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1

Bayes Theorem

▷ Bayes Theorem combines prior and data information:

p(θ∣D) = L(θ∣D)p(θ)
p(D)

= L(θ∣D)p(θ)
∫ L(θ∣D)p(θ)dθ

▷ with:

○ Unknown parameters θ & data: D
○ Likelihood L(θ ∣ D): plausibility of θ given data D
○ Prior p(θ): prior density of θ values (information on θ independent of D)
○ Posterior p(θ ∣ D): posterior density of θ values as a result of combining prior and data

information
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● One of the major selling arguments of the Bayesian approach

▷ Prior information can be incorporated in a Bayesian analysis!

▷ Bayes theorem works with any prior information, even quite subjective

▷ For a scientific analysis, external information should have a sound basis ....
using expert knowledge or studies done in the past

▷ However, .... most Bayesian analyses just use vague priors!

HvH award meeting 2



● I have been teaching and preaching Bayesian methods since 1991:

▷ promoting the Bayesian approach

▷ highlighting its mathematical, statistical and logical elegance

▷ highlighting its computational advantages

▷ and ... mentioning that external information can be incorporated
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● But:

▷ In most of my examples I focus(sed) on the use of Bayesian methods/ software
for statistical modelling

▷ ... and used vague/non-informative priors
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● Obstacles to use informative priors:

▷ No external information is available ... although

Box & Tiao (1973): ... one can never be in a state of complete ignorance

▷ Statistical model is complex/novel and prior information on parameters is
difficult to specify

▷ The data set is large and an informative prior would make no difference

▷ One is not willing to make use of external information (objective Bayesian)

▷ Too different or even conflicting external information is present

▷ ...
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● Bayesian approach in pharmaceutical research

▷ For a long time Bayesian approach in pharmaceutical research is ignored,
primarily because of regulatory issues

▷ But there is recently an increasing interest in the approach in drug/medical
devices research because:

○ There is a variety of historical data available obtained in highly controlled settings

○ Often the same control treatment is used in subsequent trials

○ Drug development is done in stages: I, II, III, IV and information/data obtained in previous

stage is valuable for next stage

○ For rare diseases and in pediatric studies, it may be difficult to recruit enough patients

○ Using prior information proves also to be useful for persomalized medicine

○ In medical device studies controlled studies may be hard to organize

... and so the Bayesian approach attracted interest with clinical trialists
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● Some publicity

Bayes20XX Meetings
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● Expert knowledge?

▷ Realistic limits of parameters can easily be built-in:

○ Normal priors for log-odds ratios
○ Monotonic evolutions in time expressed by a positive/negative regression
coefficient

▷ Elicitation of prior knowledge?

○ Experts have difficulties expressing their knowledge into probabilistic
language (see also book: Thinking, Fast and Slow of Daniel Kahneman).

○ Papers/books have been written to better extract knowledge

○ But none of the methods found their way in real clinical applications
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Use of historical data

▷ Making use of historical data = borrowing information from the past

▷ Borrowing information is now a hot topic in pharmaceutical research

▷ Frequentist approaches are possible but Bayesian approach is more elegant

▷ Key question: How to turn historical information into a prior?

▷ Three main approaches:

○ Pooling
○ Power approach
○ Meta-analytic approach
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● Focus in literature on borrowing information from historical controls

● But could also be applied to treatment estimate

● But wherever and whenever possible concurrent (randomized) controls are to
be preferred
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Motivating data set: HOVON AML trials

○ HOVON trials: European RCTs on chemotherapy for AML patients since 1988, coordinated by

Dept Hematology Erasmus MC (Rotterdam, NL)

○ Binary outcome = complete remission or complete response (CR)

○ RCTs considered: HOVON 4, HOVON 4A, HOVON 29, HOVON 42 and HOVON 42A

○ All of these trials had essentially the same control treatment, see Banbeta et al (2019)

Trial Group Year N CR (%)

HOVON 4 Control 1988-1992 359 279 (77.7)

HOVON 4A Control 1992-1993 252 208 (82.5)

HOVON 29 Control 1997-2000 693 598 (86.3)

