Modeling inter-related longitudinal processes in cerebral aging

Cécile Proust-Lima based on PhD Thesis of Bachirou Taddé

INSERM U1219, Bordeaux Population Health Research Center, Bordeaux, France Univ. Bordeaux, ISPED, Bordeaux, France cecile.proust-lima@inserm.fr

> Automn Meeting of BMS-ANed - Biostatistics Kaleidoscope November 20, 2020

Cécile Proust-Lima (INSERM, France)

Modeling inter-related longitudinal processes BMS-ANed Meeting - November 2020

1/17

Context

- Alzheimer's disease (AD)
 - most frequent type of dementia in the elderly
 - occurs mostly after 65 years old for the sporadic (non familial) form
- Very long progression before clinical diagnosis (several decades)
- Multiple anatomo-clinical impairments :
 - accumulation of biomarkers in the brain (beta-amyloid, tau-protein)
 - atrophy of some brain regions (e.g., hippocampus)
 - cognitive decline (e.g., langage, memory)
 - impaired functional dependency (mobility, daily living activities)
 - depressive symptomatology, anxiety, ...

Challenge

• How to understand the temporal influences between the multiple dynamic domains involved in AD development?

i.e., How to quantify temporal associations between dynamic processes?

What can we do?

- If the endpoint is a time-to-event :
 - We can run joint models for longitudinal and event history data
 - We assess the effect of repeated biomarkers $Y_1(t)$ and $Y_2(t)$ on the instantaneous risk of event $\lambda(t)$

.

What can we do?

- If the endpoint is a time-to-event :
 - We can run joint models for longitudinal and event history data
 - We assess the effect of repeated biomarkers $Y_1(t)$ and $Y_2(t)$ on the instantaneous risk of event $\lambda(t)$

- But what if the endpoint is a marker measured repeatedly over time?
 - ► We want to assess the effects (or temporal associations) of repeated biomarkers Y₁(t) and Y₂(t) on the dynamics of Y₃(t)

Temporal relationships in the literature

• Using Directed Acyclic Graphs (DAG)

Direct arrow :

Effect of the level of one dimension on the subsequent level of another one

- Models : Structural Equation Models, Dynamic Bayesian Networks
- Limits : based on the discrete visit process (Aalen et al., 2016)
 - + associations between levels only

Temporal relationships in the literature (cont'd)

- Using Local Dependence Graphs (LDG) (Didelez, 2008)
 - Framework :

Longitudinal (continuous time with latent processes)

- ► Direct arrow : Effect of the level of one dimension on the subsequent change of another e.g. effect of $\Lambda_1(t)$ on $\frac{d\Lambda_3(t)}{dt}$
- Models : mechanistic models, differential equations
- Advantages : separation from the visit process
 - + focus on the dynamics (Voelkle et al., 2018)
- Limits : Numerically very complex

Our contribution

- Define a dynamic model to quantify the temporal links between dimensions measured repeatedly over time
- Apply the methodology to the processes involved in Alzheimer's disease

Our contribution

- Define a dynamic model to quantify the temporal links between dimensions measured repeatedly over time
- Apply the methodology to the processes involved in Alzheimer's disease

Our contribution

- Define a dynamic model to quantify the temporal links between dimensions measured repeatedly over time
- Apply the methodology to the processes involved in Alzheimer's disease

Measurement models

Each latent dimension d: $(\Lambda_{di}(t))_t$

is repeatedly measured by K_d markers (possibly non Gaussian) :

$$H_{dk}(Y_{kij}^d;\eta_{dk}) = \Lambda_{di}(t_{dkij}) + \epsilon_{kij}^d$$
 for $k = 1, ..., K_d$

with $\epsilon_{kij}^d \sim \mathcal{N}(0, \sigma_k^{d^2})$ and H_{dk} flexible parameterized link function (e.g., linear combination of quadratic I splines)

