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Goal: A/B test with 
notion of effect 
size, that is robust 
under optional 
stopping 
(sequential testing) data collection →



Warming up: reject null hypothesis? (i)



Warming up: reject null hypothesis? (ii)



Warming up: reject null hypothesis? (iii)



P-values do not guarantee Type-I error rate

. Figure: adapted from Turner et al., 2021



Example: SWEPIS study on stillbirth

• Comparing perinatal death in 
labour induction at 41 or 42 
weeks

• Stopped after ±1380 births in 
each group: 6 perinatal 
deaths in 42 weeks group

• Sequential test with balanced 
design: would often have 
stopped earlier 

Simulated stopping times with and without 
using knowledge from previous studies in sequential 
test*

* SWEPIS study: Wennerholm et al. published in bmj, 367, 2019. Figure: adapted from Turner et al., 2021



Inspiration: game theoretic learning

2001 2019



Tests as bets (Shafer, 2019)

1. Forecaster announces that 
data 𝑌 are generated by 
distribution 𝑃 ≔ ℋ!

2. We are skeptic: we place a 
bet* against ℋ!

3. Reality shows us the true 
outcome 𝑌 and our profit our 
loss

Betting interpretation
ℋ𝟎 true? Expect no profit

High profit? Reject ℋ𝟎

*Prequential idea (Dawid, 1984): learn ℋ! and ℋ"
from data in previous bets with prediction strategy



Flexible, sequential setting

• data come in a stream of data blocks 𝑗 = 1, 2, …
• each block has 𝑛 = 𝑛# + 𝑛$ observations
• observations seen up to and including block 𝑗: 
𝑦#
(&) = 𝑦(,# , … , 𝑦& *!,# and 𝑦$

(&) = 𝑦(,$ , … , 𝑦& *",$
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Flexible, sequential setting

• data come in a stream of data blocks 𝑗 = 1, 2, …
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• observations seen up to and including block 𝑗: 
𝑦#
(&) = 𝑦(,# , … , 𝑦& *!,# and 𝑦$

(&) = 𝑦(,$ , … , 𝑦& *",$

A

B

A A A A A A

B B B B B B B B B

A B

A

A

A

O.K. as long as we ”lock 
in” block composition 

before start of that 
block!



Running example: 2x2 contingency table setting

Do success probabilities differ 
between strategies?

• ℋ! : observations 𝑌 ∈ {0,1}
independent of strategy
𝑋 ∈ {𝑎, 𝑏}

• Equivalently, when
𝑌+ ~

-.-./. Bernoulli(θ+):
ℋ!: 𝜃# = 𝜃$.

2x2 contingency table

Strategy

A B

O
ut

co
m

e Success S(A) S(B)

Failure F(A) F(B)



2x2 contingency table setting

“True” success probabilities 
for each strategy somewhere 

in the unit square



2x2 contingency table setting

Testing: outside of the dashed 
line?



2x2 contingency table setting

Estimating: somewhere in the 
shaded area?



Tool for analyzing sequential data: E-variables*

• Nonnegative RV 𝑆, where for all 
𝑃! ∈ ℋ!:

𝔼0# 𝑆 ≤ 1
• Straightforward implementation in 

test: reject ℋ! iff 𝑆 ≥ 𝛼1(

• Type-I error guarantee at 𝛼 (e.g. 𝛼 =
0.05, reject if 𝑆 ≥ 20)

*Vovk and Wang (2021); Shafer (2021); Grünwald et al. (2019).

Betting interpretation
ℋ𝟎 true? Expect no profit

High profit? Reject ℋ𝟎



Point alternative 2 data streams: nice general expression!

