

COMBINING RANDOMIZED CONTROLLED TRIALS AND REAL WORLD DATA

Hans van Houwelingen award ceremony and symposium Utrecht, 15 June 2023

Tim Friede Department of Medical Statistics University Medical Center Göttingen, Germany

ACKNOWLEDGEMENTS

- The talk draws on joint work with a number of colleagues including
 - Christian Röver
 - Sarah Friedrich (Augsburg)
 - Tim Mathes

Grateful for funding by DFG (German Research Foundation; FR 3070/3-1)

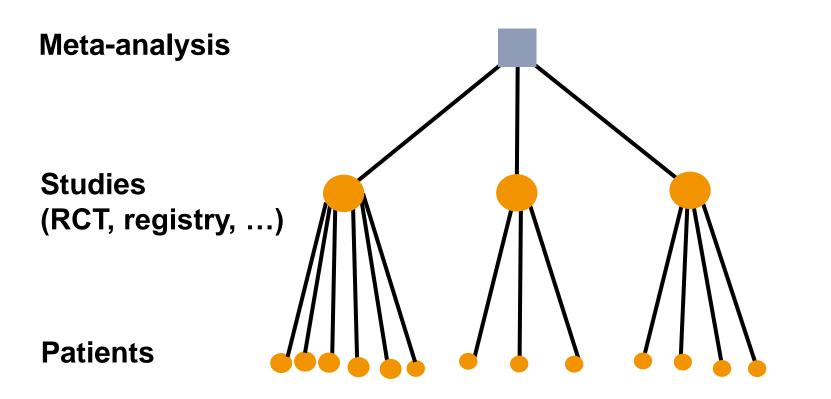
Lower

EVIDENCE SYNTHESIS

- Pairwise meta-analysis
 - comparing two treatments
- Meta-regression
 - including study-level covariates
- Network meta-analysis
 - comparing multiple treatments indirectly
- RCT with historical controls
 - integrating control group data from previous trials
- Generalized (or cross design) synthesis
 - combining data from different types of studies

Higher

HIERARCHICAL MODELS



Example: Normal-normal hierarchical model (NNHM) for random-effects meta-analysis

 $y_i | \theta_i \sim \text{Normal}(\theta_i, s_i^2) = \theta_i | \Theta, \tau \sim \text{Normal}(\Theta, \tau^2)$

BAYESIAN META-ANALYSIS

- Idea: Weakly informative prior on between-trial heterogeneity for meta-analysis with few studies (Spiegelhalter et al, 2004), with uninformative prior on treatment effect
 - Avoids zero estimates of between-trial heterogeneity
 - Accounts for uncertainty in the estimation of the heterogeneity

Easy to compute

- Application of DIRECT algorithm (Röver & Friede, 2017) (which is faster than MCMC sampling and does not require inspection of convergence diagnostics)
- R package bayesmeta by Christian Röver (available from CRAN)

"WHERE DOES THE PRIOR COME FROM?"

Theoretical arguments, simulations, data

Received: 16 July 2020 Revised: 13 January 2021 Accepted: 16 January 2021

DOI: 10.1002/jrsm.1475

RESEARCH ARTICLE

Research Synthesis Methods WILEY

On weakly informative prior distributions for the heterogeneity parameter in Bayesian random-effects metaanalysis

Christian Röver ¹ 💿 Ralf Bender ² 💿 Sofia Dias ³ 💿									
Christopher H. Schmid ⁴ Heinz Schmidli ⁵ Sibylle Sturtz ²									
Sebastian Weber ⁶ Tim Friede ¹ [©]									
Received: 25 February 2022 Revised: 16 November 2022 Accepted: 18 March 2023									
DOI: 10.1002/sim.9731									
	Continuing								

```
RESEARCH ARTICLE
```

