Machine learning with small data: Examples from pharmacogenomic screens for personalised medicine

Manuela Zucknick

Oslo Centre for Biostatistics and Epidemiology, University of Oslo manuela.zucknick@medisin.uio.no

Hans van Houwelingen Symposium, Utrecht, 15-06-2023

Theo Asenso

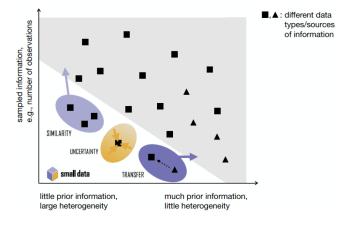
Zhi Zhao

Machine learning with small data

- What do we mean by "small data"?
- Implications for machine learning?
- Aspects when building (multi-omic) machine learning predictors of drug response (e.g. Sammut et al. Nature 2022):
 - 1. Biological knowledge +
 - 2. Feature selection +
 - 3. Prioritisation of accessible data types +
 - 4. Machine learning algorithms

 $\rightarrow\,$ Develop ML methods that allow us to consider aspects 1 to 3.

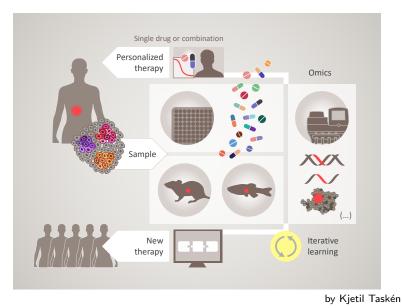
What are small data in ML and what can we do?



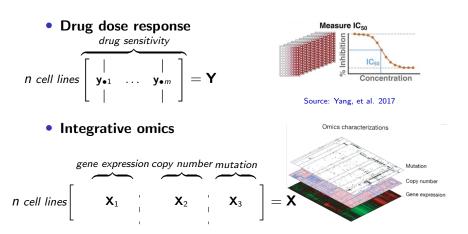
by Maren Hackenberg

- 1. Increase sample size :-)
- Borrow information across observations (incl. between data sets)
- 3. Restrict the model space

Pharmacogenomic screens for personalised medicine



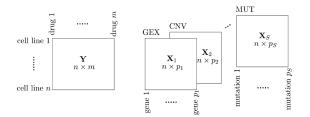
Predict sensitivity to multiple drugs **Y** from multi-omics **X**



Source: TCGA, 2013

Challenges and opportunities (1)

- Small sample size
- Heterogeneous populations (tumours in different tissues)
- Several types of input data X: E.g., gene expression, copy number, mutation
- Multivariate response **Y**



Challenges and opportunities (2)

The data are highly structured:

- 1. In Y: relationships between drugs, e.g. due to similar chemical drug composition, same target genes/pathways
- 2. In X: relationships between molecular data sources

а	Function	Memory	Environment	Message	Product Result
b	Central dogma of molecular biology	Genome (DNA)	Epigenome and other regulatory elements (e.g. chromatin modifications,mIRNA, TFs)	Transcriptome (mRNA)	Proteome (protein) Phenome (cell, tissue, organism)
c	Data types	CN, SNPs, LOH	Histone modification Té binding, miRNA, methylation	GE	Protein expression

Ickstadt et al. (2018)

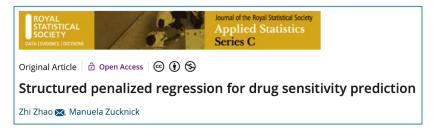
Drug screens for precision cancer medicine: Predict sensitivity to multiple drugs Y from multi-omics X

High-dimensional multi-response regression with variable selection with

- · Correlated responses (drugs with same target or similar mechanism of action)
- Non-i.i.d. observations (cell lines representing different cancer types)
- Several related input data sets (multi-omics)
- 1. Penalised regressions with structured (tailored) penalty terms
- 2. Bayesian variable selection models with structured selection priors

