Seeing the forest for the trees

Marjolein Fokkema, Leiden University

What's old

Regression models used for:

- Prediction
- Inference

Computer cluster (1920)

What's new

- More computational power
- Bigger data (both *N* and *p*)

-> wider use and implementation of flexible algorithms:

- Neural nets (1958, Rosenblatt)
- Decision trees (1959, Belson / 1980, Kass)
- Support vector machines (1963, Vapnik & Chervonenkis)
- Smoothing splines (1946, Schoenberg)
- k Nearest neighbors (1951, Fix & Hodges)
- Penalized regression (1970, Hoerl & Kennard)

What's new

- Increased flexibility:
- Need built-in overfitting control
- Increased focus on prediction of new cases / generalizability

- Not new to psychometrics, e.g.:
 - Larson (1931), Mosier (1951): Cross validation & generalizability
 - Darlington (1978): Reduced variance regression
 - Gifi (1981) methods: Focus on minimizing loss functions & assume no statistical model
 - Mixed-effects models

Dataset

- Open Psychometrics Project (2015 2018)
 - N = 55,593 (75% training; 25% test)
- Outcome:
 - Took psychology as a major at university: Yes (19.4%) vs. No
- Predictors:
 - RIASEC vocational preferences scales
 - Realistic, Investigative, Artistic, Social, Enterprising, Conventional
- For all methods, parameter settings tuned using 10-fold CV on training data

• Realistic, Investigative, Artistic, Social, Enterprising, Conventional

Results

(p)GLM = (penalized) logistic regression GAM = generalized additive model with smoothing splines PRE = prediction rule ensemble GBE = gradient boosted tree ensemble items RF = random forest *k*NN = *k* nearest neighbors train test pGLM GAM PRE GBE RF tree **kNN**

Intermediate conclusion

- Simple methods capture most of the signal
- Sophisticated ML methods can improve, but often marginally
- Gains may be swamped by practical aspects (Hand, 2006; Efron, 2020)
 - Measurement / labelling errors
 - Population drift
 - Need for interpretability
 - Cost of information
- Fokkema, Iliescu (in press) European Journal of Psychological Assessment
- -> Can have simple, interpretable ML model with near-optimal accuracy?

Dataset: Predicting depression

- Respondents with current depressive disorder (N = 682)
- Response: Depression diagnosis (at two-year follow-up)
- 20 possible predictors (at baseline):
 - Age
 - Gender
 - Education level
 - Anxiety disorder
 - Symptom severity
 - Treatment
 - ...

Single decision tree for predicting depression

Decision trees

Good: Easy to interpret and apply Bad: Not most accurate method Ugly: Unstable

Decision tree ensembles

- Bagging

-

....

- Random forests
- Gradient boosting

RuleFit algorithm (Friedman & Popescu, 2008)

- 1) Take subsamples from training data
- 2) Grow tree on each sample
- 3) Extract (very large) initial ensemble of rules:
 - Include every node from every tree as a rule and
 - Include original predictor variables as linear terms
- 4) Select smaller final ensemble by sparse regression on training data:
 - Lasso regression

R package pre (Fokkema & Christoffersen)

Implements and extends RuleFit algorithm:

+ multivariate, multinomial, count, survival responses

- + use of unbiased tree algorithm
- + (non-)negativity constraints
- + include confirmatory rules
- + relaxed lasso

•••

From trees to rules

$$\begin{aligned} r_2(\mathbf{x}) &= I(IDS \le 13) \\ r_3(\mathbf{x}) &= I(IDS \le 13) \cdot I(ADuse = FALSE) \\ r_4(\mathbf{x}) &= I(IDS \le 13) \cdot I(ADuse = TRUE) \\ \underline{r_5}(\mathbf{x}) &= I(IDS > 13) \cdot I(IDS \le 21) \\ r_6(\mathbf{x}) &= I(IDS > 13) \cdot I(IDS \le 21) \\ r_7(\mathbf{x}) &= I(IDS > 13) \cdot I(IDS > 21) \end{aligned}$$

From trees to rules

$$\begin{aligned} r_2(\mathbf{x}) &= I(IDS \le 13) \\ r_3(\mathbf{x}) &= I(IDS \le 13) \cdot I(ADuse = FALSE) \\ r_4(\mathbf{x}) &= I(IDS \le 13) \cdot I(ADuse = TRUE) \\ r_6(\mathbf{x}) &= I(IDS > 13) \cdot I(IDS \le 21) \\ r_7(\mathbf{x}) &= I(IDS > 13) \cdot I(IDS > 21) \end{aligned}$$

$$F(\mathbf{x}) = \hat{\alpha}_0 + \sum_{m=1}^M \alpha_m f_m(\mathbf{x})$$

 $l_1(\mathbf{x}) = IDS$

 $l_2(\mathbf{x}) = ADuse$

...