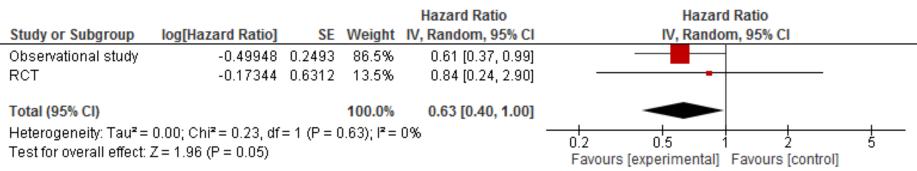
Statistics in Medicine WILEY

Summarizing empirical information on between-study heterogeneity for Bayesian random-effects meta-analysis

Christian Röver¹⁽⁰⁾ | Sibylle Sturtz² | Jona Lilienthal² | Ralf Bender² | Tim Friede¹⁽⁰⁾

EXAMPLE: DOXYCYCLINE IN EARLY UNIVERSITÄTSMEDIZIN EUMG GÖTTINGEN EUMG CREUTZFELDT-JAKOB DISEASE (CJD)

- Creutzfeldt-Jakob disease
 - prevalence of 1–9 cases per 1,000,000 people
 - qualifies as rare disease (EU: less than 5 in 10,000)
- Varges et al (2017) conducted:
 - double-blinded randomized phase II trial (n=12)
 - observational study (n=88) (Cox regression stratified by terciles of the propensity scores)
 - survival time as primary outcome



EXAMPLE IN CJD: BAYESIAN RANDOM-EFFECTS META-ANALYSIS

study	estimate	95% CI	
observational	-0.50	[-0.99, -0.01]	
randomized	-0.17	[-1.41, 1.06]	
mean	-0.43	[-1.23, 0.42]	
prediction	-0.43	[-1.64, 0.85]	
			-1.5 -1 -0.5 0 0.5 1 log-HR

Computed with **bayesmeta**; HN(0.5) prior for τ

QUANTITIES OF INTEREST

Different quantities of interest in hierarchical models

- average effect (Θ) across studies
 - standard (pairwise) meta-analysis
- ▷ effect (θ_{k+1}) of a future study
 - prediction / extrapolation: e.g. adult to children; bridging
- effect (θ_i) of an individual study in the light of the other studies (shrinkage estimator)
 - e.g. small RCT with borrowing from registry; borrowing between subgroups in a basket trial

EXAMPLE IN CJD: SHRINKAGE ESTIMATOR

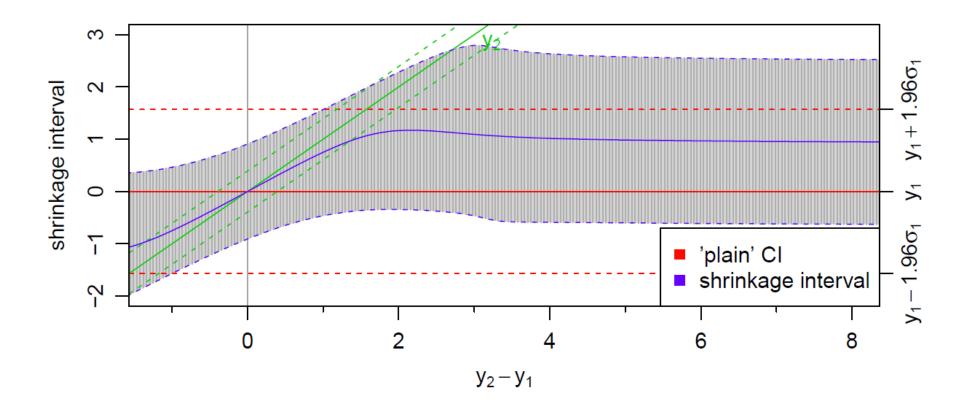
quoted estimate + shrinkage estimate											
study	patients	estimate	95% CI								
observational	88	-0.50	[-0.99, -0.01]								
randomized	12	-0.17	[–1.41, 1.06]								
mean		-0.43	[-1.23, 0.42]								
				–1.5 –1 –0.5 0 0.5 1 log–HR							

Figure 2. Forest plot for the CJD example (log-HR outcome). The shrinkage interval for the log-HR based on randomized evidence here is [-1.16, 0.48], spanning only two-thirds of the original confidence interval width.

