_{sr}(t)$: annual trade between r and regions invaded by s by time t.
- $dt_{sr}(t)$: diff in temperature between r and regions invaded by s by time t.
- $k_{sr}(t)$: presence of s at time t in colonial power to which r belongs.

 $d_{rF}(1880) = 780$ km

Possible drivers of species invasions: fixed effects

Most drivers change in time:

- $l_r(t)$: landuse in region r at time t.
- $d_{sr}(t)$: distance to region nearest to r invaded by s by time t.
- $tr_{sr}(t)$: annual trade between r and regions invaded by s by time t.
- $dt_{sr}(t)$: diff in temperature between r and regions invaded by s by time t.
- $k_{sr}(t)$: presence of s at time t in colonial power to which r belongs.

 $d_{rF}(1880) = 780 \text{km}$

 $d_{rF}(1883) = 780$ km

Possible drivers of species invasions: fixed effects

Most drivers change in time:

- $l_r(t)$: landuse in region r at time t.
- $d_{sr}(t)$: distance to region nearest to r invaded by s by time t.
- $tr_{sr}(t)$: annual trade between r and regions invaded by s by time t.
- $dt_{sr}(t)$: diff in temperature between r and regions invaded by s by time t.
- $k_{sr}(t)$: presence of s at time t in colonial power to which r belongs.

Possible drivers of species invasions: random effects (I)

Random effects are used for large number of "nuisance" factors:

• Invasiveness. Different species may vary in their invasive behaviour, *beyond* fixed effects. We model **species invasiveness** by:

$$\gamma_s \sim N(0, \sigma_{inv}^2).$$

• **Popularity.** Certain regions may be more "popular" destinations than others, *beyond* fixed effects. We model **region popularity** by:

$$\gamma_{c} \sim N(0, \sigma_{\mathsf{pop}}^{2}).$$

Possible drivers of species invasions: random effects (II)

Species interaction network

Could it be that certain species co-invade a region? Or, reversely, avoid each other in their invasions?

We define:

$$i_c(t) =$$
last species to invade r before t .

and

$$\gamma_{ss'} = {\rm affinity} \mbox{ of species } s$$
 for species s'

Estimation

There are a number of estimation paradigms:

- MLE: Computationally intractable even for small networks.
- Partial likelihood: Denominator of PL is sum of $|\mathcal{S}| \times |\mathcal{C}|$ terms.

Case-control Partial Likelihood:

Randomly sample 1 non-event (t_i, s_i^*, r_i^*) for each event (t_i, s_i, r_i) .

$$(\hat{\beta}, \widehat{\Sigma}_{\gamma}) = \operatorname{argmin} \prod_{i=1}^{n} \frac{e^{x_{s_{i}r_{i}}\beta + z_{s_{i}r_{i}}\gamma}}{e^{x_{s_{i}r_{i}}\beta + z_{s_{i}r_{i}}\gamma} + e^{x_{s_{i}^{*}r_{i}^{*}}\beta + z_{s_{i}^{*}r_{i}^{*}}\gamma}}$$

This is equivalent with logistics regression

- for which responses are ones, $y=(1,1,\ldots,1)$
- for which covariates are differences, $x_{s_ir_i} x_{s_i^*r_i^*}$ and $z_{s_ir_i} z_{s_i^*r_i^*}$.

Model Selection: Corrected AIC for the evaluated Model Formulations

	Birds	Plants	Insects	Mammals
Colonial ties	0.16	-0.09	0.31	0.13
Difference in temperature	-0.08	-0.04	-0.11	-0.07

Climatic effect

All life forms diffuse to "similar climatic" regions:

- Strongest for *insects*
- Weakest for plants

Colonial history

Insects: **less** diffusion among countries related by colonial history. *Birds, insects and mammals*: there is **more**.

Results: distance reduces invasions

Results: trade is becoming less important

Results: Random effects for species and countries

Results: Random interaction effects between species

Results: Species have a tendency to coinvade

29 / 30

- Event history analyis is an important tool in Biostatistics
- Computational tricks model big data in a more realistic way:
 - Nested-case control improves computational efficiency
 - Logistic formulation allows use of non-linear modelling via GAMs.
- Species invasions as temporal two-mode dynamic process.
 - Surprising similarities in dynamics for various life forms.
 - ► Trade, geographic and climatic distance are important drivers.
 - Significant variation in invasiveness of species and regions.
 - Species networks hint at joint invasion dynamics.

