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Explainable Machine Learning

The Need for Explanations:

Why did the machine learning system

I Classify my company as high risk for money laundering?

I Reject my bank loan?

I Give a certain medical diagnosis?

I Make a certain mistake?

I Reject the profile picture I uploaded to get a new OV chipcard?1

I . . .

A Communication Limit:

I Cannot communicate millions of parameters!

I Can communicate only some relevant aspects and/or need
high-level concepts in common with user

1Personal experience
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Binary Classification
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Local Post-hoc Explanations

s
x1
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input x to
be explained

I Local: only explain the part of f that is (most) relevant for x .

I Post-hoc: ignore explainability concerns when estimating f .
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Local Explanations via Attributions
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ϕf (x)1
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...
ϕf (x)d−1

ϕf (x)d

 = ϕf (x)

− +

φf (x) ∈ Rd attributes a weight to each feature, which explains
how important the feature is for the classification of x by f .
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Examples of Local Attribution Methods



Example Attribution Method: LIME

LIME: Do local linear approximation of f near x (optionally in
dimensionality reduced space), and report coefficients

LIME for tabular data:2

(classifying edibility of mushrooms)

2Image source: https://github.com/marcotcr/lime
6 / 16

https://github.com/marcotcr/lime


Example Attribution Method: LIME

LIME: Do local linear approximation of f near x (optionally in
dimensionality reduced space), and report coefficients

LIME for images:2

(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar (d) Explaining Labrador

Figure 4: Explaining an image classification prediction made by Google’s Inception neural network. The top
3 classes predicted are “Electric Guitar” (p = 0.32), “Acoustic guitar” (p = 0.24) and “Labrador” (p = 0.21)

4. SUBMODULAR PICK FOR
EXPLAINING MODELS

Although an explanation of a single prediction provides
some understanding into the reliability of the classifier to the
user, it is not su�cient to evaluate and assess trust in the
model as a whole. We propose to give a global understanding
of the model by explaining a set of individual instances. This
approach is still model agnostic, and is complementary to
computing summary statistics such as held-out accuracy.

Even though explanations of multiple instances can be
insightful, these instances need to be selected judiciously,
since users may not have the time to examine a large number
of explanations. We represent the time/patience that humans
have by a budget B that denotes the number of explanations
they are willing to look at in order to understand a model.
Given a set of instances X, we define the pick step as the
task of selecting B instances for the user to inspect.

The pick step is not dependent on the existence of explana-
tions - one of the main purpose of tools like Modeltracker [1]
and others [11] is to assist users in selecting instances them-
selves, and examining the raw data and predictions. However,
since looking at raw data is not enough to understand predic-
tions and get insights, the pick step should take into account
the explanations that accompany each prediction. Moreover,
this method should pick a diverse, representative set of expla-
nations to show the user – i.e. non-redundant explanations
that represent how the model behaves globally.

Given the explanations for a set of instances X (|X| = n),
we construct an n⇥ d0 explanation matrix W that represents
the local importance of the interpretable components for
each instance. When using linear models as explanations,
for an instance xi and explanation gi = ⇠(xi), we set Wij =
|wgij |. Further, for each component (column) j in W, we
let Ij denote the global importance of that component in
the explanation space. Intuitively, we want I such that
features that explain many di↵erent instances have higher
importance scores. In Figure 5, we show a toy example W,
with n = d0 = 5, where W is binary (for simplicity). The
importance function I should score feature f2 higher than
feature f1, i.e. I2 > I1, since feature f2 is used to explain
more instances. Concretely for the text applications, we set
Ij =

pPn
i=1 Wij . For images, I must measure something

that is comparable across the super-pixels in di↵erent images,

Figure 5: Toy example W. Rows represent in-
stances (documents) and columns represent features
(words). Feature f2 (dotted blue) has the highest im-
portance. Rows 2 and 5 (in red) would be selected
by the pick procedure, covering all but feature f1.

Algorithm 2 Submodular pick (SP) algorithm

Require: Instances X, Budget B
for all xi 2 X do

Wi  explain(xi, x
0
i) . Using Algorithm 1

end for
for j 2 {1 . . . d0} do

Ij  
pPn

i=1 |Wij | . Compute feature importances
end for
V  {}
while |V | < B do . Greedy optimization of Eq (4)

V  V [ argmaxi c(V [ {i}, W, I)
end while
return V

such as color histograms or other features of super-pixels; we
leave further exploration of these ideas for future work.

