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Introduction Structured penalties BayesSUR Pharmacogenomic screens

Machine learning with small data

• What do we mean by “small data”?

• Implications for machine learning?

• Aspects when building (multi-omic) machine learning
predictors of drug response (e.g. Sammut et al. Nature 2022):

1. Biological knowledge +

2. Feature selection +

3. Prioritisation of accessible data types +

4. Machine learning algorithms

→ Develop ML methods that allow us to consider aspects 1 to 3.



What are small data in ML and what can we do?

by Maren Hackenberg

1. Increase sample size :-)

2. Borrow information across observations (incl. between data
sets)

3. Restrict the model space



Introduction Structured penalties BayesSUR Pharmacogenomic screens

Pharmacogenomic screens for personalised medicine
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by Kjetil Taskén



Predict sensitivity to multiple drugs Y from multi-omics X

Y = XB+ ϵ

• Drug dose response

n cell lines

drug sensitivity︷ ︸︸ ︷ y•1 . . . y•m

 = Y

Source: Yang, et al. 2017

• Integrative omics

n cell lines

[ gene expression︷ ︸︸ ︷
X1

copy number︷ ︸︸ ︷
X2

mutation︷ ︸︸ ︷
X3

]
= X

Source: TCGA, 2013
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Challenges and opportunities (1)

• Small sample size

• Heterogeneous populations (tumours in different tissues)

• Several types of input data X:
E.g., gene expression, copy number, mutation

• Multivariate response Y
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Challenges and opportunities (2)

The data are highly structured:

1. In Y: relationships between drugs, e.g. due to similar
chemical drug composition, same target genes/pathways

2. In X: relationships between molecular data sources

Ickstadt et al. (2018)



Drug screens for precision cancer medicine: 
Predict sensitivity to multiple drugs Y from multi-omics X

High-dimensional multi-response regression with variable selection with
• Correlated responses (drugs with same target or similar mechanism of action) 
• Non-i.i.d. observations (cell lines representing different cancer types) 
• Several related input data sets (multi-omics)

1. Penalised regressions – with structured (tailored) penalty terms
2. Bayesian variable selection models – with structured selection priors
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Structured penalized regression for drug sensitivity prediction

• Different penalties for different data sources

• Group lasso for the coefficients corresponding to correlated
responses (tree structure or any overlapping groups)

• https://github.com/zhizuio/IPFStructPenalty and
https://github.com/zhizuio/mixlasso

https://github.com/zhizuio/IPFStructPenalty
https://github.com/zhizuio/mixlasso








Drug screens for precision cancer medicine: 
Predict sensitivity to multiple drugs Y from multi-omics X

• Include random effects, e.g. for different cancer sub-types (What to do with V?)
• Improved optimization of penalty parameters                                         

(Smoothing proximal gradient with a proxy for the random effect covariance V)

• Allows for missing values in the responses
• Drug Set Enrichment Analysis (R package “EnrichIntersect”)



Drug screens for precision cancer medicine: 
Predict sensitivity to multiple drugs Y from multi-omics X

• Pliable lasso for interactions, e.g. with the tissue types (Tibshirani & Friedman 2020)
• Incorporate pliable lasso in tree-lasso type multi-response regression

• Penalty parameter optimisation with ADMM, alternating direction method of multipliers 
(Boyd et al, 2011)



Objective function for a general multi-response pliable lasso:

Objective function for multi-response pliable lasso with tree-guided structure:
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Zhao et al. (Journal of Statistical Software, 2021).

BayesSUR: An R Package for High-Dimensional Multivariate
Bayesian Variable and Covariance Selection in Linear

Regression

(BayesSUR = Bayesian Seemingly Unrelated Regression)

https://CRAN.R-project.org/package=BayesSUR.
R package version 2.1-3.

Joint work with Zhi Zhao, Marco Banterle, Alex Lewin, Leonardo Bottolo,

Sylvia Richardson.

https://CRAN.R-project.org/package=BayesSUR
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Bayesian seemingly unrelated regression for variable and
covariance selection (Bottolo et al. 2021; Zhao et al. 2021)

• Matrix formulation of the model:

Y = XB+U,

vec(U) ∼ N (0, C ⊗ In)

• Y n×m matrix of outcomes with m×m covariance matrix C ,
• X n × p matrix of predictors for all outcomes,
• B p ×m matrix of regression coefficients.

• In addition: Variable selection indicator matrix Γ
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We can introduce structure/ sparsity in two places:

1. Prior for variable selection indicator γ.

βkj |γkj ,w ∼ γkjN (0, w) + (1− γkj)δ0(βkj)

• Binary latent indicator matrix Γ = {γjk} for variable selection
• Spike-and-slab prior on vectorised β = vec(B) and γ = vec(Γ)
• and w ∼ IG(aw , bw ) and δ0(·) is the Dirac delta function.

2. Prior for covariance matrix: C ∼ HIWG with further
hyper-prior on graph G (Bottolo et al. 2021)

• Graph G encodes conditional dependence between responses.
Sparse G implies sparse precision matrix C−1.

• Sparse Seemingly Unrelated Regression (SSUR)
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Options for covariance matrix structure (Bottolo et al. 2021)

• Diagonal: Hierarchical Related Regression (Richardson et al.