- RCT shrinkage interval width: 66% of original CI width
- Translates into 129% gain in sample size (about 27 instead of 12 patients)

Röver & Friede (2020) SMMR 10

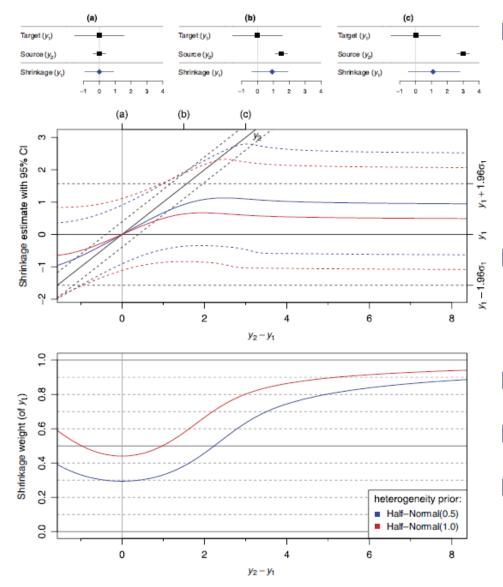
SHRINKAGE ESTIMATION WITH K=2 STUDIES



• $n_1 = 25$, $n_2 = 400$, $p(\tau) = HN(0.5)$, interested in θ_1

Röver & Friede (2020) SMMR 11

BOUNDS FOR THE WEIGHTS



► Lower bound on the target's weight for any data realization (y_1, y_2) or any heterogeneity prior given by common-effect (CE) weight $\sigma_2^{-2}/(\sigma_1^{-2} + \sigma_2^{-2})$

UNIVERSITÄTSMEDIZIN GÖTTINGEN

- ▶ In this example, $\sigma_1 = 0.8$ and $\sigma_2 = 0.2$ resulting in CE weight 1/17 (5.9%)
- ▷ Minimum where $y_1 = y_2$
- ▶ Min. weight 29% for HN(0.5)
- Larger weight for larger scale of heterogeneity prior

Röver & Friede (2021) Biom J 12

BOUNDS FOR THE WEIGHTS: CJD EXAMPLE

• Lower bound on the RCT's weight for any data realization (y_1, y_2) or any heterogeneity prior: $\sigma_2^{-2}/(\sigma_1^{-2} + \sigma_2^{-2})=13.5\%$

TABLE 2Data from Varges et al. (2017) on an observational and a randomized study investigating the effect of doxycycline on survival in
CJD

		Patients		log(HR)		
i	Study	Treatment	Control	y_i	σ_i	
1	Observational	55	33	-0.499	0.249	
2	Randomized	7	5	-0.173	0.631	

TABLE 3 Estimates for the CJD example

	Mean weight		Effect estimate θ_2			
τ prior	Minimum	Actual	Mean	95% CI		
HN(0.5)	38.9%	39.5%	-0.370	[-1.157, 0.477]		
HN(1.0)	52.1%	53.1%	-0.326	[-1.232, 0.664]		
		(100.0%	-0.173	[-1.410, 1.064])		

For different heterogeneity priors (HN(0.5) or HN(1.0)), the corresponding minimum (coincidence) weight is given, as well as the resulting weight for the actual data along with the corresponding shrinkage estimates. The very last line shows the estimate based only on y_2 and σ_2 for comparison.

