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Introduction

▶ Linear mixed model

Y = X β+Z γ+ϵ, γ ∼ N (0,Σ), ϵ ∼ N (0, σ2In)

Y ∼ N (X β,ZΣZ⊤ + σ2In)

▶ Shrinkage
▶ Solve identifiability issues (high dimensionality)
▶ Stabilise estimator - trade bias for variance

▶ Regularising LMM
▶ Fixed effects - high dimensionality and colinearity
▶ Random effects - not well defined
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Z has (10 + 25)× 4 = 140 columns and 10 × 10 + 25 = 125 lines.

Identifiability is less restrictive and depends on
▶ the number of individuals
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Bayesian inference - Empirical Bayes

▶ Bayesian inference - priors on (β,Σ) = θ ∼ p(.|Θ)

▶ Existing solvers
▶ STAN - draws from the posterior
▶ INLA - approximate the posterior

▶ How to choose the prior?
▶ Shape - problem specific
▶ Values of the hyperparameters

▶ Choice of the hyperparameters Θ with empirical Bayes

We maximise the marginal likelihood p(Y |Θ)

Θ∗ = argmax

∫
p(Y |θ)p(θ|Θ)dθ

Sampling from the posterior is too slow.
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Marginal Likelihood maximization

▶ Empirical Bayes maximises the marginal likelihood

Θ∗ = argmax

∫
p(Y |θ)p(θ|Θ)dθ

= argmax
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exp(ll(θ;Y,Θ))dθ

▶ Laplace approximation to estimate the integral∫
exp(ll(θ;Y,Θ))dx ≃ (2π)d/2

exp(ll(θ∗))

| − H(ll)(θ∗)|1/2

where θ∗(Θ) is the MAP and H(ll) is the Hessian matrix of ll .

We need a fast estimation of the MAP θ∗
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Conjugate priors
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Choice of priors and EM MAP estimation

Conjugate priors
▶ β ∼ N (0, σ

2

λ Ip)

▶ Σ ∼ IW(η,Φ) −→ Σ ∼ IW(b,A)

EM update leads to a intuitive parameterisation.
Update rule with (Maximum a posteriori):

Σk+1 = bA+ (1 − b)
1
m

m∑
i=1

Eγγγ|θk ,Y

[
γγγ iγγγ

⊤
i

]
with A = Φ

η+q+1 , b = η+q+1
m+η+q+1



Choice of priors and EM MAP estimation

Conjugate priors
▶ β ∼ N (0, σ

2

λ Ip)

▶ Σ ∼ IW(b,A)

Given Θ = {λ, b,A} we can compute the MAP θ∗(Θ) = {β, σ,Σ}
and solve:

Θ∗ = argmax
Θ

(2π)d/2
exp(ll(θ∗))

| − H(ll)(θ∗)|1/2



Application

▶ Y ∼ 1 + t + t2 + t3 + (1 + t + t2 + t3|ind)
▶ 50 individuals

2 meas., b = 0.99 5 meas., b = 0.32 10 meas., b = 0.20



Results - RE shrinkage influence of repeats

Set up:
▶ 40 individuals
▶ FE: β ∼ N (0, I2), Xi ∼ N (0, In)
▶ RE: Σ ∼ IW(ν,Φ) such that EEE (Σ) = I4

Median of 30 experiments:

Nb. repeats RMSE β ratio KL ratio hp b

2 0.97 2.26 0.38
3 1.07 1.49 0.34
5 1.02 1.20 0.29
8 1.01 1.05 0.29
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Results - Interaction FE/RE with high dimensionality

Set up:
▶ 280 observations - 40 individuals - 7 repeats
▶ FE: β ∼ N (0, Iq), Xi ∼ N (0, In), q = {2, 500}
▶ RE: Σ ∼ IW(ν,Φ) such that EEE (Σ) = I2

Median of 10 experiments:

q b λ

2 0.17 0.09
500 0.13 1.57
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Conclusion

▶ We propose a LMM regularisation framework
▶ Data driven hyperparameter learning
▶ Combined regularisation of FE and RE

▶ Allows to model complex data
▶ High dimensional fixed effects
▶ Complex correlation structures

▶ High number of covariates / multiple random effects
▶ Unevenly distributed observations

▶ Can be extended to multivariate outcomes
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Conclusion

Thank you!

Contact: m.amestoy@amsterdamumc.nl


	Regularisation