BayesSUR 000000 Pharmacogenomic screens

Structured penalized regression for drug sensitivity prediction



- Different penalties for different data sources
- Group lasso for the coefficients corresponding to correlated responses (tree structure or any overlapping groups)
- https://github.com/zhizuio/IPFStructPenalty and https://github.com/zhizuio/mixlasso

Multi-response penalised linear regression

Objective function:

$$\min_{\beta_0,\mathbf{B}} \left\{ \frac{1}{2mn} \|\mathbf{Y} - \mathbf{1}_n \beta_0^T - \mathbf{X} \mathbf{B}\|_F^2 + \operatorname{pen}(\mathbf{B}) \right\}$$

Standard penalised regression assigns the same penalty to all data sources, and treats columns of Y as independent:

- Lasso: $pen(\mathbf{B}) = \lambda \|\mathbf{B}\|_{\ell_1}$
- Elastic-net: pen(B) = $\lambda(\alpha \|\mathbf{B}\|_{\ell_1} + \frac{1}{2}(1-\alpha)\|\mathbf{B}\|_{\ell_2}^2)$

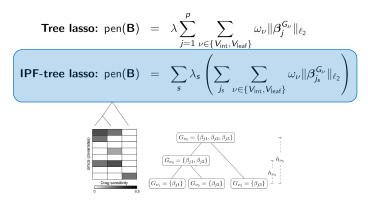
Integrative LASSO with Penalty Factors (Boulesteix et al. 2017)

- Allow different penalties for different data sources
- Extensions of IPF-lasso to multi-response regression and to the elastic net

$$\begin{aligned} \text{IPF-lasso: pen(B)} &= \sum_{s} \lambda_{s} \|\mathbf{B}_{s}\|_{\ell_{1}} \\ \\ \text{IPF-sEN: pen(B)} &= \sum_{s} \lambda_{s} (\alpha \|\mathbf{B}_{s}\|_{\ell_{1}} + \frac{1}{2}(1-\alpha) \|\mathbf{B}_{s}\|_{\ell_{2}}^{2}) \\ \\ \text{IPF-EN: pen(B)} &= \sum_{s} \lambda_{s} (\alpha_{s} \|\mathbf{B}_{s}\|_{\ell_{1}} + \frac{1}{2}(1-\alpha_{s}) \|\mathbf{B}_{s}\|_{\ell_{2}}^{2}) \end{aligned}$$

(Multi-response) Tree-guided group lasso (Kim & Xing 2012)

- Include dependencies between columns of Y in a group lasso
- Extension to IPF-tree lasso



Drug screens for precision cancer medicine: Predict sensitivity to multiple drugs Y from multi-omics X

- Include random effects, e.g. for different cancer sub-types (What to do with V?)
- Improved optimization of penalty parameters (Smoothing proximal gradient with a proxy for the random effect covariance V)
- · Allows for missing values in the responses
- Drug Set Enrichment Analysis (R package "EnrichIntersect")

Drug screens for precision cancer medicine: Predict sensitivity to multiple drugs Y from multi-omics X

An ADMM approach for multi-response regression with overlapping groups and interaction effects

Theophilus Quachie Asenso^{a*}, Manuela Zucknick^a

^a Oslo Center for Epidemiology and Biostatistics, Institute of Basic Medical Sciences, University of Oslo

- Pliable lasso for interactions, e.g. with the tissue types (Tibshirani & Friedman 2020)
- Incorporate pliable lasso in tree-lasso type multi-response regression
- Penalty parameter optimisation with ADMM, alternating direction method of multipliers (Boyd et al, 2011)

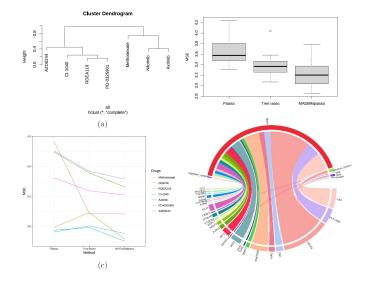
$$\hat{Y}_d = \beta_{0d} \mathbf{1} + Z\theta_{0d} + \sum_j X_j \beta_{jd} \mathbf{1} + \sum_j (X_j \circ Z) \boldsymbol{\theta}_{jd},$$
(24)