While we want to pick instances that cover the important
components, the set of explanations must not be redundant
in the components they show the users, i.e. avoid selecting
instances with similar explanations. In Figure 5, after the
second row is picked, the third row adds no value, as the
user has already seen features f2 and f3 - while the last row
exposes the user to completely new features. Selecting the
second and last row results in the coverage of almost all the
features. We formalize this non-redundant coverage intuition
in Eq. (3), where we define coverage as the set function c
that, given W and I, computes the total importance of the
features that appear in at least one instance in a set V .

2Image source: [Ribeiro et al., 2016]
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Example: Gradient-based Explanations

Various gradient methods3

Sharper sensitivity maps: removing noise by adding noise

Figure 4. Effect of sample size on the estimated gradient for inception. 10% noise was applied to each image.

Figure 5. Qualitative evaluation of different methods. First three (last three) rows show examples where applying SMOOTHGRAD had
high (low) impact on the quality of sensitivity map.

I Vanilla gradient: φf (x) = ∇f (x)

I SmoothGrad: φf (x) = EZ∼N (x,Σ)[∇f (Z )]

I . . .

3Image source: [Smilkov et al., 2017]
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Example: Counterfactual Explanations

“If you would have had an income of e40 000 instead of e35 000,

your loan request would have been approved.”

s
x1

x2

f (x) = 0

-1

+1

x

x̃ (counterfactual)

φf (x)

Counterfactual explanation: x̃ = arg min
x′:sign(f (x′))6=sign(f (x))

dist(x ′, x)

Viewed as attribution method: φf (x) = x̃ − x
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How Do We Evaluate Explanations?

I When are they good? Are some better than others?

I What is even the goal they are trying to achieve?



Explanations with Recourse as their Goal

“If you change your current income of e35 000 to e40 000,

then your loan request will be approved.”

s
x1

x2

f (x) = 0

-1

+1

x

x̃

φf (x)

I Attribution methods provide recourse if they tell the user how to
change their features such that f takes their desired value.
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Impossibility:

No Single Method Can Be
Both Recourse Sensitive and Robust

Theorem

For any δ > 0 there exists a continuous function f such that no
attribution method φf can be both recourse sensitive and continuous.



Recourse Sensitivity
I Our definition: weakest possible requirement for providing recourse.

s
x1

x2

f (x) = 0

x

1. Assume user can change their features by at most some δ > 0

2. φf (x) can point in any direction that provides recourse within
distance δ, and length does not matter as long as it is > 0.

3. If no direction provides recourse, then φf (x) can be arbitrary.

12 / 16
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Recourse Sensitivity: Example
Profile picture is accepted if contrast

between profile and background is large enough:

(a) Accepted profile picture (b) Rejected profile picture
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Robustness of Explanations

Compare:

1. “If you change your current income of e35 000 to e40 000, then
your loan request will be approved.”

2. “If you change your current income of e35 001 to e45 000, then
your loan request will be approved.”

Minor changes in x should not cause big changes in explanations!

Robustness: If f is continuous, then φf should also be continuous.
(e.g. survey of recourse by [Karimi et al., 2021])
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Conclusion

Summary:

I In binary classification: exist f for which recourse sensitivity +
robustness is impossible

I Further extensions in the paper:
I Generalization to multiclass and regression using utility functions
I Include constraints on user actions
I Exact characterization of impossible f when user can only change a

single feature

Discussion:
Is the field of explainable machine learning in trouble?
Not, but need to refine goals of explainability for recourse. E.g.:

I Accept that robustness sometimes fails

I Set-valued explanations

I Randomized explanations

I . . .
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Proof Sketch

x

L

R

3
2δ

f (x)

L = {x : recourse possible by moving at most δ left}
R = {x : recourse possible by moving at most δ right}

Recourse sensitivity implies:

φf (x)


< 0 for x ∈ L \ R
> 0 for x ∈ R \ L
6= 0 for x ∈ L ∩ R

But this contradicts continuity!
(by the mean-value theorem)

Can embed 1D example in higher
dimensions as well.
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