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Machine learning with small data

® What do we mean by “small data”?

® Implications for machine learning?

® Aspects when building (multi-omic) machine learning
predictors of drug response (e.g. Sammut et al. Nature 2022):

Biological knowledge +
Feature selection +

Prioritisation of accessible data types +

R S .

Machine learning algorithms

— Develop ML methods that allow us to consider aspects 1 to 3.



What are small data in ML and what can we do?
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1. Increase sample size :-)

2. Borrow information across observations (incl. between data
sets)

3. Restrict the model space
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Pharmacogenomic screens for personalised medicine

Single drug or combination

Personalized
therapy

Omics
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Predict sensitivity to multiple drugs Y from multi-omics X

'Y = XB + ¢
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Challenges and opportunities (1)

® Small sample size
® Heterogeneous populations (tumours in different tissues)
e Several types of input data X:
E.g., gene expression, copy number, mutation
[ ]

Multivariate response Y

o MUT
— g
g o 1 NV
< = GEX [ — X
cell line 1 S
ce n X ps
X2
Y X1 n X po
nxm nxp1 L .
g z
cell line n L [ £ e %
N s
T s E
& g H



Introduction Structured penalties
o

O0000e

BayesSUR
000000

Phar
[e]e]e]

Challenges and opportunities (2)

The data are highly structured:

1. In Y: relationships between drugs, e.g. due to similar
chemical drug composition, same target genes/pathways

2. In X: relationships between molecular data sources

macogenomic screens
000000000
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Drug screens for precision cancer medicine:
Predict sensitivity to multiple drugs Y from multi-omics X

High-dimensional multi-response regression with variable selection with
* Correlated responses (drugs with same target or similar mechanism of action)
* Non-i.i.d. observations (cell lines representing different cancer types)
* Several related input data sets (multi-omics)

1. Penalised regressions — with structured (tailored) penalty terms

2. Bayesian variable selection models — with structured selection priors
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Structured penalized regression for drug sensitivity prediction

Original Article & OpenAccess €@ (® &
Structured penalized regression for drug sensitivity prediction

Zhi Zhao B Manuela Zucknick

e Different penalties for different data sources
® Group lasso for the coefficients corresponding to correlated
responses (tree structure or any overlapping groups)

® https://github.com/zhizuio/IPFStructPenalty and
https://github.com/zhizuio/mixlasso


https://github.com/zhizuio/IPFStructPenalty
https://github.com/zhizuio/mixlasso

Multi-response penalised linear regression

Objective function:

. 1 T 2
mig{ 5oV = 1,58 ~ XBIE + pen(®) |

Standard penalised regression assigns the same penalty to all data
sources, and treats columns of Y as independent:

e Lasso: pen(B) = \|B|,

o Elastic-net: pen(B) = \(a[|B||s, + 3(1 - a)|[BJI7,)



Integrative LASSO with Penalty Factors (Boulesteix et al. 2017)

o Allow different penalties for different data sources

o Extensions of IPF-lasso to multi-response regression and to
the elastic net

IPF-lasso: pen(B)

Z/\SHBSHh

1
IPF-SEN: pen(B) = As(al|Bslle, + 5(1— )|[Bs]Z)
S

1
IPF-EN: pen(B) = > As(as|Bs]e, + 51— as)|BsI7,)
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(Multi-response) Tree-guided group lasso (Kim & Xing 2012)

@ Include dependencies between columns of Y in a group lasso
o Extension to IPF-tree lasso

p
Tree lasso: pen(B) = /\Z Z wu||5jG”||Zz

J=1 vE€{ Vine, Vieat }

IPF-tree lasso: pen(B) = Z/\s Z Z wu”ﬁf””ez
s

Js v€{Vint,Vieat}
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Drug screens for precision cancer medicine:
Predict sensitivity to multiple drugs Y from multi-omics X

iScience @ CelPress

Tissue-specific identification of multi-omics
features for pan-cancer drug response prediction

Zhi Zhao,"? Shixiong Wang,' Manuela Zucknick,%* and Tero Aittokallio’-23.4.*

* Include random effects, e.g. for different cancer sub-types
» Improved optimization of penalty parameters

» Allows for missing values in the responses
* Drug Set Enrichment Analysis (R package “Enrichintersect”)



Drug screens for precision cancer medicine:
Predict sensitivity to multiple drugs Y from multi-omics X

An ADMM approach for multi-response regression with overlapping
groups and interaction effects

Theophilus Quachie Asenso®”, Manuela Zucknick®

* Oslo Center for Epidemiology and Biostatistics, Institute of Basic Medical Sciences,
University of Oslo

* Pliable lasso for interactions, e.g. with the tissue types (Tibshirani & Friedman 2020)
* Incorporate pliable lasso in tree-lasso type multi-response regression

* Penalty parameter optimisation with ADMM, alternating direction method of multipliers
(Boyd et al, 2011)



Yy = Boal + Z0oq + ZXjﬁjdl + Z(Xj 0 Z)0jq, (24)
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Objective function for a general multi-response pliable lasso:
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BayesSUR
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Zhao et al. (Journal of Statistical Software, 2021).