Objective function for a general multi-response pliable lasso:

$$\min_{B \in \mathbb{R}^{p \times (1+K) \times D}} \frac{1}{2N} \|Y - \hat{Y}\|_{F}^{2} + \sum_{d=1}^{D} \left[(1-\alpha)\lambda \sum_{j=1}^{p} (\|B_{jd}\|_{2} + \|B_{j(-1)d}\|_{2}) + \alpha\lambda \sum_{j=1}^{p} \|B_{j(-1)d}\|_{1} \right]. \quad (27)$$

Objective function for multi-response pliable lasso with tree-guided structure:

$$\min_{B \in \mathbb{R}^{p \times (1+K) \times D}} \frac{1}{2N} \|Y - \hat{Y}\|_{F}^{2} + \lambda_{1} \sum_{j=1}^{p} \sum_{m \in M_{\text{int}}} w_{m} \|B_{j}^{\mathcal{G}_{m}}\|_{2} + \lambda_{2} \sum_{j=1}^{p} \sum_{m \in M_{\text{leaf}}} w_{m} \|B_{j}^{\mathcal{G}_{m}}\|_{2} + \sum_{d}^{D} \left[(1 - \alpha)\lambda_{3} \sum_{j=1}^{p} (\|B_{jd}\|_{2} + \|B_{j(-1)d}\|_{2}) + \alpha\lambda_{3} \sum_{j=1}^{p} \|B_{j(-1)d}\|_{1} \right]. \quad (28)$$



Structured penalties

BayesSUR

Pharmacogenomic screens

Zhao et al. (Journal of Statistical Software, 2021).

BayesSUR: An R Package for High-Dimensional Multivariate Bayesian Variable and Covariance Selection in Linear Regression

(BayesSUR = Bayesian Seemingly Unrelated Regression)

https://CRAN.R-project.org/package=BayesSUR. R package version 2.1-3.

Joint work with <u>Zhi Zhao</u>, Marco Banterle, Alex Lewin, Leonardo Bottolo, Sylvia Richardson. Bayesian seemingly unrelated regression for variable and covariance selection (Bottolo et al. 2021; Zhao et al. 2021)

• Matrix formulation of the model:

 $\mathbf{Y} = \mathbf{XB} + \mathbf{U},$ vec $(\mathbf{U}) \sim \mathcal{N}(\mathbf{0}, \ C \otimes \mathbb{I}_n)$

- **Y** $n \times m$ matrix of outcomes with $m \times m$ covariance matrix C,
- **X** $n \times p$ matrix of predictors for all outcomes,
- **B** $p \times m$ matrix of regression coefficients.
- In addition: Variable selection indicator matrix Γ

	$\gamma_{jk} \sim \text{Bernoulli}$	$\gamma_{jk} \sim \text{Hotspot}$	$\gamma \sim \mathrm{MRF}$
$C \sim \text{indep}$	HRR-B	HRR-H	HRR-M
$C \sim \mathcal{IW}$	dSUR-B	dSUR-H	dSUR-M
$C \sim \mathcal{HIW}_{\mathcal{G}}$	SSUR-B	SSUR-H	SSUR-M

Introduction 000000 Structured penalties

BayesSUR

Pharmacogenomic screens

We can introduce structure/ sparsity in two places:

1. Prior for variable selection indicator γ .

$$eta_{kj} | \gamma_{kj}, w \sim \gamma_{kj} \mathcal{N}(0, w) + (1 - \gamma_{kj}) \delta_0(\beta_{kj})$$

