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Ic boxes

W This is a horse! This is a horse!

This is NOT a horse! This is NOT a horse!

Lapuschkin et al. Nature communications 10.1 (2019): 1-8.
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Black boxes in medicine

COVID-19 positive COVID-19 negative
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DeGrave et al. Nature Mach. Intel. (2021)



Black boxes in medicine
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Survey XAl in medical imaging
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XAl framework
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XAl in medical imaging

— \/isual explanation
- Textual explanation
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Classified to XAl framework
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Visual explainable Al
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Visual explanation
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Volumetric breast density
estimation on MRI using
explainable deep learning
regression

H 2
Bas H. M. van der Velden®*, Markus H. A. Janse”, MaxA. A. Ragusi’, Claudette E. Loo” &
Kenneth G. A. Gilhuijs*

To purpose of this paper was to assess the feasibility of vquLv'n.etric breast density estlm?tlons o_:h
MRI without seg ions acc ied with an ility step. A tot'al of 62.15 patients qu
breast cancer were included for volumetric breast density estimation. A 3-d|mensmna4| regression
convolutional neural network (CNN) was used to estimate the volumetric breast density. Patients
were split in training (N = 400), validation (N =50), and hold-out test set (N=165). Hyperpara.meters
were optimized using Neural Network Intelligence and augmentations consisted of translations

and ions. The estil d densities were evall d to the ground truth using Spearman’s

ion and Bland-Altman plots. The output of the CNN was visvally analyzed using SHapley
exPlanations (SHAP). Spearman’s correlation between estimated and ground truth density
was p=0.81(N=165, P<0.001) in the hold-out test set. The estimated density had a median bias of
0.70% (95% limits of agreement = - 6.8% to 5.0%) to the ground truth. SHAP showed that in correct
density estimations, the algorithm based its decision on fibroglandular and fatty tissue. In incorrect
estimations, other structures such as the pectoral muscle or the heart were included. To conclude, it is

feasible to ically estimate voll ric breast density on MRI without segmentations, and to
provide accompanying explanations.

Breast density refers to the amount of fibroglandular tissue with respect to the fatty tissue. It is a well-known risk
l'actor'for the dgvelopmenl of breast cancer!, and is incorporated in several breast cancer risk models>*. Most
states in the United States of America require reporting of breast density". ’

n cl:lr::xcsall densill.y can b'e assessed on imaging such as mammography and magnetic resonance imaging (MRI)
Ind | prac Ixce,]ra‘dnol'oglsls  score breast density in one of four incremental categories: almost entirely fallv.
er gl tissue, ly dense, or extremely dense®. ‘

g computer algorithms. Such algo ]
T ) rong correlation between the tw 7
ypically consist of 3-dimensional i i
'The volumetric density is then deﬁned:: lhseegmemauon o ey fegion an I fai
wth

breast region. In these stiidiec tha . volume of the fibroglandular tiss




Breast density
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Regression

Input volume Segmentations Volumetric density

Voxel-based
segmentation

—>

Commonly used
approaches

—>  0%-100%

Input volume Volumetric density

Single label-based deep learning regression

Our approach

) 0% - 100%

Van der Velden et al. Nature Sci Rep 2020 y @basvandervelden



Regression CNN

Layer Input i 2 3 4 5 6 7 Output
Channels 32 64 128 128 128 128 128 1 (linear)
..* @\ \ N AN

Legend

—» 3x3x3 convolution, 2x2x2 strides, PRelLu activation
— Fully connected, PRelLu activation
—{> Fully connected, Linear activation

Van der Velden et al. Nature Sci Rep 2020 y @basvandervelden




Density estimations
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XAl: Deep SHAP

Van der Velden et al. Nature Sci Rep 2020 y @basvandervelden



Wrong predictions? XAl!
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Trainable attention
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Jetley et al ICLR 2018 Y @basvandervelden
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Trainable attention

Schelmper et al MedIA 2019 y@basvandervelden




Visual may be misleading

Ewidence for Amimal Being a Evidence for Amimal Being a

Sibenian Husky

Transverse Flute

Explanations Using
Attention Maps

-

Rudin Nature Mach. Intel. 2019

Y @basvandervelden




Visual may focus on edges

Cascading randomization
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Textual explainable Al
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Image captioning

Vision Gnguage | |A group of people
Deep CNN  Generating shopping at an
RNN outdoor market.