Röver & Friede (2021) Biom J

BAYESIAN BORROWING AND TYPE I ERROR RATE CONTROL

- Type I error rate control (a frequentist property) cannot be guaranteed with Bayesian borrowing (Kopp-Schneider et al, 2019)
- Computer simulations used to explore impact of Bayesian borrowing on (frequentist) type I error rate

τ prior:		HN (0.5)						HN (1.0)							
n ₁ /n ₂	τ:	0.0	0. I	0.2	0.5	1.0	2.0	*	0.0	0.1	0.2	0.5	1.0	2.0	*
25/400		99.7	99.6	98.9	93.4	84.0	79.0	94.7	99.3	99.3	99.0	96.7	92.5	90.5	95.I
25/100		98.7	98.7	98. I	93.9	86. I	80.0	95. I	98.4	98.6	98.5	96.5	93.2	90.8	94.4
100/400		98.7	98.2	97. I	93.2	90.9	90.4	94.9	98.I	97.7	97.2	94.8	93.7	93.5	95.3
25/25		96.6	96.7	96. I	94.5	90.5	84.6	95.0	97.0	97.2	96.6	95.7	94.0	92.1	94.9
100/100		96.7	96.5	96.3	94.0	91.1	90.7	95.7	96.7	96.4	96.6	95.3	93.7	93.6	94.9
400/400		96.7	96.6	95.0	94.0	94.0	93.9	95.0	96.4	96.4	95.0	94.9	94.9	94.8	95.0
100/25		96.0	95.6	95.3	94.8	93.8	92.3	94.7	96.0	95.8	95.6	95.2	94.7	94.3	94.8
400/100		95.5	95.6	95.4	94.7	93.7	93.8	95. I	95.6	95.5	95.5	94.9	94.3	94.5	95.I
400/25		95.I	95.I	95.2	94.7	94.9	94.5	95.3	95.0	95.2	95.2	94.8	95.0	95.0	95.2

Table 1. Coverage (%) of shrinkage intervals for estimation of the first study's mean parameter (θ_1).

Note: Sample sizes $(n_1 \text{ and } n_2)$ as well as settings for the heterogeneity prior $(p(\tau))$ and actual heterogeneity values (τ) are varied. The columns labelled by an asterisk (*) correspond to drawing the heterogeneity from its corresponding prior distribution.

Röver & Friede (2020) SMMR

EXAMPLE: EARLY PRO-TECT

www.kidney-international.org

A multicenter, randomized, placebo-controlled, double-blind phase 3 trial with open-arm comparison indicates safety and efficacy of nephroprotective therapy with ramipril in children with Alport's syndrome

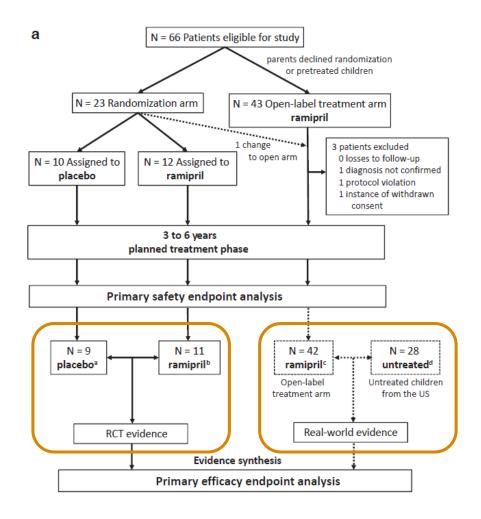
Oliver Gross¹, Burkhard Tönshoff², Lutz T. Weber³, Lars Pape⁴, Kay Latta⁵, Henry Fehrenbach⁶, Baerbel Lange-Sperandio⁷, Hildegard Zappel⁸, Peter Hoyer⁹, Hagen Staude¹⁰, Sabine König¹¹, Ulrike John¹², Jutta Gellermann¹³, Bernd Hoppe¹⁴, Matthias Galiano¹⁵, Britta Hoecker², Rasmus Ehren³, Christian Lerch⁴, Clifford E. Kashtan¹⁶, Markus Harden¹⁷, Jan Boeckhaus¹ and Tim Friede¹⁷; for the German Pediatric Nephrology (GPN) Study Group and EARLY PRO-TECT Alport Investigators^{18,19}