- Binary latent indicator matrix $\Gamma = \{\gamma_{jk}\}$ for variable selection
- Spike-and-slab prior on vectorised $\beta = vec(\mathbf{B})$ and $\gamma = vec(\Gamma)$
- and $w \sim \mathcal{IG}(a_w, b_w)$ and $\delta_0(\cdot)$ is the Dirac delta function.
- Prior for covariance matrix: C ~ HIW_G with further hyper-prior on graph G (Bottolo et al. 2021)
 - Graph G encodes conditional dependence between responses.
 Sparse G implies sparse precision matrix C⁻¹.
 - Sparse Seemingly Unrelated Regression (SSUR)

BayesSUR

Options for covariance matrix structure (Bottolo et al. 2021)

• Diagonal: Hierarchical Related Regression (Richardson et al. 2011)

$$C = \begin{pmatrix} \sigma_1^2 & \cdots & 0 \\ & \ddots & \\ 0 & \cdots & \sigma_s^2 \end{pmatrix}$$

Independent inverse Gamma priors $\sigma_k^2 \sim \mathcal{IG}(a_\sigma, b_\sigma)$

- Dense: dense Seemingly Unrelated Regressions (dSUR) Inverse Wishart prior C ~ *IW*(ν, *τ*I_s)
- Sparse: Sparse Seemingly Unrelated Regressions (SSUR) Hyper-inverse Wishart prior C ~ HIW_G(ν, τI_s)

Introduction 000000 BayesSUR

Options for variable selection $(j = 1, \dots, p; k = 1, \dots, m)$

• Independent Bernoulli prior:

$$\gamma_{jk}|\omega_{jk} \sim \mathcal{B}er(\omega_j), \quad ext{with } \omega_j \sim \mathcal{B}eta(a_\omega, b_\omega).$$

• Hotspot prior: (Bottolo et al. 2021)

$$egin{aligned} &\gamma_{jk}|\omega_{jk}\sim\mathcal{B}er(\omega_{jk}), & ext{with } \omega_{jk}=\mathsf{o}_k imes\pi_j, \ &\mathsf{o}_k\sim\mathcal{B}eta(\mathsf{a}_o,\mathsf{b}_o), \pi_j\sim\mathcal{G}amma(\mathsf{a}_\pi,\mathsf{b}_\pi). \end{aligned}$$

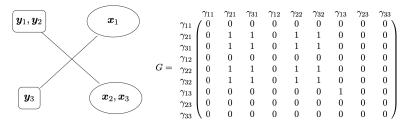
• Markov Random Field (MRF) prior: (e.g. Chekouo et al. 2015.)

$$f(\boldsymbol{\gamma}|\boldsymbol{d},\boldsymbol{e},\boldsymbol{G}) \propto \exp\{\boldsymbol{d} \mathbf{1}^{ op} \boldsymbol{\gamma} + \boldsymbol{e} \cdot \boldsymbol{\gamma}^{ op} \boldsymbol{G} \boldsymbol{\gamma}\}$$

MRF prior for pharmacogenomics

$$f(\boldsymbol{\gamma}|\boldsymbol{d},\boldsymbol{e},\boldsymbol{G}) \propto \exp\{\boldsymbol{d} \mathbf{1}^{ op} \boldsymbol{\gamma} + \boldsymbol{e} \cdot \boldsymbol{\gamma}^{ op} \boldsymbol{G} \boldsymbol{\gamma}\}$$

- *d* controls the model sparsity,
- e the strength of relations between responses and predictors,
- G is an adjacency matrix of the structure prior knowledge.