IDS	ADuse	 r ₂	r ₃	r ₄	r ₆	r ₇	
5	FALSE	 1	1	0	0	0	
15	FALSE	 0	0	0	1	0	
18	TRUE	 0	0	0	1	0	
25	TRUE	 0	0	0	0	1	

PRE for predicting depression (Fokkema & Strobl, 2020)

Term	Description	Coeffient	SD	Importance
(Intercept)	1	-0.221	0.000	0.000
rule3	$\mathrm{IDS} > 10 \ \& \ \mathrm{LCImax} > 0.2632$	0.224	0.494	0.111
rule27	$\mathrm{IDS} > 13 \ \& \ \mathrm{LCImax} > 0.3621$	0.213	0.477	0.102
rule84	$IDS \le 16 \& AO > 17$	-0.175	0.489	0.086
rule67	$\mathrm{IDS} > 10 \ \& \ \mathrm{LCImax} > 0.3276$	0.140	0.500	0.070
rule51	$\mathrm{LCImax} > 0.26 \ \& \ \mathrm{IDS} > 9$	0.122	0.487	0.059
rule24	IDS <= 16 & GAD % in% c("Negative")	-0.080	0.499	0.040
rule110	$\mathrm{IDS} > 10 \ \& \ \mathrm{Age} > 22$	0.020	0.459	0.009
rule125	$IDS \le 17 \& AO > 13$	-0.015	0.496	0.007
rule108	$\mathrm{IDS}>14$ & pedigree %in% c("Yes")	0.002	0.478	0.001

Table 1: Predicting chronic depression - Default settings.

Variable importances (Fokkema & Strobl, 2020)

Importance

0.000

0.111

0.102

0.086

0.070

0.059

0.040

0.009

0.007

0.001

Resolution

Fokkema & Strobl (2020):

Fokkema (2020):Predictive accuracy:random forest > pre > RuleFit > linear lasso > single treeComplexity:random forest > linear lasso > RuleFit > pre > single tree

Contributions & outlook

pre provides predictive accuracy close to tree ensembles

- More interpretable
- Uses less variables for prediction

Improving trade-off and control of complexity & accuracy

- Relaxed lasso (implemented)
- Example-generating approaches (Markovitch & Fokkema, 2021)

Inference and uncertainty quantification!

- Bayesian rule ensembles
- Causal rule ensembles

Mary-Jo & the Support Vector Machines

https://www.youtube.com/channel/UCP2uiCpatuCs4FceZZnJdTg

Fokkema, M., Iliescu, D., Greiff, S., & Ziegler, M. (in press). Machine learning and prediction in psychological assessment. European Journal of Psychological Assessment. https://doi.org/10.1027/1015-5759/a000714

Iliescu, D., Greiff, S., Ziegler, M., & Fokkema, M. (in press). Artificial intelligence, machine learning, and other demons. European Journal of Psychological Assessment. https://doi.org/10.1027/1015-5759/a000713

Prediction rule ensembles

Fokkema, M. & Christoffersen, B. (2019). **pre**: Prediction Rule Ensembles. **R** package. Tutorials: https://CRAN.R-project.org/package=pre and https://github.com/marjoleinF/pre

- Fokkema, M. (2020). Fitting prediction rule ensembles with **R** package **pre**. *Journal of Statistical Software*, *92*(12), 1-30.
- Fokkema, M. & Strobl, C. (2020). Fitting prediction rule ensembles to psychological research data: An introduction and tutorial. *Psychological Methods*, *25*(5), 636–652.
- Markovitch, B., & Fokkema, M. (2021). Improved prediction rule ensembling through model-based data generation. *arXiv preprint arXiv:2109.13672*.