BayesSUR: An R Package for High-Dimensional Multivariate
Bayesian Variable and Covariance Selection in Linear
Regression

(BayesSUR = Bayesian Seemingly Unrelated Regression)

https://CRAN.R-project.org/package=BayesSUR.
R package version 2.1-3.

Joint work with Zhi Zhao, Marco Banterle, Alex Lewin, Leonardo Bottolo,

Sylvia Richardson.


https://CRAN.R-project.org/package=BayesSUR

BayesSUR
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Bayesian seemingly unrelated regression for variable and
covariance selection (Bottolo et al. 2021; Zhao et al. 2021)

¢ Matrix formulation of the model:

Y =XB+ U,
vec(U) ~ N (0, C®1,)

® Y n X m matrix of outcomes with m x m covariance matrix C,
® X n x p matrix of predictors for all outcomes,
® B p x m matrix of regression coefficients.

® |n addition: Variable selection indicator matrix T’

ik ~ Bernoulli ~;, ~ Hotspot v ~ MRF
C ~ indep HRR-B HRR-H HRR-M
C~1IW dSUR-B dSUR-H dSUR-M
C ~HIWg SSUR-B SSUR-H SSUR-M
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We can introduce structure/ sparsity in two places:

1. Prior for variable selection indicator ~.
Bijl kg, w ~ iGN (0, w) + (1 — 7%)d0(Bk;)

® Binary latent indicator matrix I = {~j} for variable selection
® Spike-and-slab prior on vectorised 3 = vec(B) and v = vec(I)
® and w ~ ZG(aw, by) and do(-) is the Dirac delta function.

2. Prior for covariance matrix: C ~ HZWg with further
hyper-prior on graph G (Bottolo et al. 2021)

® Graph G encodes conditional dependence between responses.
Sparse G implies sparse precision matrix C1.
® Sparse Seemingly Unrelated Regression (SSUR)
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Options for covariance matrix structure (Bottolo et al. 2021)

® Diagonal: Hierarchical Related Regression (Richardson et al.
2011)

C =

Independent inverse Gamma priors 02 ~ ZG(a,, by)

® Dense: dense Seemingly Unrelated Regressions (dSUR)
Inverse Wishart prior C ~ 2W(v, 71s)

® Sparse: Sparse Seemingly Unrelated Regressions (SSUR)
Hyper-inverse Wishart prior C ~ HIWg(v, 1)
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Options for variable selection (j =1,--- ,p;k=1,---,m)

® |ndependent Bernoulli prior:
Yjklwjk ~ Ber(wj), with w; ~ Beta(ay, b,,)-
® Hotspot prior: (Bottolo et al. 2021)

'yjk|wjk ~ Ber(wjk), with Wjk = Ok X Tj,

ok ~ Beta(ao, bo), mj ~ Gamma(ay, by).
® Markov Random Field (MRF) prior: (e.g. Chekouo et al. 2015.)

f(vld, e, G) x exp{d1Ty + e-v' G}
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MREF prior for pharmacogenomics

f(v|d,e, G) occexp{dlTy +e-~v G~}

® d controls the model sparsity,
® ¢ the strength of relations between responses and predictors,

® G is an adjacency matrix of the structure prior knowledge.
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Pharmacogenomic screens
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Multivariate Bayesian structured variable selection for
pharmacogenomic studies

Zhao, Banterle, Lewin, Zucknick
(arXiv.2101.05899, update coming soon)



Introduction Structured penalties BayesSUR Pharmacogenomic screens
000000 o 000000 0@0000000000

SSUR model with MRF prior and random intercepts

Y =72ZBy+XB + U,

Bo,t5lwo ~ N(0, wo),

Bril g w ~ 1N (0, w) + (1 = viz)d0(Bry).

wo ~ LG (ay,, buy ),
w ~ LG (ay, by),

vld.e, G x exp{d]lT'y + e'yTG'y},

vec{U} ~ N (0, ¥ @1,),
U~ HIWg(v. 7).