BayesSUR 000000 Pharmacogenomic screens

Multivariate Bayesian structured variable selection for pharmacogenomic studies

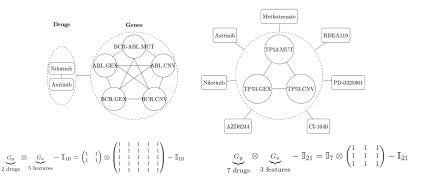
Zhao, Banterle, Lewin, Zucknick (arXiv.2101.05899, update coming soon) SSUR model with MRF prior and random intercepts

 $\mathbf{Y} = \mathbf{Z}B_0 + \mathbf{X}B + \mathbf{U}.$ $\beta_{0,ti}|w_0 \sim \mathcal{N}(0, w_0),$ $\beta_{ki}|\gamma_{ki}, w \sim \gamma_{ki}\mathcal{N}(0, w) + (1 - \gamma_{ki})\delta_0(\beta_{ki}),$ $w_0 \sim \mathcal{IG}(a_{w_0}, b_{w_0}),$ $w \sim \mathcal{IG}(a_w, b_w),$ $\gamma | d, e, G \propto \exp\{d\mathbb{1}^\top \gamma + e \gamma^\top G \gamma\},\$ $\operatorname{vec}\{\mathbf{U}\} \sim \mathcal{N}(\mathbf{0}, \Psi \otimes \mathbb{I}_n),$ $\Psi \sim \mathcal{HIW}_{\mathcal{G}}(\nu, \tau \mathbb{I}_m),$ $\tau \sim \mathcal{G}amma(a_{\tau}, b_{\tau}),$

Application to Genomics of Drug Sensitivity in Cancer data (Garnett et al., 2012)

- Large-scale pharmacogenomic study with n=498 cell lines and m=97 drugs. We illustrate the model with m = 7 drugs.
- Outcome data: log(*IC*₅₀) from dose-response experiments
- Random draws of 80% cell lines as training data and 20% as validation data.
- Input data:
 - cancer type ($p_0 = 13$) \rightarrow included as random intercept effects,
 - mRNA expression ($p_1 = 2602$),
 - copy numbers $(p_2 = 426)$ and
 - DNA mutations $(p_3 = 68)$

- MRF prior to include structure, with edges between:
 - drugs: Group1 ("RDEA119","PD-0325901","CI-1040" and "AZD6244"); Group2 ("Nilotinib","Axitinib")
 - genes in MAPK/ERK pathway (targets of Group1)
 - genes in the Bcr-Abl fusion gene (targets of Group2)
 - genes of MAPK/ERK pathway and Group1
 - genes of the Bcr-Abl fusion gene and Group2
 - each gene feature in different data sources (GEX, CNV, MUT)



Results (Γ): Variable selection more stable with MRF prior

SSUR-Ber and SSUR-MRF models.							
	Nilotinib	Axitinib	RDEA119	PD-0325901	CI-1040	AZD6244	Methotrexate
SSUR-Ber							
Feature set I	5	5	2	3	1	0	3
Feature set II	1	2	3	1	1	2	2
Feature set III	8	11	8	4	8	10	8
SSUR-MRF							
Feature set I	1	2	42	41	40	40	0
Feature set II	9	10	56	56	56	57	9
Feature set III	39	38	87	86	86	89	41

TABLE 4 GDSC data application: Number of identified genomic features corresponding to each drug by the SSUR-Ber and SSUR-MRF models.

(a)

-

(b)

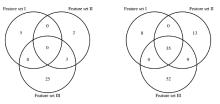


Fig 8: GDSC data application: A Venn diagram for the numbers of identified features for the MAPK inhibitors by SSUR-Ber (panel (a)) and SSUR-MRF (panel (b)) models and overlaps between the models fitted with feature sets I, II, and III.

Results (G): Residual covariance structure between drugs

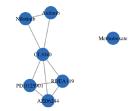


Fig 7: GDSC data application: Estimated residual structure between the seven drugs by the SSUR-MRF model based on features set III with $\hat{\mathcal{G}}$ thresholded at 0.5.

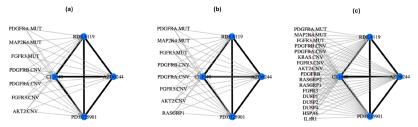


Fig 9: GDSC data application: Estimated network between the MAPK inhibitors and identified target genes based on $\hat{\mathcal{G}}$ and $\hat{\Gamma}$ thresholded at 0.5 by SSUR-MRF corresponding to feature set I, II and III respectively.