2011)

C =

σ2
1 · · · 0

. . .

0 · · · σ2
s


Independent inverse Gamma priors σ2

k ∼ IG(aσ, bσ)

• Dense: dense Seemingly Unrelated Regressions (dSUR)
Inverse Wishart prior C ∼ IW(ν, τIs)

• Sparse: Sparse Seemingly Unrelated Regressions (SSUR)
Hyper-inverse Wishart prior C ∼ HIWG(ν, τIs)
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Options for variable selection (j = 1, · · · , p; k = 1, · · · ,m)

• Independent Bernoulli prior:

γjk |ωjk ∼ Ber(ωj), with ωj ∼ Beta(aω, bω).

• Hotspot prior: (Bottolo et al. 2021)

γjk |ωjk ∼ Ber(ωjk), with ωjk = ok × πj ,

ok ∼ Beta(ao , bo), πj ∼ Gamma(aπ, bπ).

• Markov Random Field (MRF) prior: (e.g. Chekouo et al. 2015.)

f (γ|d , e,G ) ∝ exp{d1⊤γ + e · γ⊤Gγ}
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MRF prior for pharmacogenomics

f (γ|d , e,G ) ∝ exp{d1⊤γ + e · γ⊤Gγ}

• d controls the model sparsity,

• e the strength of relations between responses and predictors,

• G is an adjacency matrix of the structure prior knowledge.
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Multivariate Bayesian structured variable selection for
pharmacogenomic studies

Zhao, Banterle, Lewin, Zucknick
(arXiv.2101.05899, update coming soon)
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SSUR model with MRF prior and random intercepts
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Application to Genomics of Drug Sensitivity in Cancer data
(Garnett et al., 2012)

• Large-scale pharmacogenomic study with n=498 cell lines and
m=97 drugs. We illustrate the model with m = 7 drugs.

• Outcome data: log(IC50) from dose-response experiments

• Random draws of 80% cell lines as training data and 20% as
validation data.

• Input data:
• cancer type (p0 = 13)→ included as random intercept effects,

• mRNA expression (p1 = 2602),
• copy numbers (p2 = 426) and
• DNA mutations (p3 = 68)



• MRF prior to include structure, with edges between:
• drugs: Group1 (”RDEA119”,”PD-0325901”,”CI-1040” and

”AZD6244”); Group2 (”Nilotinib”,”Axitinib”)
• genes in MAPK/ERK pathway (targets of Group1)
• genes in the Bcr-Abl fusion gene (targets of Group2)
• genes of MAPK/ERK pathway and Group1
• genes of the Bcr-Abl fusion gene and Group2
• each gene feature in different data sources (GEX, CNV, MUT)



Results (Γ): Variable selection more stable with MRF prior



Results (G): Residual covariance structure between drugs
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Simulation setup
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Simulation: MRF prior can improve variable selection
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Simulation: Results robust to mis-specified MRF prior
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Simulation: Random intercepts for e.g. tissue effects
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Thank you!

• BigInsight: https://www.biginsight.no

• PerCaThe:
https://www.uio.no/english/research/

strategic-research-areas/life-science/research/

convergence-environments/percathe/

• RESCUER: https://www.rescuer.uio.no

• PINpOINT:
https://digitallifenorway.org/research/pinpoint/

• Scientia Fellows Programme, Faculty of Medicine, UiO
https://www.med.uio.no/english/research/

scientia-fellows/

https://www.biginsight.no
https://www.uio.no/english/research/strategic-research-areas/life-science/research/convergence-environments/percathe/
https://www.uio.no/english/research/strategic-research-areas/life-science/research/convergence-environments/percathe/
https://www.uio.no/english/research/strategic-research-areas/life-science/research/convergence-environments/percathe/
https://www.rescuer.uio.no
https://digitallifenorway.org/research/pinpoint/
https://www.med.uio.no/english/research/scientia-fellows/
https://www.med.uio.no/english/research/scientia-fellows/
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Ickstadt K, Schäfer M, Zucknick M (2018). Toward integrative Bayesian analysis
in molecular biology. ARSIA. 5:141–167.

Bottolo L, Banterle M, Richardson S, Ala-Korpela M, Järvelin MR, Lewin A

(2021). A computationally efficient Bayesian Seemingly Unrelated Regressions
model for high-dimensional quantitative trait loci discovery. JRSSC
70(4):886–908.

Zhao Z, Banterle M, Bottolo L, Richardson S, Lewin A, Zucknick M (2021).
BayesSUR: An R package for high-dimensional multivariate Bayesian variable and
covariance selection in linear regression. JSS 100(11):1–32.
https://CRAN.R-project.org/package=BayesSUR.

Zhao Z, Banterle M, Lewin A, Zucknick M (2022). Structured Bayesian variable
selection for multiple correlated response variables and high-dimensional
predictors. arXiv.2101.05899. Updated version coming soon to arXiv.

https://CRAN.R-project.org/package=BayesSUR

	Introduction: Machine learning with small data from pharmacogenomic screens
	Structured penalised regression approaches
	

	BayesSUR: An R Package for High-Dimensional Multivariate Bayesian Variable and Covariance Selection in Linear Regression
	

	Multivariate Bayesian structured variable selection for pharmacogenomic studies
	