HOVON 42 Control 2002-2004 437 358 (81.9)

HOVON 42A Control 2004-2006 259 214 (82.6)

HOVON 42A Treatment 2004-2006 252 211 (83.7)

▷ Analysis HOVON 42A data (ψ = odds ratio > 1⇒ experimental better):

○ Without historical data: ψM = 1.08 [0.68, 1.72]
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● Question of (at that time) the head of hematology at Erasmus MC:

Can we reduce the size of the control arm

without sacrificing the power of the study?
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2.1 Pooling

▷ Assume a single historical study:

○ Current study: D sample of size n, with parameter θ with likelihood L(θ ∣ D)
○ Historical study: D0 sample of size n0 with parameter θ0 with likelihood L(θ0 ∣ D0)

▷ Assume θ0 = θ

▷ (Initial) Prior of historical data: p0(θ), then posterior from historical data:

pP(θ ∣ D0)∝ L(θ ∣ D0)p0(θ)

▷ Naive approach to borrow information from historical study: use pP(θ ∣ D0) as
prior for L(θ ∣ D), then posterior for θ:

pP(θ ∣ D0,D)∝ L(θ ∣ D0)L(θ ∣ D)p0(θ) ≡ L(θ ∣ D0,D)p0(θ)

equivalent to pooling
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● Pooling: assumes that the historical studies and current study measure exactly
the same effect and are treated equally

● Wadsworth, Hampson & Jaki (2018): review of historical data in analysis of
current data

○ Eight of 58 papers just pooled historical and current data

● However, pooling is too naive and not recommended in general

Based on too strong assumption that past data and current data are exchangeable

● While control treatments in HOVON 4, HOVON 4A, HOVON 29, HOVON 42 and
HOVON 42A were basically the same, the standard of care changed over the years
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2.2 Power prior

Conditional power prior

● Same settings as before, so θ0 = θ!

● Now discount the prior information, i.e. we realize that historical data may
differ from current data

● Power prior for a fixed λ (conditional power prior):

pCPP(θ ∣ D0, λ) =
L(θ ∣ D0)λ p0(θ)

∫ΘL(θ ∣ D0)λ p0(θ)dθ

with 0 (= no borrowing) ≤ λ ≤ 1 (= pooling)
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Conditional power prior for Gaussian case

● Suppose σ2 is known, and:
○ Current data: y = {y1, . . . , yn} i.i.d. ∼ N(µ,σ2)

○ Historical data: y0 = {y01, . . . , y0,n0} i.i.d. ∼ N(µ,σ2)

○ Initial normal prior: µ ∼ N(µ0, σ2
0) for the historical data

● Construction of power prior:

L(µ ∣y0) =
1√
2πσ2

exp [− 1

2σ2

n0

∑
i=1
(y0i − µ)2]

L(µ ∣y0)λ = (
1√
2πσ2

)
λ

exp [− 1

2σ2/λ

n0

∑
i=1
(y0i − µ)2]

● The likelihoodλ ∝ Gaussian with variance σ2/λ ⇒ power prior for Gaussian case
inflates prior variance
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Gaussian conditional power prior:

● With initial Gaussian prior (µ ∼ N(µ0, σ2
0)), power prior for current data becomes

N(µ0, σ20), with

µ0 =
µ0/σ20 + n0λy0/σ2
1/σ20 + n0λ/σ2

& 1/σ20 = 1/σ20 + n0λ/σ2

Posterior based on Gaussian conditional power prior:

● Combined with current Gaussian data y gives posterior N(µ,σ2)

µ = µ0/σ
2
0 + ny/σ2

1/σ2 + n/σ2
& 1/σ2 = 1/σ20 + n/σ2
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Conditional power prior for binomial case

● Suppose:
○ Current data: y ∼ Bin(n, θ)
○ Historical data: y0 ∼ Bin(n0, θ)
○ Initial prior: θ ∼ Beta(α0, β0)

● Binomial conditional power prior:

Beta(θ ∣λy0 + α0, λ(n0 − y0) + β0)

● Posterior based on binomial power prior:

Beta(θ ∣λy0 + α0 + y, λ (n0 − y0) + β0 + (n − y))
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What λ to choose???

