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Setting the scene

Situations with many parameters relative to the sample size, e.g.,
many predictors in regression analysis.

Need to select predictors to avoid overfitting.

Example: Communities and crime data (Redmond & Baveja,
2002) ?

- DV: number of violent crimes

172 predictors after creating dummies
319 observations after listwise deletion
Split into a training (n = 159) and test (n = 160) set

2Available at: https://archive.ics.uci.edu/ml/datasets/

Communities+and+Crime+Unnormalized
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Bias-variance tradeoff

Variance: extent to which the model changes if we use a different
training set (more flexible model = higher variance).

Bias: the error introduced by using a model that simplifies reality
(more flexible model = less bias).

Overfitting:
- Picking up noise in our data.

- Model with low bias but high variance, i.e., a flexible model
(large number of predictors).

- As the number of predictors increases, the training MSE will
decrease but the test MSE will start increasing again at
some point.
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Classical penalization

Adds a penalty to the estimation problem:

mingnize {RSS + penalty}

For example, the lasso (A >°7_; [B;]) or the ridge (A -7, [67])
penalty.

The tuning parameter A is typically determined via
cross-validation.
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Communities and crime: Classical penalization

Method

PMSE # of predictors

Ridge
Elastic net
Lasso

0.258 160
0.460 26
0.508 33
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Bayesian analysis

Posterior o« Prior x Likelihood

Likelihood — Posterior -- Prior

fae
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Why use Bayes?

Shrinkage prior = penalty

Advantages:
- Automatic uncertainty estimates
- Intuitive interpretation

- Incorporate prior info

- Shrinkage natural through the prior

- Many different (non-convex) shrinkage priors exist (free
lunch?)

- “Tuning” of A via hyperprior specification
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Shrinkage priors 1: Classical counterparts

Ideally, shrinkage priors have a peak at zero and heavy tails.

Ridge

Lasso

Elastic net

A

Hsiang (1975)

Park & Casella (2008)

Li & Lin (2010)
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Communities and crime: Bayesian penalization (1)

Framework Method PMSE # of predictors

Classical Ridge 0.258 160
Elastic net  0.460 26
Lasso 0.508 33
Full Bayes Ridge 0.217 61
Elastic net 0.216 62
Lasso 0.216 46

Note: selection of predictors is not automatic in the Bayesian

framework.

10/21



Communities and crime: Bayesian vs. classical Cls




Shrinkage priors 2: “Bayesian® shrinkage priors

Ideally, shrinkage priors have a peak at zero and heavy tails.

Local t Hyperlasso

T~ I N

Meuwissen, Hayes, & Goddard (2001) Griffin & Brown (2011)

Horseshoe Normal mixture
1

Carvalho et al. (2010) Mitchell & Beauchamp (1988); George & McCulloch (]g%l



Communities and crime

. Bayesian penalization (2)

Framework Method

PMSE # of predictors

Classical Ridge 0.258 160
Elastic net 0.460 26
Lasso 0.508 33
Full Bayes Ridge 0.217 61
Elastic net 0.216 62
Lasso 0.216 46
Local t 0.216 60
Hyperlasso 0.215 46
Regularized horseshoe 0.226 31
Normal mixture 1.683 54

Note: selection of predictors is not automatic in the Bayesian

framework.
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Shrinkage priors: Simulation study

Comparison of these priors in a simulation study® showed that:

Different penalization methods generally perform very
similarly in terms of prediction accuracy when p < n

Differences become more pronounced as p > n (only 1
condition)

Not one method outperforms the others in terms of correct
and false inclusion rates

Selection accuracy (MCC) is low for all methods in p > n
condition

Methods vary greatly in terms of computational efficiency

3van Erp, Oberski, & Mulder (2019)
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Why not to use Bayes?

Many shrinkage priors make it difficult to choose

Tuning of priors

Computationally inefficient

No automatic variable selection

First two issues can be (partly) solved through a prior sensitivity
analysis.

Do the advantages weigh up against the disadvantages?
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Tuning of priors

Some priors have more hyperparameters to “tune” than others.

Ridge:

2
B;j|A, 0% ~ Normal(0, %)

Regularized horseshoe:

c?7?
~2 ~2 . ~2 J
Bil77 A ~ N(O, 77 A), with 77 = PR
J
. Po o
A2 ~ half-Cauchy(0, A2), with Ag = —
%o (0.2) T p—po VN

T; ~ half-Cauchy(0, 1)

c?|v, s? ~ inverse Gamma(v/2, vs?/2)
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Extension 1: Meta-analysis

Idea: use shrinkage priors to select relevant moderators in
meta-analysis®.

Lasso and regularized horseshoe priors implemented in the R
package pema with selection based on Cls.

BRMA outperformed meta-regression in terms of predictive
accuracy and specificity, especially for small n.

Regression coefficients are biased towards zero, but residual
heterogeneity estimate is not.

*van Lissa, van Erp, & Clapper (under review)
17/21



Extension 2: SEM

Idea: use shrinkage priors to select non-zero parameter in SEMs.

Possible applications:

- Cross-loadings and residual covariances in CFA
Loadings in EFA
Covariates in MIMIC models

Mediators in mediation analysis

Violations of measurement invariance

Shrinkage priors can (in theory) be applied to any model with
(too) many parameters where some are assumed to be zero.
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Conclusion

In the current age of big data and complex models, shrinkage
methods are more important than ever.

Bayesian shrinkage priors offer a natural way of penalization, with
certain advantages.

More work is needed to apply Bayesian shrinkage methods in a

user-friendly way, solving issues such as prior choice, variable
selection, and computational efficiency.
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Thank youl

s.j.vanerp@uu.nl

Twitter: @SaravanErp

Github: https://github.com/sara-vanerp
https://saravanerp.com
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