[ Q There are many
vegetables at the
fruit stand.

Vinyals et al. CVPR 2015 y@basvandervelden




Image captioning with visual XAl

Justification Model

> ificati
Generator

Lee et al. IMIMIC 2019 Y @basvandervelden




Example-based explainable Al
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Case-based reasoning
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Case-based reasoning

______________

——————————————

Chen et al. NeurlPS 2019 y@basvandervelden



Case-based reasoning
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Barnett et al. Nature Mach. Intell. 2021 y@basvandervelden
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Learning For Medical Image
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alized Zero Shot
Classification Using

Novel Interpretable Saliency Maps

Dwarikanath Mahapatra, Zong;

~— In many real world medical image classifica-
tlo:bsselﬁ:;s. aocesnz to samples of all disease classes I:
not feasible, affecting the robustness of a system expeclel
to have high performance in analyzing novel test data. This
is a case of generalized zero shot learning (GZSL) aiming
to recognize seen and unseen classes. We propose a GZS
method that uses self supervised leaming (ssL) for: 1)
selecting representative vectors of disease classes; and 2)
synthesizing features of unseen classes. We also propose
anovel approach to generate GradCAM saliency maps that
highlight diseased regions with greater accuracy. We ex-
ploit information from the novel saliency maps to improve
the clustering process by: 1) Enforcing the saliency maps
of different classes to be different; and 2) Ensuring that
clusters in the space of image and saliency features should
yield class having similar
This ensures the anchor vectors are representative of each
class. Different from previous approaches, our proposed
approach does not require class attribute vectors which
are essential part of GZSL methods for natural images
but are not available for medical images. Using a simple
the method state of the

yuan Ge, Mauricio Reyes

have an acceptable level of accuracy in recognizing novel test

cases. »
In Few Shot Learning a model learns class characteristics

from very few labeled samples. In Zero Shot Learning (ZSL)
the aim is to learn plausible representations of unseen classes
without having access to their labels, and recognize them
during test time only from features learned through labeled
data of seen classes. Hence, ZSL is a specific case of few
shot learning and much more challenging due to the absence
of labeled samples of unseen classes. In a more generalized
setting we expect to encounter both seen and unseen classes
during the test phase, where a reliable model should accurately
predict both classes. This is a case of generalized zero shot
learning (GZSL) and is challenging since predicting unseen
classes as one of the seen classes can lead to incorrect diag-
nosis. In this work we propose a GZSL method for medical
image classification using self supervised learning (SSL) and
knowledge derived from saliency maps, and demonstrate its

art SSL based GZSL performance for natural images as well
as multiple types of medical images. We also conduct many
ablation the of different loss
terms in our method.

Index Terms— Generalized zero shot learning, self super-
vised learning, saliency, classification, X-ray, pathology

I INTRODUCTION

In the present era, deep learning methods have achieved
slle of the art performance for many medical image classifi-
cation tasks such as diabetic retinopathy grading [22], digital
pathology image classification [36] and chest X-ray diagnosis
[26],‘ [62]. to name a few. State of the art (SOTA) fully su-
pervised methods have access to both the ‘seen’ and ‘unseen’
class labels, and trained models learn the ch istics of all

across multiple medical image datasets.

GZSL is a widely explored topic for natural images [61],
[67] where seen and unseen classes are characterized by class
attribute vectors. A model learns to correlate between class
attribute vectors and ponding feature rep
This gives a strong reference point in synthesizing features
of both seen and unseen classes, since by inputting the
attribute vector of the desired class the corresponding feature
representation can be generated. However medical images do
not have such well defined class attributes since it requires high
clinical expertise and time to define unambiguous attribute
vectors for different disease classes. Hence it is nor a frivial
task .lo apply state of the art GZSL methods from natural image
applications to medical image classification. For example, in
the case of lung X-ray diagnosis many conditions co-oc‘cur

classes. However many real-world scenarios do n i

access to samples of all possible diseases, Asa ms:llt,purx‘:s:::
clags are generally classified into one of the seen classes,
I-esn]m‘lg.m wrong diagnosis. For deployment in clinical se(v
tings, it is therefore essential that a machine learning mode;

is with the Inception  Institute
Dhabj i e of
United "Arab  Emirates.  (email:

‘1‘,suchasﬂ‘ is, Effusion, and Inf i
Fﬁ'ccflve class attribute vector should be able ﬁtlct)m:r::w:ln
|de?|ufy4 the attribute categories and the corresponding entriesy
whnc.h is very challenging. Solving the GZSL problem fon"
medical images without using attribute vectors is a challengi
task but essential nevertheless due to the potentiall immg"Ig
beneﬁ(s' of reducing annotation effort of clinicians. l{als ire
t_o alleviate the critical issue of data <homann £ 0 helps.

