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Slim gebruik van wiskunde kan tot aanzienlijke besparin-
gen leiden. De vele toepassingen van OR zijn hier een 
voorbeeld van.

Soms zitten die besparingen op plekken die wat min-
der bekend zijn. Zo kent de numerieke wiskunde de me-
thode van het Adaptive Grid. Bij het berekenen van bij-
voorbeeld de luchtstromingen rond een vliegtuig wordt 
een raster van gelijke vierkanten over het toestel gelegd 
en wordt voor iedere cel de in- en uitstroom berekend. 
Het verschil tussen die twee resulteert dan in een over- 
of onderdruk etc. Die berekening wordt voor iedere cel 
vele malen herhaald, telkens een tijdstapje verder. Steeds 
wordt gekeken naar de druk in de naastliggende cellen, 
immers die bepaalt de mate van in- en uitstroom. Dit 
kost enorm veel rekentijd, zeker als de cellen en de tijd-
stappen klein zijn. Bij een Adaptive Grid worden de cellen 
eerst vrij groot gekozen, vervolgens wordt gekeken in wel-
ke cellen zich tijdens de eerste tijdstappen grote veran-
deringen voordoen. Alleen díe cellen worden vervolgens 
verkleind, de rest wordt ongemoeid gelaten. Dat proces 
wordt vele malen herhaald: de cellen worden kleiner 
naarmate er meer verandering in plaats vindt, vandaar de 
naam Adaptive Grid. Het idee hierachter is dat men geen 
rekentijd hoeft te verspillen aan die delen van het raster 
waar de veranderingen klein zijn, men zet de computer-
kracht hoofdzakelijk daar in waar ‘het ertoe doet’.

Toen ik weer eens veel te lang en veel te laat naar CNN 
keek tijdens de dagen direct na de Amerikaanse verkiezin-
gen van 2020 bedacht ik dat men hier eigenlijk prima dat 
principe van het Adaptive Grid zou kunnen toepassen. 
De uitslag wordt, door het in mijn ogen vreemde sys-
teem van ‘the winner takes all’ kiesmannen, in de praktijk 

slechts bepaald door de uitkomsten zo’n 8 tot 10 staten. 
De toewijzing van de kiesmannen aan Democraten of 
Republieken in de overige staten ligt immers al van te-
voren vast. Een Democraat in Texas kan stemmen tot hij 
een ons weegt, de kiesmannen van zijn staat gaan toch 
onveranderlijk naar de Republikeinen. Waarom zou men 
dan in zulke staten nog iedere vier jaar verkiezingen orga-
niseren, dat is verspilde tijd, geld en moeite. Als er in een 
staat de uitslag een verschil van meer dan bijvoorbeeld 
5% tussen de beide kampen laat zien wordt die staat bij 
de volgende verkiezing overgeslagen. De vierjaarlijkse 
verkiezingen worden dan alleen in die staten gehouden 
die in de praktijk de einduitslag bepalen, zo kan men tot 
aanzienlijke besparingen komen. Ook hier weer alleen je 
energie gebruiken daar waar ‘het ertoe doet’.

Denk overigens niet dat dit idee van mij revolutionair 
is. In 1958 las ik een science fiction verhaal (‘Franchi-
se’ door Isaac Asimov) over de presidentsverkiezing in 
2008, toen nog een verre toekomst. Daar gaat het nog 
veel verder. Op de dag van de verkiezing wordt slechts 
één enkele kiezer met veel ceremonieel van huis gehaald 
en naar het stemlokaal gebracht. Daar brengt hij zijn 
stem uit en dat is het. Amerika was een Electronic De-
mocracy geworden en de computer Multivac, die alles 
van alle inwoners wist, had bepaald dat deze ene kiezer 
het perfecte gemiddelde is van alle kiezers in het land: 
hij vertegenwoordigt daarom in zijn eentje alle kiezers. 
Dat zou pas een grote besparing zijn! Maar of we zoiets 
zouden moeten willen?