● Interpretation of λ

○ Proportion of historical data used in current study: λ = r/n0, with r amount of
historical sample used

● How to choose λ?

1. Fix λ (static borrowing information): from substantive knowledge/regulatory
input ⇒ conditional power prior

2. Give λ a prior and estimate from historical and current data (dynamic
borrowing information) ⇒ joint power prior

○ Estimated λ is inverse proportional to discrepancy between historical and
current data
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Estimate λ from joint posterior of historical and current data

Joint power prior pJPP

● Give λ a prior p(λ), then joint power prior:

pJPP(θ, λ ∣D0) =
L(θ ∣D0)λp0(θ)p(λ)

∫
1
0 ∫ΘL(θ ∣D0)λp0(θ)p(λ)dθ dλ

and estimate λ from joint posterior of historical and current data

● Proposed and examined by Ibrahim & Chen in a series of papers

● But, ... joint power prior does not satisfy likelihood principle, since

[c1L(θ ∣D0)]λ p0(θ)p(λ)

∫
1
0 ∫Θ [c1L(θ ∣D0)]λ p0(θ)p(λ)dθ dλ

≠ [c2L(θ ∣D0)]λ p0(θ)p(λ)

∫
1
0 ∫Θ [c2L(θ ∣D0)]λ p0(θ)p(λ)dθ dλ
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Estimate λ from joint posterior of historical and current data

Modified/Normalized power prior pMPP

● First normalize the conditional power prior, then apply prior p(λ)

pMPP(θ, λ ∣D0)= pCPP(θ ∣ D0, λ)p(λ)

= L(θ ∣D0)λ p0(θ)
∫ΘL(θ ∣D0)λp0(θ)dθ

p(λ)

● Modified power prior pMPP satisfies likelihood principle

● Marginal posteriors p(λ ∣ D,D0) and p(θ ∣ D,D0) can then be determined
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Modified power prior binomial case

▷ Modified power prior pMPP (θ,λ ∣y0,n0)

pMPP(θ, λ ∣ y0, n0)∝
θλy0+α0−1(1 − θ)λ (n0−y0)+β0−1
B(λy0 + α0, λ (n0 − y0) + β0)

p(λ)

= Beta(θ ∣ λy0 + α0, λ (n0 − y0) + β0)p(λ)

▷ Denominator in binomial case

C(λ) =∫ L(θ ∣ y0, n0)λBeta(θ ∣α0, β0)dθ

=
(n0y0)

λ
B(λy0 + α0, λ (n0 − y0) + β0)

B(α0, β0)

▷ The normalizing constant is often not easy to determine, more later
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Modified power prior applied to HOVON AML trials

○ HOVON trials: European RCTs on chemotherapy for AML patients since 1988, coordinated by

Dept Hematology Erasmus MC (Rotterdam, NL)

○ Binary outcome = complete remission or complete response (CR)

○ RCTs considered: HOVON 4, HOVON 4A, HOVON 29, HOVON 42 and HOVON 42A

○ All of these trials had essentially the same control treatment, see Banbeta et al (2019)

Trial Group Year N CR (%)

HOVON 4 Control 1988-1992 359 279 (77.7)

HOVON 4A Control 1992-1993 252 208 (82.5)

HOVON 29 Control 1997-2000 693 598 (86.3)

HOVON 42 Control 2002-2004 437 358 (81.9)

HOVON 42A Control 2004-2006 259 214 (82.6)

HOVON 42A Treatment 2004-2006 252 211 (83.7)

▷ Analysis HOVON 42A data (ψ = odds ratio > 1⇒ experimental better):

○ Without historical data: ψM = 1.08 [0.68, 1.72]
○ With HOVON 42 historical control data: ψM = 1.12 [0.74, 1.67], λM = 0.58 [0.07, 0.98]
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Some findings on the estimated power λ

● Posterior median of λ:

≈ 0, when historical data differ a lot from current data

≈ 0.6 with Beta(1,1) and ≈ 0.7 with Beta(0.5,0.5), when historical data are
similar to current data