@basvandervelden



Active learning using XAl

Testing samples Interpretability
during Active Learning cycle saliency maps

Trained ";;Tir:[:ta&':w
Classifier y Map ‘
(e g. DenSeNet) Generator
(e.g. Deep Taylor) L

Slide courtesy prof Reyes
Mahapatra et al. IEEE TM| 2022
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Active learning using XAl

, €< Active learning

< Fully supervised model

< Random sample selection
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Slide courtesy prof Reyes

Mahaoatra et al. IEEE TMI 2022 Y @basvandervelden




Holistic explainable Al

Y @basvandervelden




ORIGINAL RESEARCH BREAST IMAGING

' . The Breast 60 (2021) 230 237
i Linking MRI |
i i east Cancer by 3 N
Radlogenomlc Ana IYSIS Co;F Br E ‘on Contents lists available at ScienceDirect B‘}{'EAS I
i or Gene Expressi
Phenotypes with Tum -
Lodewyk e Breast
sius, PhD » Esther H. Lips, PhD |
iy Y MWVMMD ; Wm@m o Kenneth ilbuiis, PhD * )
WB EI‘;%PLDD MBI‘)’I:,M”;‘”V . .]dkw . GAGM‘P journal homepage: www.alsawer.com/brsl
E A. Wessels, PhD | m
. Carc i Dncodclnnumc{'l'.ﬂ..S.(I..l,.l‘_A.\ll.).l)ivuionofMolcculalPalhology(S.C.,l‘,.ll.lqj_\'ll‘_‘)s,; [l)tpmr:;::,iﬁjiml:g
::;,.[.;;t I)Z“[“’);‘,:"‘M""‘“;",, ity 093 the Netedands Canes Instiut, Plesmarlan 121 1066 X ﬁcm:-ud]’;-"';hc Hﬁ::q:'.'},‘m':f‘,,d o it — :
-EL). and Depariment & ﬂ.,a. 1 the Netherlands (B.H.M.x.d.V., MA.V, K.GAG.); and Faculty of Electtie m-m_r::., i sl Compuer S | | -
iﬂf‘ﬁli%‘;‘&f,‘:}},-j;ﬂ; et e e . Resived Jly . 2019 evisionruestcdSepember 1 fal revison v M alateral parenchymal enhancement on MRI is associate S

: Luwessels@nki.nl).

Genetics (ImaGene) program and supported by the Dutch Technol
and partly funded by the Ministry of Economic Afairs.

aceepted March 27. Address cotrespondence to L.EA.W. (e-m:

“Thisrescarch is part of the STW Perspectief Population Imaging
of the Nethertands Organisation for Scientific Research (NWO),

oy Foundation ST, which is part

r proteasome pathway gene expression and overall survival of
ER+/HER2-breast cancer patients

j et ismeij 2 Claudette E. Loo ¢,
. Ragusi ", Tycho Bismeijer b Bas H.M. van der Velden , ]

Canifiltlls b.d Jellz Wesseling ¢, Lodewyk F.A. Wessels b.! sjoerd G. Elias *,

h G.A. Gilhuijs *

t of Radiology / Image Sciences Institute, University Medical Cent

Conflics of interest are listed at the end of this article.
See also the editorial by Cho in this issue.
Radiclogy 2020 296:277-287 @ hupsi//doi.org/10.1148/radiol 2020191453 @ Content codes: R

er Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the
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Materials and Methods: This is a secondary analysis of the Multimodality Analysis and Radiologic Guidance in Breast-Conserving

‘Therapy, or MARGINS, study. MARGINS included patients eligible for breast-conserving therapy between November 2000 and

December 2008 for preoperative breast MRI. Tumor RNA was collected for sequencing from surgical speci “Twenty-one com-