Gerrit Stemerdink is eindredacteur van STAtOR.
E-mail: gjstemerdink@hotmail.com
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Bezuinigen op verkiezingen met slimme wiskunde

An estimated 85% of global health research investment 
is wasted (Chalmers and Glasziou, 2009); a total of one 
hundred billion US dollars in the year 2009 when it was 
estimated. The movement to reduce this research waste 
recommends that previous study results be taken into 
account when prioritizing, designing and interpreting 
new research (Chalmers et al., 2014; Lund et al., 2016). 
Yet any recommendation to increase efficiency this way 
requires that researchers evaluate whether the studies 
already available are sufficient to complete the research 
effort; whether a new study is necessary or wasteful. These 
decisions are essentially stopping rules – or rather noisy 
accumulation processes, when no rules are enforced – 
and unaccounted for in standard meta-analysis. Hence 
reducing waste invalidates the assumptions underlying 

many typical statistical procedures.
Ter Schure and Grünwald (2019) detail all the 

possible ways in which the size of a study series up for 
meta-analysis, or the timing of the meta-analysis, might 
be driven by the results within those studies. Any such 
dependency introduces accumulation bias. Unfortunately, 
it is often impossible to fully characterize the processes 
at play in retrospective meta-analysis. The bias cannot be 
accounted for. Here, we discuss an example accumulation 
bias process, that can be one of many influencing a single 
meta-analysis, and use it to illustrate the following key 
points:
• �Standard meta-analysis does not take into account that 

researchers decide on new studies based on other study 
results already available. These decisions introduce 

ACCUMULATION BIAS 
How to handle it ALL-IN

Judith ter Schure 
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would the bias be if the three-study series are simply 
analyzed by standard meta-analysis? We illustrate this by 
simulating this Gold Rush world using R Code 1. A fixed-
effect meta-analysis Z-score weights the study estimates 
by their precision (inverse variance). Here we assume 
equal variance and large enough (and equal) sample size 
to estimate the variance without error, in which case the 
fixed-effects z(t)-score reduces to 1/sqrt(t)*sum(zs).

Theoretical sampling process
A fixed-effects meta-analysis assumes that if three studies 
z

1
, z

2
, z

3
 are each sampled under the null hypothesis, 

each has a standard normal with mean zero and the 
standard normal sampling distribution also applies for 
the combined z(3) score. The R code in R Code 1 illustrates 
this sampling process: First, a large population is 
simulated of possible first (Z1), second (Z2) and third 
(Z3) studies from a standard normal distribution. Then 
in Zmeta3 each index i represents a possible study series, 
such that c(Z1[i], Z2[i], Z3[i]) samples an unbiased study 

series and calcZmeta calculates its fixed-effects meta- 
analysis Z-score z(3). So the large number of Z-scores in 
Zmeta3 capture the unbiased sampling distribution that 
is assumed for fixed-effects meta-analysis z(3)-scores.

Gold Rush sampling process 
In contrast, the code resulting in A3 selects only those 
study series for which A(3) = 1  under extreme Gold Rush 
accumulation bias. So the large number of Z-scores in 
Zmeta3.A3 capture a biased sampling distribution for the 
fixed effects meta-analysis z(3)-scores.

Figure 1 plots two histograms of z(3) samples, one with 
and one without the Gold Rush A(t) accumulation bias 
process, based on Zmeta3.A3 and Zmeta3 respectively.

We observe in Figure 1 that the theoretical sampling 
process, resulting in the pink histogram, gives a 
distribution for the three-study meta-analysis z(3)-scores 
that is centered around zero. Under the Gold Rush 
sampling process, however, our three-study z(3)-scores 
do not behave like this theoretical distribution at all. The 

R Code 1 to simulate Figure 1

Figure 1. Sampling distributions 
under the null hypothesis of fixed-
effects meta-analysis Z-scores Z(3) 
of three studies with and without 
extreme Gold Rush accumulation 
bias A(t), under the assumption 
of equally large study sample size 
and equal variance

accumulation bias because the analysis assumes that 
the size of the study series is unrelated to the studies 
within; it essentially conditions on the number of 
studies available.

• �Accumulation bias does not result from questionable 
research practices, such as publication bias from 
file-drawering a selection of results. The decision to 
replicate only some studies instead of all of them biases 
the sampling distribution of study series, but can be a 
very efficient approach to set priorities in research and 
reduce research waste.