Check for updates

clinical trial

see commentary on page 1104 **OPEN**

EXAMPLE: EARLY PRO-TECT TRIAL



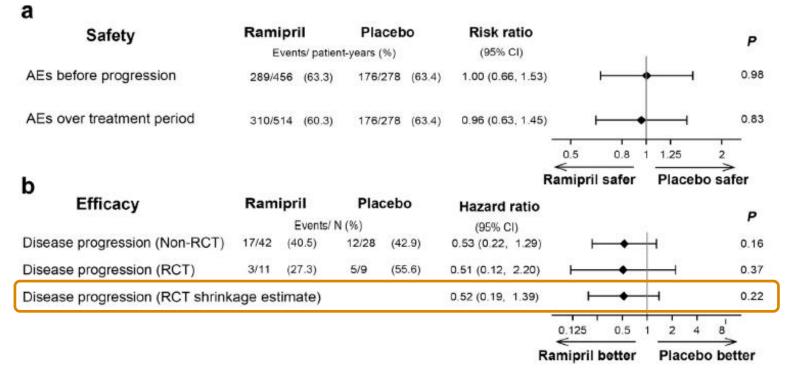
Randomised controlled trial in children with Alport's syndrome (rare genetic disorder leading to end-stage kidney disease)

Observational data

- Open-label treatment arm
- Natural disease cohort (registry)

EXAMPLE: EARLY PRO-TECT TRIAL

Figure 2 in Gross et al (2020) Kidney International



Increased precision in estimating the treatment effect: Interval shortened by 42%; equivalent to raising the sample size of the RCT from 20 to 43; i.e. 70 patients in RWE count as 23 RCT patients

UNIVERSITÄTSMEDIZIN GÖTTINGEN

COMPREHENSIVE COHORT STUDIES

Schmoor et al (1996) Stat Med

STATISTICS IN MEDICINE, VOL. 15, 263-271 (1996)

RANDOMIZED AND NON-RANDOMIZED PATIENTS IN CLINICAL TRIALS: EXPERIENCES WITH COMPREHENSIVE COHORT STUDIES

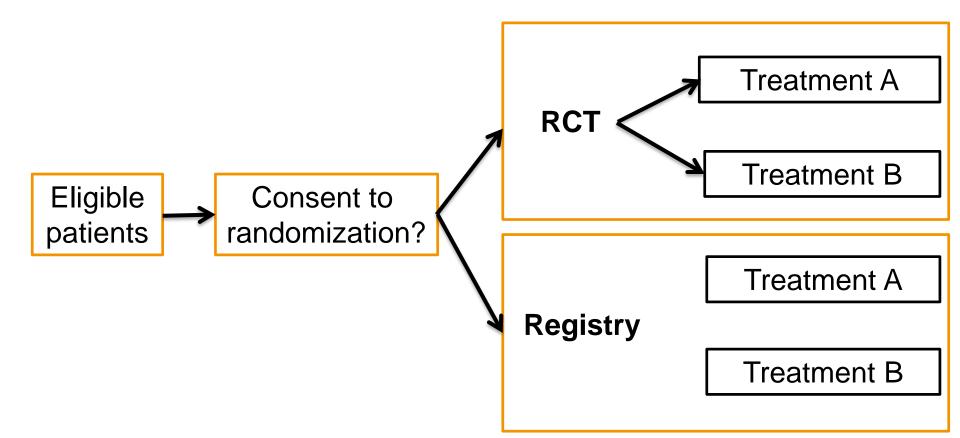
CLAUDIA SCHMOOR, MANFRED OLSCHEWSKI AND MARTIN SCHUMACHER

Institute of Medical Biometry and Informatics, University of Freiburg, Stefan-Meier-Str. 26, D-79104 Freiburg, Germany