Point ℋ( 𝑃2!,2"(Turner, 2021):

S(𝑌(()) ≔ C
-3(

*! 𝑝2!(𝑌-,#)
𝑝2#(𝑌-,#)

C
-3(

*" 𝑝2"(𝑌-,$)
𝑝2#(𝑌-,$)

E-variable when we choose 𝜃! = (𝑛#/𝑛)𝜃# + (𝑛$/𝑛)𝜃$



E-process for two data streams

• Can make an e-process: multiply E-
values for all data blocks

𝑆(")(𝑌(")) ≔ 7
$%&

"

𝑆 (𝑌$)

• For arbitrary stopping rule (E-value 
≥ 20, no money for further 
experiment, etc..):
𝑃# ∃𝑚: 𝑆 $ 𝑌 $ ≥ 𝛼%& ≤ 𝛼

Key: multiplying E-values yields 
another E-value

A

B

A A

B B B B B

𝑆! 𝑆" 𝑆#

𝑆(#)
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Learn parameter for ℋ!

• Can learn estimate ( F𝜃# , F𝜃$) of 
true alternative before each 
new data block, based on 
past data
– Maximum likelihood
– MAP estimator
– Posterior mean, …

• Restrict search space based 
on expert knowledge



Learn parameter for ℋ!

• Can learn estimate ( F𝜃# , F𝜃$) of 
true alternative before each 
new data block, based on 
past data
– Maximum likelihood
– MAP estimator
– Posterior mean, …

• Restrict search space based 
on expert knowledge

No matter how we learn 
( (𝜃# , (𝜃$), S is still an E-

variable for testing ℋ!!  



Evidence against ℋ! and Type-II error

• GRO criterion: in sequential 
experiments: optimize “growth rate” 
of E-variable, 𝔼0$[log 𝑆] (Grünwald, 
2019)

• Minimize notion of regret: loss of 
capital growth under alternative due 
to not knowing true 𝑃(.

• Closely connected to optimizing 
power



2x2 E-values vs classical counterpart

Figure adapted from Turner et al., 2021, figure 4



2x2 E-values vs classical counterpart

Figure adapted from Turner et al., 2021, figure 4

Although expect to collect 
similar number of 

samples, have to alot 
money for more in 

advance…



2x2 E-values vs classical counterpart

Figure adapted from Turner et al., 2021, figure 4

On plus side: allowed to 
continue experiment/ combine 

with new experiment even 
years after first experiment has 

ended!



Extension to confidence 
intervals



Anytime-valid confidence sequences

Formally; confidence sequence 𝐶𝑆 with coverage at level (1 −
𝛼):
– 𝑃,!,," for any 𝑚 = 1, 2,… ∶ 𝛿 𝜃-, 𝜃. ∉ 𝐶𝑆 $ ≤ 𝛼
– 𝛿 𝜃-, 𝜃. : measure of effect size

data collection →

Update effect size estimate each time a new batch of 
data has come in, with coverage guarantee (real value 
is in my estimate with some minimum probability)



Key: use E-process to test effect size values 

• Let 𝑆8# 9
: be an E-process for testing: 

ℋ! ≔ {𝑃2#: 𝜃! ∈ Θ! 𝛿 }
• Probability of falsely rejecting ℋ!bounded 

by 𝛼 (because it is an E-process)!
• Construct anytime-valid confidence 

sequence 𝐶𝑆;,(:) = 𝛿: 𝑆8# 9
: ≤ (

;
• → gives us the desired coverage at level 

1 − 𝛼 .

Θ! 𝛿 = 𝜃# , 𝜃$ : 𝜃$ − 𝜃# = 0.3



Extension to ℋ" beyond 𝜃# = 𝜃$: examples

Effect size 𝛿: 𝜃# , 𝜃$ → 𝛾; 𝛾 ∈ Γ.
– E.g. Risk Difference: 𝜹 𝜽𝒂, 𝜽𝒃 =
𝜽𝒃 − 𝜽𝒂,	𝚪 = [−𝟏, 𝟏]

– E.g. Odds Ratio: 𝛿 𝜃-, 𝜃. =
,"
&%,"

&%,!
,!