• �ALL-IN meta-analysis stands for Anytime, Live 
and Leading INterim meta-analysis. It can handle 
accumulation bias because it does not require a set 
number of studies, but performs analysis on a growing 
series – starting from a single study and accumulating 
as many studies as needed.

• �ALL-IN meta-analysis also allows for continuous 
monitoring of the evidence as new studies arrive, even 
as new interim results arrive. Any decision to start, 
stop or expand studies is possible, while keeping valid 
inference and type-I error control intact. Such decisions 
can be strategic: increasing the value of new studies, 
and reducing research waste.

Our example: extreme Gold Rush accumulation 
bias

We imagine a world in which a series of studies is meta-
analyzed as soon as three studies become available. 
Many topics deserve a first initial study, but the research 
field is very selective with its replications. Nevertheless, 
for significant results in the right direction, a replication 
is warranted. We call this the Gold Rush scenario, because 
after each finding of a positive significant result – the gold 
in science – some research group rushes into a replication, 
but as soon as a study disappoints, the research effort 
is terminated and no-one bothers to ever try again. This 
scenario was first proposed by Ellis and Stewart (2009) 
and formulated in detail and under this name by Ter 

Schure and Grünwald (2019). Here we consider the 
most extreme version of the Gold Rush where finding a 
significant positive result not only makes a replication 
more probable, but even inevitable: the dependency of 
occurring replications on their predecessor’s result is 
deterministic.

Biased Gold Rush sampling

We assume that we always stop performing studies when 
we’ve reached three, so we could possibly perform a meta-
analysis that includes t = 1, 2 or 3 studies:  t indicates 
the number of studies as well as the timing of the meta-
analysis. We summarize the results of individual studies 
in a single per-study Z-score (z

1
 for the first study, z

2
 for 

the second, etc). A significant positive study is shown as 
zi* (zi

 > zα with zα = 1.96 for α = 2.5%) and a nonsignificant 
or negative one as z

i
-. Our Gold Rush world consists of the 

possible study series in the box below.
Here A(t) denotes whether we accumulate and 

analyze the t studies: It can be that A(2) = 0 and A(3) 
= 0 because we are stuck at one study, but also A(1) = 
0 because we don’t ‘meta-analyze’ that single study.  
z(3) indicates the Z-score of a fixed or common effect 
meta-analysis The effects of accumulation bias are not 
limited to fixed-effects meta-analysis (see for example 
Kulinskaya et al. (2016)), but we use fixed-effects meta-
analysis as a simple illustration.

We observe in our Gold Rush world below that the 
study series that are eventually meta-analyzed into a 
Z-score z(3) are a very biased subset of all possible study 
series. So we expect these z(3) scores to be biased as well. 

The conditional sampling distribution under 
extreme Gold Rush accumulation bias

Assume that we are in the scenario that only true null 
effects are studied in our Gold Rush world, such that any 
new study builds on a false-positive result. How large 

Gold Rush world

numSim.study <- 64000000

Z1 <- rnorm(numSim.study)
Z2 <- rnorm(numSim.study)
Z3 <- rnorm(numSim.study)

# selection based on Gold Rush accumulation bias A(3) = 1
A3 <- which((Z1 > 1.96) & (Z2 > 1.96))
numSim.3series <- length(A3)

calcZmeta <- function(Zs) {
  t <- length(Zs)
  1/sqrt(t)*sum(Zs)
}

# meta Zscores for a random sample of 3-study series 
Zmeta3 <- sapply(sample(1:numSim.study, size = numSim.3series), function(i) calcZmeta(c(Z1[i], Z2[i], Z3[i])))

# meta Zscores for a biased sample of 3-study series, biased by GoldRush A(3) = 1
Zmeta3.A3 <- sapply(A3, function(i) calcZmeta(c(Z1[i], Z2[i], Z3[i])))

Gold Rush A(t)

z(3)

A(3)=1   z(3)