7 ~ Gammal(ar,br),
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Application to Genomics of Drug Sensitivity in Cancer data
(Garnett et al., 2012)

® | arge-scale pharmacogenomic study with n=498 cell lines and
m=97 drugs. We illustrate the model with m = 7 drugs.

¢ Outcome data: log(/Csg) from dose-response experiments

e Random draws of 80% cell lines as training data and 20% as
validation data.

® |nput data:
® cancer type (pp = 13)— included as random intercept effects,
®* mRNA expression (p; = 2602),

® copy numbers (p, = 426) and
® DNA mutations (p3 = 68)



® MREF prior to include structure, with edges between:

drugs: Groupl ("RDEA119","PD-0325901"," Cl-1040" and

"AZD6244"); Group2 (" Nilotinib”,” Axitinib" )
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Results (T'): Variable selection more stable with MRF prior

TABLE 4
GDSC data application: Number of identified g features corr
SSUR-Ber and SSUR-MRF models.

Nilotinib ~ Axitinib RDEA119 PD-0325901 CI-1040 AZD6244 Methotrexate

sponding to each drug by the

SSUR-Ber
Feature set I 5 5 2 3 1 0 3
Feature set 1T 1 2 3 1 1 2 2
Feature set IIT 8 11 8 4 8 10 8
SSUR-MRF
Feature set I 1 2 42 41 40 40 0
Feature set 1T 9 10 56 56 56 57 9
Feature set IIT 39 38 87 86 86 89 41
(a) (b)
Feature set | Feature set 11 Feaure set 1 Feature set 11

T

Feature set 11l Feature set 1ll

Fig 8: GDSC data application: A Venn diagram for the numbers of identified features for
the MAPK inhibitors by SSUR-Ber (panel (a)) and SSUR-MRF (panel (b)) models and
overlaps between the models fitted with feature sets I, II, and IIL



Results (G): Residual covariance structure between drugs
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Fig 7: GDSC data application: Estimated residual structure between the seven drugs by

the SSUR-MRF model based on features set I1I with G thresholded at 0.5.
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Fig 9: GDSC data application: Estimated network between the MAPK inhibitors and
identified target genes based on G and I thresholded at 0.5 by SSUR-MRF corresponding
to feature set I, II and III respectively.
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Simulation setup
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Fig 2: Simulation scenarios: True relationships between response variables and predictors.
(a) Network structure between Y and X; (b) latent indicator variable T for the associations
between Y and X in the SUR model; (c¢) additional structure G between response variables
not explained by X B. Black indicates a true relation between the response variables and
predictors.
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Simulation: MRF prior can improve variable selection

(a) SSUR-hotspot T (b) SSUR-hotspot & (c) SSUR-MRF T (d) SSUR-MRF ¢

Responses

Responses
i R(':ponsm )

Responses

Prodictors Responses Predictors Responses

Fig 3: Results for simulation scenario 1: Posterior mean of I' and G by models SSUR-

hotspot (panels (a) and (b)) and SSUR-MRF (panels (¢) and (d))

TABLE 1
Results for simulation scenario 1: Accuracy of variable selection and prediction performance of models
SSUR-hotspot and SSUR-MRF prior

accuracy sensitivity specificity RMSE RMSPE

SSUR-hotspot 0.988 0.936 0.999 0.800 0.693
SSUR-MRF 0.989 0.998 0.986 0.643 0.412




Introduction Structured penalties BayesSUR Pharmacogenomic screens
000000 o 000000 000000008000

Simulation: Results robust to mis-specified MRF prior

(a) delete 19% block edges (b) delete 10% block edges () delete 50% block edges (d) delete 90% block edges () delete 100% block edges
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Fig 4: Results for simulation scenario 1: Sensitivity analysis for case 2, i.e. when blocks of
edges are deleted (i.e. delete edges non-uniformly).
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Simulation: Random intercepts for e.g. tissue effects

(a) With random effects [ (b) With random effects & (c) Without random effects T (d) Without random effects §
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Fig 5: Results for simulation scenario 2: Posterior mean of I' and G by the SSUR-MRF
with random effects based on the simulated data from scenario 2
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Thank you!

Biglnsight: https://www.biginsight.no

PerCaThe:

https://www.uio.no/english/research/
strategic-research-areas/life-science/research/
convergence-environments/percathe/

RESCUER: https://www.rescuer.uio.no

PINpOINT:
https://digitallifenorway.org/research/pinpoint/

Scientia Fellows Programme, Faculty of Medicine, UiO
https://www.med.uio.no/english/research/
scientia-fellows/
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