Estimate of θ didn’t change much even for large data sets

● For extensions of the power prior to multiple historical data, WAIT A BIT!
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2.3 Meta-analytic prediction prior

● Suppose there are K historical studies:

○ Current study: D sample of size n with parameter θ and likelihood L(θ ∣ D)
○ Historical studies: K samples Dk of size nk with parameters θk and likelihood L(θk ∣ Dk)

● Assume now that the historical trials and the current trial are exchangeable

⇒ Loosely speaking: θ and θ1, . . . , θK are about the same, or

θ1, . . . , θK, θ ∼ G(ϕ)

● Neuenschwander et al. (2010) suggested the meta-analytic predictive (MAP) prior
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The meta-analytic predictive (MAP) prior

▷ With normality assumption

θ1, . . . , θK, θ ∣ µ, τ 2 ∼ N(µ, τ 2)

▷ The meta-analytic predictive prior (PPD):

θ ∣ D1, . . . ,DK

▷ If σk and τ 2 known + flat prior for µ:

θ ∣ θ̂1, . . . , θ̂K, τ ∼ N(
∑wkθ̂k
∑wk

,
1

∑wk
+ τ 2)

○ Dk produce estimate θ̂k (k = 1, . . . ,K)
○ Weights wk = 1

σ2
k
+τ2 , with often σ2k (k = 1, . . . ,K) fixed

○ Large value of τ implies that little is learned from past studies

○ τ is given an informative and sensible prior
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Two equivalent meta-analytic approaches (Schmidli et al, 2014)

●MAP approach: Two-step approach

○ Compute MAP prior for the unknown parameter θ

○ Use MAP prior in combination with current data

○ Example pediatric study: MAP prior based on adult data applied on
pediatric data

●MAC approach: Simultaneous approach

○ Specify hierarchical model combining historical & current data

○ Example pediatric study: adult and pediatric data are obtained
simultaneously
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MAP prior applied to HOVON AML trials

● HOVON trials:

○ European RCTs on chemotherapy for AML patients since 1988, coordinated by Dept

Hematology Erasmus MC (Rotterdam, NL)

○ Binary outcome = complete remission or complete response (CR)

○ RCTs considered: HOVON 4, HOVON 4A, HOVON 29, HOVON 42 and HOVON 42A

○ All of these trials had essentially the same control treatment, see Banbeta et al (2019)

● Now HOVON 4, 4A, 29 and 42 control data into the analysis of the
HOVON 42A data:

○ Assume exchangeability of all control arms
○ Aim MAP approach: estimate ψ more precisely using historical information on
θ = logit(control rate)
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Using the MAP prior to analyze data from HOVON 42A

○ θk = logit(probability) CR in kth historical control arm

○ yk = observed proportion CR in kth historical control arm

▷ Two steps:

1. Estimate MAP prior based on CR in studies HOVON 4, 4A, 29 and 42

2. Use MAP prior to analyze the control & experimental data of HOVON 42A

▷ Estimation MAP prior is done via MCMC ⇒ no analytical expression

▷ Analysis using RBesT R package + Bayesian analysis

1. RBesT estimates the MAP prior for θ (logit scale) by MCMC sampling

2. Approximate the sampled MAP prior by mixture of normals

3. Feed the mixture of normals in OpenBUGS program
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Results

MAP prior

θ= logit(probability)
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Estimated MAP prior from MCMC calculations

Gaussian mixture with 3 components

○ Vague prior on θ: ψM = 1.084 [0.68, 1.72]

○ MAP prior on θ: ψM = 1.088 [0.71, 1.68]
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3

Choice of historical studies

▷ How should we choose/select the historical studies?

▷ Pocock’s criteria (Pocock, 1976) for historical controls:

⇒ Historical controls should be similar to current control

▷ But, these criteria are quite strict!
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How can we relax Pocock’s criteria?

● Pocock’s criteria prevent using dynamic borrowing methods for e.g.