Zscore
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analysis, however, does not matter for its evidential value. 
Some studies (like the Australian one) are much larger 
than others, such that under a lucky scenario this study 
could reach the evidential threshold even before other 
studies start observing data.  This threshold (indicated 
at 400) controls type-I errors at a rate of α = 1/400 = 
0.0025 (details in the final section). So in repeated 
sampling under the null, the combined studies will only 
have a probability to cross this threshold that is smaller 
than 0.25%. In this repeated sampling the size of the 
study series is essentially random: we can be lucky and 
observe very convincing data in the early studies, making 
more studies superfluous, or we can be unlucky and in 
need of more studies. The threshold can be reached with 
a single study, with a two-study meta-analysis, with a 
three-study … etc, and the repeated sampling properties, 
like type-I error control, hold on average over all those 
sampling scenarios (so unconditional on the series size).

ALL-IN meta-analysis allows for meta-analyses 
with Type-I error control, while completely avoiding the 
effects of accumulation bias and multiple testing. This 
is possible for two reasons: (1) we do not just perform 
meta-analyses on study series that have reached a certain 
size, but continuously monitor study series irrespective 
of the current number of studies in the series; (2) we use 
e-values, that are based on likelihood ratios (Grünwald 
et al., 2019) instead of raw Z-scores and p-values; we say 
more on likelihood ratios further below.

Properties averaged over time

Table 1 is inspired by Senn (2014) (different question, 
similar answer) and represents our extreme Gold Rush 
world of study series. The three study series are very 
biased, with two or even three out of three studies 
showing a positive significant effect. But the P

0
 column 

shows that the probability of being in this scenario is very 
small under the null hypothesis. In fact, most analysis 
will be of the one-study kind, that hardly have any bias, 

and are even slightly to the left of the theoretic standard 
null distribution. Exactly this phenomenon balances the 
biased samples of series of larger size.

The bottom row of Table 1 gives the expected values for 
the number of significant studies per series in the *  . P

0
 

column, and the expected value for the total number of 
studies per series in the t . P

0
 column. If we use these 

expressions to obtain the proportion of expected number 
of significant to expected total number of studies, we get 
the following:

The proportion of expected significant effects to 
expected series size is still α in Table 1 under extreme 
Gold Rush accumulation bias, as it would also be without 
accumulation bias.

This result is driven by the fact that there is a 
martingale process underlying this table. A martingale 
for a series of studies can be thought of as a sequence 
of statistics, updated after each study, for which the 
following holds: if the statistic has a certain value after 
t studies, the conditional expected value of the statistic 
when the next study is added, so conditional on what is 
known so far, is equal to the statistic after t studies. The 
accumulation bias does not affect such statistics when 
averaged over time (Doob’s Optional Stopping Theorem 
for martingales). You can get a sense of this theorem for 
Gold Rush accumulation bias by deleting the last row 
for  z1*, z2*, z3* from our table and adding two rows for t = 
4 in its place with z1*, z2*, z3* and either a fourth significant 
or a nonsignificant study.  If you calculate the expected 
significant effects to expected series size, you will again 
arrive at α.

Martingale properties drive many approaches to 
sequential analysis, including the Sequential Probability 
Ratio Test (SPRT), group-sequential analysis and alpha 
spending. When applied to meta-analysis, any such 
inferences essentially average over series size, just like 
ALL-IN meta-analysis.

blue histogram has a smaller variance and is shifted to 
the right – representing the bias.

We conclude that we should not use conventional 
meta-analysis techniques to analyze our study series 
under Gold Rush accumulation bias. Conventional 
fixed-effects meta-analysis assumes that any three-
study summary statistic Z(3) is sampled from the pink 
distribution in Figure 1 under the null hypothesis, such 
that the meta-analysis is significant for Z(3)-scores larger 
than zα = 1.96 for a right-sided test with type-I error control 
α = 2.5%. Yet the actual blue sampling distribution under 
this accumulation bias process shows that a much larger 
fraction of series that accumulate three studies will have 
Z(3)-scores larger than 1.96 than is assumed by the theory 
of random sampling.

