z-value and SNR 00000	Coverage 00	Power 00	Predictive power	Sign agreement	The winner's curse	Discussion 00

Lifting the Winner's Curse

Erik van Zwet, Leiden University Medical Center

BMS Aned October 7, 2022

Erik van Zwet, Leiden University Medical Center

More than one million z-values from Medline

U

z-value and SNR	Coverage	Power	Predictive power	Sign agreement	The winner's curse	Discussion
00000	00	00	00	00	0000	00

More than 45,000 z-values from Cochrane

45,955 randomized controlled trials

- The "essence" of an RCT is a set of 3 numbers: (β, b, s) .
 - β is the primary effect parameter (difference of means, log odds ratio or log hazard ratio)
 - *b* is a normally distributed, unbiased estimator of β with standard error *s*.

We have collected 45,955 independent pairs (b_i, s_i) from the Cochrane Database of Systematic Reviews.

SNR and z-value

We estimate the joint distribution of the z-value z = b/s and the signal-to-noise ratio $SNR = \beta/s$ in two steps:

Step 1: We estimate the distribution of z directly from the observed pairs (b_i, s_i) .

Step 2: The distribution of z is the convolution of the distribution of the *SNR* with the standard normal. So, the distribution of the *SNR* can be obtained from the distribution of z by "deconvolution".

z-value and SNR	Coverage	Power	Predictive power	Sign agreement	The winner's curse	Discussion
0000	00	00	00	00	0000	00

Step 1: Distribution of the *z*-value

The distribution of z is well approximated by a mixture of 4 normal components.

z-value and SNR	Coverage	Power	Predictive power	Sign agreement	The winner's curse	Discussion
00000	00	00	00	00	0000	00

Step 2: Distribution of the SNR

Deconvolution is easy: subtract 1 from the variance of each of the components of the mixture distribution of z.

Some statistical quantities

Important quantities depend on (β, b, s) only through (z, SNR):

- ► coverage: $b - 1.96s < \beta < b + 1.96s \Leftrightarrow z - 1.96 < SNR < z + 1.96$
- significance: |z| > 1.96
- correct sign: $\beta \cdot b > 0 \Leftrightarrow SNR \cdot z > 0$
- exaggeration: $|b/\beta| = |z/SNR|$

Coverage

We have the coverage statement

$$P(b-1.96 \, s < \beta < b+1.96 \, s \mid \beta, s) = 0.95$$

which must not be confused with

$$P(b - 1.96 \, s < \beta < b + 1.96 \, s \mid b, s) = 0.95$$

With the joint distribution of the *SNR* and the *z*-value we can compute the conditional probability of coverage, given the *z*-value:

$$P(b-1.96 s < \beta < b+1.96 s \mid z) = P(z-1.96 < SNR < z+1.96 \mid z).$$

z-value and SNR	Coverage	Power	Predictive power	Sign agreement	The winner's curse	Discussion
00000	0	00	00	00	0000	00

Coverage

z-value and SNR 00000	Coverage 00	Power ●0	Predictive power	Sign agreement	The winner's curse	Discussion 00

Power

RCTs are designed to have 80% or 90% power for testing $H_0: \beta = 0$ against an alternative that is considered to be of clinical interest, or plausible, or both.

The power against the true effect is given by

$$P(|z| > 1.96 | \beta, s) = \Phi(-1.96 - SNR) + 1 - \Phi(1.96 - SNR).$$

The probability of a significant result in the right direction is $\Phi(-1.96 + |SNR|)$.

We can transform our estimate of the distribution of the SNR into an estimate of the distribution of the power against the true effect.

z-value and SNR	Coverage	Power	Predictive power	Sign agreement	The winner's curse	Discussion
00000	00	0.	00	00	0000	00

Distribution the power (median=14%, mean=29%)

z-value and SNR 00000	Coverage 00	Power 00	Predictive power ●0	Sign agreement	The winner's curse	Discussion 00

Predictive power

The power is just a function of the *SNR*. Since we have the joint distribution of the *SNR* and the *z*-value, we also have the conditional distribution of the power given the *z*-value.

The conditional *expectation* of the power given the *z*-value is sometimes called the predictive power.

Predictive power = the probability of a significant result when a study with a particular z-value would be repeated exactly.

z-value and SNR	Coverage	Power	Predictive power	Sign agreement	The winner's curse	Discussion
00000	00	00	0.	00	0000	00

Predictive power

z-value and SNR	Coverage	Power	Predictive power	Sign agreement	The winner's curse	Discussion
00000	00	00	00	•0	0000	00

With the joint distribution of the *SNR* and the *z*-value we can compute the conditional probability that *b* has the same sign as β , given the observed *z*-value:

$$P(b \cdot \beta > 0 \mid z) = P(z \cdot SNR > 0 \mid z).$$

z-value and SNR	Coverage	Power	Predictive power	Sign agreement	The winner's curse	Discussion
00000	00	00	00	0.	0000	00

The gap

z-value and SNR 00000	Coverage 00	Power 00	Predictive power	Sign agreement	The winner's curse ●000	Discussion 00

Define the exaggeration

$$\frac{|b|}{|\beta|} = \frac{|b|/s}{|\beta|/s} = \frac{|z|}{|SNR|}.$$

From the joint distribution of the SNR and z, we can obtain the conditional distribution of the exaggeration given z.

z-value and SNR	Coverage	Power	Predictive power	Sign agreement	The winner's curse	Discussion
00000	00	00	00	00	0000	00

The conditional quartiles of $|b/\beta|$ given z

z-value and SNR	Coverage	Power	Predictive power	Sign agreement	The winner's curse	Discussion
00000	00	00	00	00	0000	00

The exaggeration can be addressed with shrinkage. Recalling that $SNR = \beta/s$, we propose

$$\hat{\beta} = s \mathbb{E}(SNR \mid z).$$

as an alternative to the unbiased estimator b.

z-value and SNR	Coverage	Power	Predictive power	Sign agreement	The winner's curse	Discussion
00000	00	00	00	00	0000	00

The conditional quartiles of $|b/\beta|$ given z

z-value and SNR 00000	Coverage 00	Power 00	Predictive power	Sign agreement	The winner's curse	Discussion ●0

Discussion

- The distribution of the signal-to-noise ratio across the Cochrane database (CDSR) says something about "how medical research is done".
- We can use this information to improve our inferences on average across the CDSR.
- To use this information for the interpretation a particular trial, we must view this trial as *exchangeable* with the trials in the CDSR. This means ignoring all distinguishing features.

z-value and SNR 00000	Coverage 00	Power 00	Predictive power	Sign agreement	The winner's curse	Discussion O

References

- 1. with Andrew Gelman: A proposal for informative default priors scaled by the standard error of estimates (2022) in *The American Statistician*
- 2. with Simon Schwab and Stephen Senn: The statistical properties of RCTs and a proposal for shrinkage (2021) in *Statistics in Medicine*
- 3. with Simon Schwab and Sander Greenland: Addressing exaggeration of effects from single RCTs (2022) in *Significance*
- 4. with Steven Goodman: How large should the next study be? Predictive power and sample size requirements for replication studies (2022) in *Statistics in Medicine*