○ Pediatric studies: adult data are not obtained from the same kind of subjects

○ Rare diseases: historical controls are taken from the real world

○ Bridging studies: subjects from another geographical region cannot be taken from the same

institution

⇒ Extend dynamic borrowing methods:

▷ Match historical and current data

▷ Covariate correction/propensity score analysis:

○ MAP prior/MAC approach: conditional exchangeability

○ Power prior: e.g. van Rosmalen et al. (2018), Banbeta, Lesaffre, van Rosmalen (2022)

○ Extension of Pocock’s criteria: Hatswell et al. (2020)
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Possible problem(s) at design stage

● At the design stage it is not clear whether (all) historical data will be compatible
with future data (prior-data conflict)

●We should only borrow information when current data are similar to
historical data

● Schmidli et al. (2014): mixture prior for historical control parameter

○ MAP prior for θ when current control is similar to historical controls

○ Vague prior for θ when current control is quite different from historical controls (prior-data

conflict)

= robustified MAP prior
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Robustified MAP prior
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Robustified MAP prior

θ

MAP prior

(1−w)

Robust prior

w

θ ∼ (1 −w) ×N(µ, τ 2) +w × p0R
p0R (robust) Gaussian distribution with same mean but large SD

w fixed usually taken small (0.1)
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Extensions of the power prior approach

● Now K historical studies (Chen et al., 2000), but assume θ1 = . . . = θK = θ

●Modified power prior based on historical data:

pMPP(θ,λ ∣ {yk, nk})∝
[∏K

k=1L(θ ∣ yk)λk] p0(θ)p(λ1, . . . , λk)

∫ [∏K
k=1L(θ ∣ yk)λk] p0(θ)dθ

with

○ λk = 0 ⇒ no borrowing from kth historical study

○ λk = 1 ⇒ pooling of kth historical data with current data

HvH award meeting 35



Further extensions by our group

● Combination of the hierarchical approach in the MAP prior and power prior:
hierarchical/dependent modified power prior (pDMPP )

● Idea: historical studies are similar ⇒ also the powers

● Powers λk (k = 1, . . . ,K) have a hierarchical distribution

λk ∼ Beta(αλ, βλ) (k = 1, . . . ,K)
(αλ, βλ) ∼ p(αλ, βλ)

○ For historical controls with binary endpoints, see Banbeta, van Rosmalen, Dejardin & Lesaffre

(2019)

○ For linear regression, see Banbeta, Lesaffre & van Rosmalen (2022)

○ For analysis of counts, see Banbeta, Lesaffre, Martina & van Rosmalen (2022)
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Modified power prior binomial case with multiple historical studies

● Assume
▷ p(λ) = p(λ1, . . . , λK) =∏K

k=1 p(λk)

▷ p0(θ) is Beta(α0, β0) with α0 and β0 fixed and known

● Modified power prior:

pMPP(θ,λ ∣ {yk, nk})∝
θ∑

K
k=1 λk yk+α0−1(1 − θ)∑K

k=1 λk (nk−yk)+β0−1

B(∑Kk=1 λk yk + α0,∑Kk=1 λk (nk − yk) + β0)

K

∏
k=1
p(λk)

= Beta(θ ∣
K

∑
k=1
λk yk + α0,

K

∑
k=1
λk (nk − yk) + β0)

K

∏
k=1
p(λk)

● Again the normalizing constant is easy to compute

● Up to 2 historical controls, path sampling can be used but computation is
probably too demanding for (≥) 3 historical data sets
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Robustified dependent power prior

▷ Banbeta et al. (2019): robustified pDMPP , i.e. pRDMPP , in 2 ways:

○ Version 1: λk ∼ (1 −w) × Beta(λk ∣αλ, βλ) +w × p0R(λk) (k = 1, . . . ,K) ⇒ individual

historical controls can be ignored

○ Version 2: λ ∼ (1 −w) × Beta(λ ∣αλ, βλ) +w × p0R(λ) ⇒ either all or none historical

controls are ignored

0.0 0.2 0.4 0.6 0.8 1.0

0
5

1
0

1
5

Robustified Power prior

θ*

Dependent power prior

(1−w)

Robust prior

w
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Design aspects

● What are the operating characteristics of the dynamic borrowing approaches?