Accumulation bias can be efficient

The steps in the code from R Code 1 that arrive at 
the sampling distributions in Figure 1 illustrate that 
accumulation bias is in fact a selection bias. Nevertheless, 
accumulation bias does not result from questionable 
research practices, such as publication bias from file-
drawering a selection of results. The selection to replicate 
only some studies instead of all of them biases the 
sampling distribution of study series, but can be a very 
efficient approach to set priorities in research and reduce 
research waste.

By inspecting our Gold Rush world a bit closer, we 
observe that a fixed-effects meta-analysis of three studies 

actually conditions on this number of studies ((A(t) needs 
to be A(3) to be 1), and that this conditional nature is 
what is driving the accumulation bias. In the next section 
we take the unconditional view.

ALL-IN meta-analysis

Figure 2 shows an example of an ALL-IN meta-analysis. 
Each of the red/orange/yellow lines represents a study out 
of the ten separate studies in as many different countries. 
The blue line indicates the meta-analysis synthesis of 
the evidence; a live account of the evidence so far in the 
underlying studies. In fact, ALL-IN meta-analysis stands 
for Anytime, Live and Leading INterim meta-analysis, in 
which the Anytime Live property assures valid inference 
under continuously monitoring and the Leading property 
allows the meta-analysis results to inform whether 
individual studies should be stopped or expanded. This is 
important to note that such data-driven decisions would 
invalidate conventional meta-analysis by introducing 
accumulation bias.

To interpret Figure 2, we observe that initially only the 
Australian (AU) study contributes to the meta-analysis 
and the blue line completely overlaps with the red one. 
Very quickly, the Dutch (NL) study also starts contributing 
and the blue meta-analysis line captures a synthesis of the 
evidence in two studies. Later on, also the study in the US, 
France (FR) and Uruguay (UY) start contributing and the 
meta-analysis becomes a three-study, four-study and five-
study meta-analysis. How many studies contribute to the 

Figure 2. Dashboard of an ALL-IN meta-analysis of between one and eleven studies (with fake data), some of which have not 
even started recruiting participants in the current status of this dashboard. Note that the y-axis is logarithmic

Table 1. Possible study series under extreme 
Gold Rush accumulation bias, with their 
respective number of significant studies (*) 
and probabilities (P0) to occur under the null 
hypothesis
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type-I error is even much smaller than 5% since in our 
Gold Rush world series stop growing at three studies, yet 
this procedure controls type-I error also in the case none 
of these series stops growing at three studies, but all 
continue to grow forever.

The type-I error control is thus conservative, and we 
pay a small price in terms of power. That price is quite 
manageable, however, and can be tuned by setting the 
mean value of the alternative likelihood (arbitrarily set to 
mean = 1 in the code for calcLR of R Code 2). More on 
that in Grünwald et al. (2019).

It is this small conservatism in controlling type-I 
error that allows for full flexibility: There isn’t a single 
accumulation bias process that could invalidate the 
inference. Any data-driven decision is allowed. And data- 
driven decisions can increase the value of new studies 
and reduce research waste.

Postscript

ALL-IN meta-analysis has been applied during the corona 
pandemic to analyze an accumulating series of studies 
while they were still ongoing. Each study investigated 
the ability of the BCG vaccine to prevent COVID-19, but 

data on COVID cases came in only slowly (fortunately). 
Meta-analyzing interim results and data-driven decisions 
improved the possibility of finding efficacy earlier in the 
pandemic.

STAtOR 2020-4 contained an article ‘Nieuwe 
statistiek voegt wereldwijd corona-onderzoek samen’ 
that explained the ALL-IN approach in terms of e-values 
and gambling. This interpretation is closely related to the 
notion of martingales as a fair game. Likelihood ratios 
are e-values and e-values are (super)martingales and 
can therefore be interpreted as the betting profit of a fair 
game.
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Multiple testing over time

Just having the expectation of some statistics not 
affected by stopping rules is not enough to monitor data 
continuously, as in ALL-IN meta-analysis. We need to 
account for the multiple testing as well. In that respect, 
the approaches to sequential analysis differ by either 
restricting inference to a strict stopping rule (SPRT), 
or setting a maximum sample size (group-sequential 
analysis and alpha spending).