BayesSUR

Pharmacogenomic screens

Simulation setup

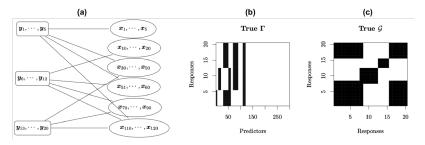


Fig 2: Simulation scenarios: True relationships between response variables and predictors. (a) Network structure between **Y** and **X**; (b) latent indicator variable Γ for the associations between **Y** and **X** in the SUR model; (c) additional structure \mathcal{G} between response variables not explained by **X***B*. Black indicates a true relation between the response variables and predictors.

Simulation: MRF prior can improve variable selection

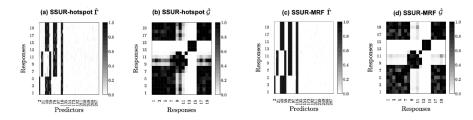


Fig 3: Results for simulation scenario 1: Posterior mean of Γ and \mathcal{G} by models SSURhotspot (panels (a) and (b)) and SSUR-MRF (panels (c) and (d))

TABLE 1 Results for simulation scenario 1: Accuracy of variable selection and prediction performance of models SSUR-hotspot and SSUR-MRF prior

	accuracy	sensitivity	specificity	RMSE	RMSPE
SSUR-hotspot	0.988	0.936	0.999	0.800	0.693
SSUR-MRF	0.989	0.998	0.986	0.643	0.412

Simulation: Results robust to mis-specified MRF prior

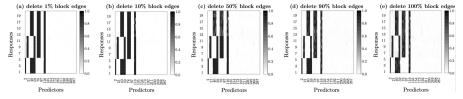


Fig 4: Results for simulation scenario 1: Sensitivity analysis for case 2, i.e. when blocks of edges are deleted (i.e. delete edges non-uniformly).

Simulation: Random intercepts for e.g. tissue effects

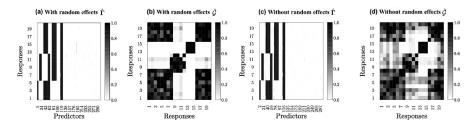


Fig 5: Results for simulation scenario 2: Posterior mean of Γ and \mathcal{G} by the SSUR-MRF with random effects based on the simulated data from scenario 2

Introduction 000000 BayesSUR 000000 Pharmacogenomic screens

Thank you!

• **BigInsight:** https://www.biginsight.no

• PerCaThe:

https://www.uio.no/english/research/
strategic-research-areas/life-science/research/
convergence-environments/percathe/

• RESCUER: https://www.rescuer.uio.no

• PINpOINT:

https://digitallifenorway.org/research/pinpoint/

• Scientia Fellows Programme, Faculty of Medicine, UiO https://www.med.uio.no/english/research/ scientia-fellows/

BayesSUF

References

- Ickstadt K, Schäfer M, Zucknick M (2018). Toward integrative Bayesian analysis in molecular biology. ARSIA. 5:141–167.
- Bottolo L, Banterle M, Richardson S, Ala-Korpela M, Järvelin MR, Lewin A (2021). A computationally efficient Bayesian Seemingly Unrelated Regressions model for high-dimensional quantitative trait loci discovery. JRSSC 70(4):886–908.

Zhao Z, Banterle M, Bottolo L, Richardson S, Lewin A, Zucknick M (2021). BayesSUR: An R package for high-dimensional multivariate Bayesian variable and covariance selection in linear regression. JSS 100(11):1–32. https://CRAN.R-project.org/package=BayesSUR.

Zhao Z, Banterle M, Lewin A, Zucknick M (2022). Structured Bayesian variable selection for multiple correlated response variables and high-dimensional predictors. arXiv.2101.05899. Updated version coming soon to arXiv.