E"m'%mmmd MRI features of fm“:o“ were condensed into seven MRI factors related to tumor size, slthe initial enhancement,
e th ol h Il’ld h: iation. i i

sion levels from RNA sequencing by using gene set nrich anzl'ys'u. Statistical Ths"e ﬁm;_"'d::em“ed w‘:‘asgme'aprs'—

by using a sample permutation test and the false discovery rate. -

ABSTRACT

Purpose: To assess whether contralateral parenchymal enhancement (CPE) on MRI is associated with
geng e;-pressxon pathways in ER | [HER2-breast cancer, and if so, whether such pathways are related to
surviv,
Methods: Preoperative breast MRIs were analyzed of ear) i igi
P A ; ly ER + JHER2-breast cancer patients eligible for
breast-conserving surgery included in a prospective observational cohort study (MARGINS). The
:o::ralalnral parenchyma was segmented and CPE was calculated as the average of the top-10% delayed
nhancement. Total tumor RNA sequencing was performed and gene set enrichment analysis was used to

reveal gene expression pathways associated with CPE (N
reveal genc L = 226) and related i
invasive disease-free survival (IDFS) in multivariable survival ) o v b o (08, and

Resalts:  Gene expression and MRI data were obtained for 295 patients (mean i
. ¢ ¢ age, 56 years * 10.3 [standard deviati . Larger
a<n(c’l ;;or:;mgulzr tumors showed increased expression of cell cycle and DNA damage checkpoint g[enes (false disc::e::')nte
T Ofnmlmdribow n;lnnd'mlen.  statistic [NES], 2.15). Enhancement and sharpness of the tumor margin were associated with
Eme b proteins (false d.ISQ'JVEI’)' rate <0.25; NES, 1.95). Smoothness of enhancement tumor size, and stheex_
associated with expression of genes involved in the extracellular matrix (false discovery rate <0, '25’ NES, 2 ‘2’5‘)‘ i

Conclusion:
ol Breast cancer MILU phenotypes were related to their underlying molecular biology

Y revealed by using RNA sequenci analysis. The latter was also d

The asocai and sharpnessofthe ummor margan wath - 1 sequencing. METABRIC cohort (N - 1355 3150 done for the
imaging biomarkers for drugs targeting the ribosome. R e ribosome suggests that these MRI features may Results: CPE was most slrznzly « with h rmali men
©RSNA, 2020 statistic = 2.04, false discovery rate = 11). Patients with high CPE showed |0w¢‘£":'|:|nmrf:f|nf:‘::2 o

expression. Protea:
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Explain imaging using genotype

MRI Feature

Volume -

Diameter -

Volume Initial Enhancement > 100 A
Diameter Initial Enhancement > 100 -
Volume Late Enhancement < 0 4
Diameter Late Enhancement < 0
Smoothness Uptake (mean)
Smoothness Uptake (variation) -
Smoothness Maximum (mean)
Smoothness Maximum (variation)
Sharpness Uptake (mean)
Sharpness Uptake (variation)
Sharpness Maximum (mean)
Sharpness Maximum (variation)
Uptake Speed A

Top Initial Enhancement -

Top Late Enhancement

Signal Enhancement Ratio -
Washout -

Circularity 1
Irregularity

0.6

- 0.4

- 0.2

- 0.0

MRI Factor
o U s WN

Correlation (Loading)

C e
gene set
source
system

0

Finetti (2008)
breast tumors

Eguchi (2007)
osteacarcoma cell line

condition RB1+, doxorubicin Basal-like

1ed

e

B 1-——————

breast tumors

Luminal A down

Max. ES at Leading Edge

1.0

0.5

0.0

(V]

Chang (2004)
human fibroblasts

(V)

Zhou (2007)
human fibroblasts

O
Smid (2008) Pujana (2007)

breast tumors
BRCA1, BRCA2,

ATM and CHECK2
network modelling

ionizing radiation,
cell cycle related

Serum response,
cell cycle related

-0.05

-0.1

MRI Factor

1.0 0.25 0.05

signed FDR

0.25 0.4

Gilhuijs et al, Med Phys 1998

Bismeiier et al. Radiology 2020 @basvandervelden




Explain imaging using genotype

a Biomarker-assessment

S
— =
s < _| Z
.; =) »
£ St
5 =
7 w

D
g o _] 2
- = 7
8 »n
s 3
2 < _| 2
= S =
D

o 2
= 7]
g o :
= S =

<

S | | | | |

0 2 4 6 8 10
Years
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Take home messages

XAl adds confidence to decisions
« XAl can improve performance

« Holistic XAl: more than images
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