SUMMARY

In clinical research, randomized trials are widely accepted as the definitive method of evaluating the efficacy of therapies. Random assignment of patients to treatment ensures internal validity of the comparison of new treatments with controls. An assessment of external validity can best be achieved by comparing the randomized study sample to the population of patients who met the eligibility criteria but did not consent to randomization. The Comprehensive Cohort Study (CCS) is designed to recruit all patients fulfilling the clinical eligibility criteria regardless of their consent to randomization. The CCS concept was adopted in the major clinical trials of the German Breast Cancer Study Group (GBSG) conducted between 1983 and 1989. In this period 124 centres recruited 2084 patients in three clinical trials. 734 (35 per cent) of these patients accepted being randomized, while 1350 (65 per cent) chose one of the treatments under study; the randomization rates differed remarkably between trials. In this paper we examine the representativeness of the randomized patients in the three trials. Based on a median follow-up of about 5 years we present results on the external validity of the treatment effects estimated in the randomized patients by means of Cox's proportional hazards model and compare them between trials. We discuss advantages and disadvantages of the CCS design and conclude that its use is only justified under extraordinary circumstances.

COMPREHENSIVE COHORT DESIGN



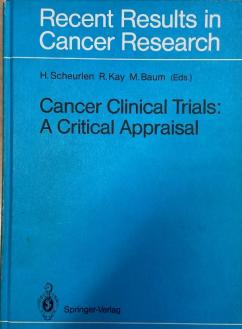
Adapted from Figure 1 in Schmoor et al (1996)

ORIGINS OF THE CCS DESIGN

Some references from Schmoor et al (1996)

REFERENCES

- 1. Olschewski, M. and Scheurlen, H. 'Comprehensive Cohort Study: An alternative to randomized consent design in a breast preservation trial', Methods of Information in Medicine, 24, 131-134 (1985).
- 2. Principal Investigators of CASS and their Associates 'National Heart, Lung, and Blood Institute Coronary Artery Surgery Study', Circulation, 63 I, 1-82 (1981).
- 3. Olschewski, M., Schumacher, M. and Davis, K. B. 'Analysis of randomized and non-randomized patients in clinical trials using the comprehensive cohort follow-up study design', *Controlled Clinical Trials*, 13, 226-239 (1992).



UNIVERSITÄTSMEDIZIN GÖTTINGEN

INTERNAL AND EXTERNAL VALIDITY

Randomized controlled trial

Internal validity through randomisation

- Assessment of external validity in comprehensive cohort studies (Schmoor et al, 1996)
 - Comparisons of RCT and registry with regard to
 - baseline characteristics
 - ▶ follow-up / outcome
 - treatment effects

EXTENSION OF CCS APPROACH

Randomized controlled trial

Internal validity through randomisation

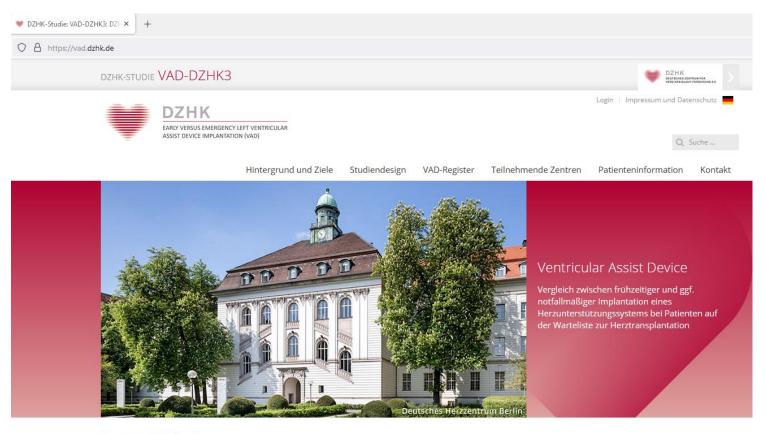
Assessment of external validity in comprehensive cohort studies

Comparisons of RCT and registry with regard to baseline characteristics and follow-up (Schmoor et al, 1996)

Data integration

Meta-analytic framework to integrate data from RCT and registry (using appropriate causal inference approach) accounting for heterogeneity (Röver and Friede, 2020)

