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Setting the scene

Situations with many parameters relative to the sample size, e.g.,
many predictors in regression analysis.

Need to select predictors to avoid overfitting.

Example: Communities and crime data (Redmond & Baveja,
2002) 2

- DV: number of violent crimes

- 172 predictors after creating dummies

- 319 observations after listwise deletion

- Split into a training (n = 159) and test (n = 160) set

2Available at: https://archive.ics.uci.edu/ml/datasets/
Communities+and+Crime+Unnormalized
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Bias-variance tradeoff

Variance: extent to which the model changes if we use a different
training set (more flexible model = higher variance).

Bias: the error introduced by using a model that simplifies reality
(more flexible model = less bias).

Overfitting:

- Picking up noise in our data.

- Model with low bias but high variance, i.e., a flexible model
(large number of predictors).

- As the number of predictors increases, the training MSE will
decrease but the test MSE will start increasing again at
some point.
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Classical penalization

Adds a penalty to the estimation problem:

minimize
βββ

{RSS+ penalty}

For example, the lasso (λ
∑p

j=1 |βj |) or the ridge (λ
∑p

j=1 |β2j |)
penalty.

The tuning parameter λ is typically determined via
cross-validation.
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Communities and crime: Classical penalization

Method PMSE # of predictors

Ridge 0.258 160
Elastic net 0.460 26
Lasso 0.508 33
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Bayesian analysis

Posterior ∝ Prior × Likelihood
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Why use Bayes?

Shrinkage prior = penalty

Advantages:

- Automatic uncertainty estimates

- Intuitive interpretation

- Incorporate prior info

- Shrinkage natural through the prior

- Many different (non-convex) shrinkage priors exist (free
lunch?)

- “Tuning“ of λ via hyperprior specification
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Shrinkage priors 1: Classical counterparts

Ideally, shrinkage priors have a peak at zero and heavy tails.

Normal mixture

Elastic net Hyperlasso Horseshoe

Ridge Local t Lasso

Hsiang (1975)

Normal mixture

Elastic net Hyperlasso Horseshoe

Ridge Local t Lasso

Park & Casella (2008) Normal mixture

Elastic net Hyperlasso Horseshoe

Ridge Local t Lasso

Li & Lin (2010)
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Communities and crime: Bayesian penalization (1)

Framework Method PMSE # of predictors

Classical Ridge 0.258 160
Elastic net 0.460 26
Lasso 0.508 33

Full Bayes Ridge 0.217 61
Elastic net 0.216 62
Lasso 0.216 46

Note: selection of predictors is not automatic in the Bayesian
framework.
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Communities and crime: Bayesian vs. classical CIs
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Shrinkage priors 2: “Bayesian“ shrinkage priors
Ideally, shrinkage priors have a peak at zero and heavy tails.

Normal mixture

Elastic net Hyperlasso Horseshoe

Ridge Local t Lasso

Meuwissen, Hayes, & Goddard (2001)

Normal mixture

Elastic net Hyperlasso Horseshoe

Ridge Local t Lasso

Carvalho et al. (2010)

Normal mixture

Elastic net Hyperlasso Horseshoe

Ridge Local t Lasso

Griffin & Brown (2011)

Normal mixture

Elastic net Hyperlasso Horseshoe

Ridge Local t Lasso

Mitchell & Beauchamp (1988); George & McCulloch (1993)12 / 21



Communities and crime: Bayesian penalization (2)

Framework Method PMSE # of predictors

Classical Ridge 0.258 160
Elastic net 0.460 26
Lasso 0.508 33

Full Bayes Ridge 0.217 61
Elastic net 0.216 62
Lasso 0.216 46
Local t 0.216 60
Hyperlasso 0.215 46
Regularized horseshoe 0.226 31
Normal mixture 1.683 54

Note: selection of predictors is not automatic in the Bayesian
framework.
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Shrinkage priors: Simulation study

Comparison of these priors in a simulation study3 showed that:

- Different penalization methods generally perform very
similarly in terms of prediction accuracy when p < n

- Differences become more pronounced as p > n (only 1
condition)

- Not one method outperforms the others in terms of correct
and false inclusion rates

- Selection accuracy (MCC) is low for all methods in p > n
condition

- Methods vary greatly in terms of computational efficiency

3van Erp, Oberski, & Mulder (2019)
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Why not to use Bayes?

- Many shrinkage priors make it difficult to choose

- Tuning of priors

- Computationally inefficient

- No automatic variable selection

First two issues can be (partly) solved through a prior sensitivity
analysis.

Do the advantages weigh up against the disadvantages?
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Tuning of priors
Some priors have more hyperparameters to “tune” than others.

Ridge:

βj |λ, σ2 ∼ Normal(0,
σ2

λ
)

Regularized horseshoe:

βj |τ̃2j , λ ∼ N(0, τ̃2j λ), with τ̃
2
j =

c2τ2j
c2 + λ2τ2j

λ|λ20 ∼ half-Cauchy(0, λ20), with λ0 =
p0

p − p0

σ√
N

τj ∼ half-Cauchy(0, 1)

c2|ν, s2 ∼ inverse Gamma(ν/2, νs2/2)
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Extension 1: Meta-analysis

Idea: use shrinkage priors to select relevant moderators in
meta-analysis4.

Lasso and regularized horseshoe priors implemented in the R
package pema with selection based on CIs.

BRMA outperformed meta-regression in terms of predictive
accuracy and specificity, especially for small n.

Regression coefficients are biased towards zero, but residual
heterogeneity estimate is not.

4van Lissa, van Erp, & Clapper (under review)
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Extension 2: SEM

Idea: use shrinkage priors to select non-zero parameter in SEMs.

Possible applications:

- Cross-loadings and residual covariances in CFA

- Loadings in EFA

- Covariates in MIMIC models

- Mediators in mediation analysis

- Violations of measurement invariance

- . . .

Shrinkage priors can (in theory) be applied to any model with
(too) many parameters where some are assumed to be zero.
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Conclusion

In the current age of big data and complex models, shrinkage
methods are more important than ever.

Bayesian shrinkage priors offer a natural way of penalization, with
certain advantages.

More work is needed to apply Bayesian shrinkage methods in a
user-friendly way, solving issues such as prior choice, variable
selection, and computational efficiency.
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Thank you!

s.j.vanerp@uu.nl
Twitter: @SaravanErp
Github: https://github.com/sara-vanerp
https://saravanerp.com
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