ALL-IN meta-analysis takes an approach that 
is different from its predecessors and is part of an 
upcoming field of sequential analysis for continuous 
monitoring with an unlimited horizon. These approaches 
are called Safe for optional stopping and/or continuation 
(Grünwald et al., 2019) any-time valid (Ramdas et al., 
2020). Their methods rely on martingales that are 
nonnegative (Ramdas et al., 2020), specifically the 
likelihood ratio. For a meta-analysis Z-score, a martingale 
process of likelihood ratios could look as follows:

The subscript 10 indicates that the denominator of the 
likelihood ratio is the likelihood of the Z-scores under 

the null hypothesis of mean zero, and in the numera-
tor is some alternative mean normal likelihood. The 
likelihood ratio becomes smaller when the data are 
more likely under the null hypothesis, but the likeli-
hood ratio can never become smaller than 0 (hence 
the ‘nonnegative’ martingale). This is crucial, because 
a nonnegative martingale allows us to use Ville’s ine-
quality (Ville, 1939), also called the universal bound by 
Royall (1997). For likelihood ratios, this means that we 
can set a threshold that guarantees type-I error control 
under any accumulation bias process and at any time, 
as follows:

The ALL-IN meta-analysis in Figure 2 in fact is based on 
likelihood ratios like this, and controls the type-I error by 
the threshold 400 at level 1/400 = 0.25%.

The R-Code 2 illustrates that likelihood ratios can 
also control type-I error rates under continuous moni-
toring when extreme Gold Rush accumulation bias is at 
play. Just as in our previous simulation, we again assu-
me a Gold Rush world with only true null studies and 
very biased two-study and three-study series. The code 
in R Code 2 calculates likelihood ratios for the growing 
study series under accumulation bias. Figure 3 illustra-
tes that still very few likelihood ratio processes ever 
grow very large.

If we set our type-I error rate α to 5%, and compare 
our likelihood ratios to 1/α = 20 we observe that less than  
1/20 = 5% of  the  study  series  ever  achieves  a  value  
of  LR10   larger  than  20 (R Code 3).  The  simulated  

Figure 3. Samples under the 
null hypothesis of LR10(t) of 
one, two or three studies 
under extreme Gold Rush 
accumulation bias, under the 
assumption of equally large 
study sample size and equal 
variance.

R Code 2 to create Figure 3
R Code 3 to calculate type-I error probability for continuous testing LR10(t) averaged over series size t under extreme Gold Rush 
accumulation bias

numSim.study <- 64000  # we’re not plotting histograms, so a smaller simulation will do

Z1 <- rnorm(numSim.study)
Z2 <- rnorm(numSim.study)
Z3 <- rnorm(numSim.study)

A1notA2 <- which(Z1 <= 1.96)
A2notA3 <- which((Z1 > 1.96) & (Z2 <= 1.96))
A3 <- which((Z1 > 1.96) & (Z2 > 1.96))

calcLR <- function(Zs) {
  prod(dnorm(Zs, mean = 1)/dnorm(Zs, mean = 0))
}

LR1.A1notA2 <- sapply(A1notA2, function(i) calcLR(Z1[i]))
LR1.A2notA3 <- sapply(A2notA3, function(i) calcLR(Z1[i]))
LR1.A3 <- sapply(A3, function(i) calcLR(Z1[i]))
LR2.A2notA3 <- sapply(A2notA3, function(i) calcLR(c(Z1[i], Z2[i])))
LR2.A3 <- sapply(A3, function(i) calcLR(c(Z1[i], Z2[i])))
LR3.A3 <- sapply(A3, function(i) calcLR(c(Z1[i], Z2[i], Z3[i])))

> typeIerrorLR <- mean(c(LR1.A1notA2, 
+                        pmax(LR1.A2notA3, LR2.A2notA3), 
+                        pmax(LR1.A3, LR2.A3, LR3.A3))
+                        > 20)
> typeIerrorLR 
[1]  0.001390625

Gold Rush A(t)

A(1)=1, A(2) = 0, A(3) = 0   LR
10
(t)

A(1)=1, A(2) = 1, A(3) = 0   LR
10
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A(1)=1, A(2) = 1, A(3) = 1   LR
10
(t)
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