EXAMPLE: VAD-DZHK3



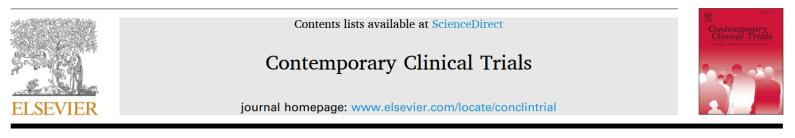
Kurzinfo VAD-Studie

Für Patienten mit Herzschwäche im Endstadium (terminale Herzinsuffizienz), die auf eine Transplantation warten, ist der Einsatz eines mechanischen Herzunterstützungssystems (Ventricular Assist Device, VAD) häufig die einzige Möglichkeit, die Wartezeit auf ein Spenderorgan zu überbrücken. Bisher gibt es jedoch keinen allgemein anerkannten Standard für den optimalen Zeitpunkt des Einsetzens (Implantation) eines VAD. In der VAD-Studie wird jetzt eine frühzeitige mit einer gegebenenfalls notfallmäßigen VAD-Implantation bei Patienten auf der Warteliste zur Herztransplantation verglichen. Dadurch sollen leitlinienrelevante Erkenntnisse für die zukünftige Behandlung dieser Patienten gewonnen werden und damit das Überleben und die Lebensqualität der Betroffenen verbessert werden.

CAUSAL INFERENCE IN SMALL OBSERVATIONAL STUDIES

- Data requirements: characterization of patients, granularity of follow-up
- Do causal inference methods (e.g. propensity score based approach, g-computation) work with small sample sizes?

Contemporary Clinical Trials 99 (2020) 106213



Causal inference methods for small non-randomized studies: Methods and an application in COVID-19

Sarah Friedrich * , Tim Friede

Department of Medical Statistics, University Medical Center Göttingen, Humboldtallee 32, 37073 Göttingen, Germany

CONTRACTIONS FOR THE ANALYSIS OF SMALL NON-RANDOMIZED STUDIES

Based on (limited) simulations with binary outcome, binary treatment and covariates (Friedrich & Friede, 2020)

- 1. Unmeasured confounder rendered the methods useless. Therefore, careful clinical characterization of patients important
- 2. Effect measure: risk difference preferred over odds ratio
- 3. For small sample sizes, the best performance observed for covariate adjustment, PS covariate and doubly robust g-computation (based on quintiles)
- 4. IPTW performed well regarding bias and RMSE, but coverage of confidence intervals very low (and therefore not recommended)
- 5. Conduct simulations to explore properties of the methods in scenarios similar to the one at hand (R code available)

CONCLUSIONS AND DISCUSSION

- Hierarchical models
 - flexible statistical framework for evidence synthesis
- Bayesian inference: advantages over traditional methods in the presence of heterogeneity and only (very) few studies
 - easy to apply using R package bayesmeta
- Cross-design synthesis of available evidence
 - Promising in rare diseases
 - more practical (and regulatory) experience needed
- Bounds for weights: concerns of evidence being easily overwhelmed by external data are largely unwarranted
- Alternative approaches including power prior model

ANY QUESTIONS?

E-Mail: <u>tim.friede@med.uni-goettingen.de</u> Homepage: <u>https://medstat.umg.eu/</u> Twitter: @tim_friede

SOME REFERENCES

- Röver C, Friede T (2020) Dynamically borrowing strength from another study through shrinkage estimation. Statistical Methods in Medical Research 29: 293–308.
- Röver C, Friede T (2021) Bounds for the weight of external data in shrinkage estimation. Biometrical Journal 63: 1131–1143.
- Varges D, …, Friede T, Zerr I (2017) Doxycycline in early CJD double-blinded randomized phase II and observational study. Journal of Neurology, Neurosurgery & Psychiatry 88: 119–125.
- Gross O, Tönshoff B, Weber LT, …, Friede T for the GPN Study Group and EARLY PROTECT Alport investigators (2020) A multicenter, randomized, placebo-controlled, double-blind phase 3 trial with open arm comparison indicates safety and efficacy of nephroprotective therapy with Ramipril in children with Alport's syndrome. Kidney International 97: 1275–1286.