⇒ Questions:

▷ How much information is used with dynamic borrowing methods? → effective
sample size

▷ Do dynamic borrowing methods control Pr(Type I error)?

▷ Is it worth borrowing historical information? → power
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5.1 Effective sample size

▷ How much information do we borrow from historical studies?

⇒ Effective sample size (ESS)

▷ Several proposals have been made:

○ Principle: What is the equivalent number of subjects implied by the prior?

○ Developments were focussed on MAP prior e.g. Morita, Thall & Muüller (2008),

Neuenschwander et al. (2020)

○ But also possible for power prior (but no results available for MPP)

▷ Problem: Cannot take into account prior-data conflict!

⇒ simple proposal by Malec (2001) for use a posteriori

ESSM = n
Var(θ ∣ D, non-informative prior)
Var(θ ∣ D, informative prior)

− n
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5.2 Is Pr(Type I error) controlled?

▷ Dynamic borrowing methods are Bayesian ⇒ repeated sampling properties are
unknown

▷ Regulatory authorities (FDA, EMA, ...) require the operating characteristics
(Pr(Type I error), Pr(Type II error))

▷ How to compute the operating characteristics (OCs)?

▷ Classical:

○ Compute Pr(Type I error) and check if ≤ α
○ Determine 1 − Pr(Type II error) = power

▷ Dynamic borrowing methods: classical computation +

○ combining possible settings of historical data
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What can happen?

▷ Historical data can help or hurt, depending on how similar the historical data are
to the current data

▷ If similar, then Pr(Type I error) can be controlled and power increased

▷ If not similar, then Pr(Type I error) may not be controlled and power may
decrease

▷ Most often, extensive simulations will be needed to assess the properties

▷ There is also a discussion in the literature how the simulations should be done:

○ Conditional approach: given the historical data averaging over the current data

○ Unconditional approach: averaged over the historical and current data simultaneously

▷ In practice: we don’t know in advance whether or not there will be a prior-data
conflict. We can only protect ourselves using a robust prior
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5.3 Is it worth borrowing historical information?

● Effect of dynamic borrowing methods on future HOVON study:

▷ Results CR HOVON 42A: Experimental: 83.7% ⇔ Control: 82.6%

▷ Design new study HOVON 43:
○ α = 0.05
○ Experimental: 83% + 7%⇔ Control: 83%

○ Bayesian power: ∫D Pr (πE − πC > 0 ∣ D) > 0.95

▷ Power (based on RBesT, using pre-posterior calculations):

○ Uniform prior for experimental arm & control arm: 74%

○ Classical power: 74%
○ MAP power: 81%

○ Robustified MAP power: 80%

● Published literature and simulations: there is gain in power (⇒ smaller study size)
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Other approaches

● Pocock’s approach: θ = θ0 + δ, with δ ∼ N(0, σ2
δ) + prior on σδ, Pocock (1976)

● Commensurate (power) prior: version of Pocock’s approach and related to
MAP approach, Hobbs, Sargent & Carlin (2012)

● Test-then-Pool approach: first significance test for discrepancy between
historical and current control(s), if not significant then pool, Viele et al. (2014)

● Empirical Bayes approach: estimates λ from marginal likelihood avoiding to
compute the normalizing constant, Gravestock & Held (2017)

● Watch the talk of Tim Friede
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Closing remarks

▷ Dynamic borrowing methods are subject to intensive research especially in the
pharmaceutical industry, but also in many other application areas!

▷ Reason is clear: Recyling (patient) data = may save money and patients

▷ We will see increasingly more modern/non-classical clinical trial designs:

○ Adaptive designs, with interim analyses, stopping or adding new arms to the trial, re-estimation

of the necessary sample size

○ Platform trials including basket trials, umbrella trials

○ Making use of extra available non-trial data, such as real-world data

○ Price and Scott (2022) describe the recent FDA initiative to discuss the feasibility and

acceptance of complex innovative designs

▷ Note not covered: multiparameter case, partial pooling approach, . . .
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