,	Γ = ℝ9

Θ! 𝛿 = 𝜃# , 𝜃$ : 𝜃$ − 𝜃# = 0.3



Extension to ℋ" beyond 𝜃# = 𝜃$: examples

Effect size 𝛿: 𝜃# , 𝜃$ → 𝛾; 𝛾 ∈ Γ.
– E.g. Risk Difference: 𝛿 𝜃-, 𝜃. =
𝜃. − 𝜃-,	Γ = [−1, 1]

– E.g. Odds Ratio: 𝜹 𝜽𝒂, 𝜽𝒃 =
𝜽𝒃
𝟏%𝜽𝒃

𝟏%𝜽𝒂
𝜽𝒂

,	𝜞 = ℝ9

Θ! 𝛿 = 𝜃# , 𝜃$ : 𝑙𝑂𝑅 𝜃$ , 𝜃# = −1



Extension of E-variable for streams to general null 
hypothesis Θ"(𝛿) for 2x2 tables

𝑆8#(𝑌
(()) ≔ ∏-3(

*! <%&!(=',!)

<&!∘ (=',!)
∏-3(
*"

<%&"
(=',")

<&"
∘ (=',")

,

where (𝜃#∘ , 𝜃$∘) achieve 
min

2!,2" ∈8#(9)
𝐷(𝑃@2!,@2"(𝑌#

*! , 𝑌$
*")|𝑃 2!∘ ,2"

∘ (𝑌#
*! , 𝑌$

*"))

and we estimate the point ( F𝜃# , F𝜃$) as before (Turner, 2022)



Simulations: risk difference

Figure adapted from Turner et al., 2022



Simulations: risk difference



Tricky case: odds ratio and convexity of ℋ"

• Need convexity of Θ! 𝛿 to 
construct E-variable

• 𝛿 > 0 → can estimate lower 
bound (see figure)

• 𝛿 < 0 → can estimate upper 
bound

Figure adapted from Turner et al., 2022
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Simulation: log of the odds ratio

One-sided 𝐶𝑆% at data block 𝑚 = 500 lower bound over time

Figure adapted from Turner et al., 2022



Simulation: log of the odds ratio

One-sided 𝐶𝑆% at data block 𝑚 = 500 lower bound over time

Figure adapted from Turner et al., 2022



Conclusion and novelty

• To our knowledge, really new: 
– exact
– flexibility (block size, user-specified notions of effect size)
– growth rate optimality: expect evidence for H1 to grow as fast as possible 

during data collection

• Wald’s sequential probability ratio test:
– Probability ratios can be interpreted as “alternative” E-variables 
– Not growth-rate optimal
– Only allow for testing odds ratio effect size



Extensions

Strategy

A B

St
ra

tu
m

 1 Success S(A1) S(B1)

Failure F(A1) F(B1)

St
ra

tu
m

 2 Success S(A2) S(B2)

Failure F(A2) F(B2)

St
ra

tu
m

 3 Success S(A3) S(B3)

Failure F(A3) F(B3)

• Beyond Bernoulli: GRO property? 
(work by Y. Hao and others)

• Stratified data and conditional 
independence 
• Use case at UMC Utrecht: 

real-time psychiatry research 
and recommendations



Software package available for R

• In R console: 
install.packages(
“safestats”)

• https://CRAN.R-
project.org/package=safestat
s



safestats helps setting up experiments



safestats helps setting up experiments



Planning with expert knowledge



Performing a safe test



Adding new data



Further reading and references

• On the theory of E-values:
– P.D. Grünwald, R. de Heide and W. Koolen (2019) on ArXiv:
– V. Vovk and R. Wang (2021). E-values: Calibration, combination, and applications. Annals of Statistics.
– G. Shafer (2021). Testing by betting: A strategy for statistical and scientific communication. Journal of 

the Royal Statistical Society, Series A. 

• On implementations of E-values:
– R.J. Turner, A. Ly and P.D. Grünwald (2021) on ArXiv:2106.02693
– R.J. Turner and P.D. Grünwald (2022) on ArXiv:2203.09785
– R software: https://CRAN.R-project.org/package=safestats