Structural model for the underlying dimensions

Initial level of each process d (d = A, F, C)

$$\Lambda_{di}(0) = X_i^0 \beta_d + u_{di}$$

Change of the processes over finely discretized time (step δ)

$$\frac{\Lambda_{Fi}(t+\delta)-\Lambda_{Fi}(t)}{\delta} = X_{Fi}(t)\gamma_{F} + Z_{Fi}(t)v_{Fi} + \alpha_{FF}\Lambda_{Fi}(t) + \alpha_{CF}\Lambda_{Ci}(t) + \alpha_{AF}\Lambda_{Ai}(t)$$

$$\frac{\Lambda_{Ci}(t+\delta)-\Lambda_{Ci}(t)}{\delta} = X_{Ci}(t)\gamma_{C} + Z_{Ci}(t)v_{Ci} + \alpha_{FC}\Lambda_{Fi}(t) + \alpha_{CC}\Lambda_{Ci}(t) + \alpha_{AC}\Lambda_{Ai}(t)$$

$$\frac{\Lambda_{Ai}(t+\delta)-\Lambda_{Ai}(t)}{\delta} = X_{Ai}(t)\gamma_{A} + Z_{Ai}(t)v_{Ai} + \alpha_{FA}\Lambda_{Fi}(t) + \alpha_{CA}\Lambda_{Ci}(t) + \alpha_{AA}\Lambda_{Ai}(t)$$

- ★ identifiability constraint : $\Lambda_{di0}|_{X_{i0}} \sim \mathcal{N}(0,1)$
- * subject *i*, time *t*, discretization step δ
- $\star (u_{1i}, \dots u_{Di}, v_{1i}, \dots, v_{Di})^{\top} \sim \mathcal{N}(0, B)$

Maximum Likelihood Estimation for parameters θ

- Gaussian framework for the estimation :
 - $\Lambda_i = \{\Lambda_{dit} ; d = A, C, F, t \in \tau_i\} \sim \mathcal{N}(\mu_i; V_{\Lambda_i})$ (with μ_i and V_{Λ_i} quite complex though)
 - Jacobian formula for the link functions
 - = Exact likelihood formula
- Maximization with the parallelized Marquardt algorithm marqLevAlg (Philipps et al., 2020)
- Validated by simulations
 - with transition matrix constant or time dependent

Assessment of the impact of time discretization

- Simulation study :
 - > 3 dimensions, linear trajectory over time
 - ▶ generation model in continuous time (δ=0.001)
 - estimation with discretization steps δ=1/3, δ=1/2, δ=1
- Type I error over 1000 replicates (in %)

	$\delta = 1/3$	$\delta = 1/2$	$\delta = 1$			
α_{12}	5.4	4.9	6.5			
α_{13}	5.3	5.3	8.6			
α_{21}	5.6	6.0	7.5			
α_{23}	4.7	6.0	4.1			
α_{31}	5.4	5.2	7.1			
α_{32}	4.5	4.8	4.8			
expected in [3.6;6.4]						

 \rightarrow Temporal influences not altered by the discretization when the step is reasonable

Data from ADNI-1 (Alzheimer's Disease Neuroimaging Initiative data)

- Prospective study that enrolled individuals at different aging stages :
- Normal aging
- Mild Cognitive Impairment
- Diagnosed with Alzheimer's disease

Three dimensions to explore and contrast by stage :

- linear change over time for the dimensions
- adjusted for age/sex/education/apoe4/stage

4 **D b 4 A** b

4 10 1 4 10 1

Estimates of the temporal influences

	Parameter		Estimate	SE	p-value			
Influence on cerebral anatomy :								
	Intercept	α_{AC}^0	0.014	0.015	0.377			
Effect of cognitive ability	MCI	α_{AC}^1	0.048	0.018	0.008			
	dAD	α_{AC}^2	0.058	0.027	0.030			
	Intercept	α_{AF}^0	0.015	0.031	0.627			
Effect of functional autonomy	MCI	α_{AF}^1	-0.023	0.032	0.478			
	dAD	α_{AF}^2	-0.040	0.037	0.286			
Influence on cognitive ability :								
	Intercept	α_{CA}^0	0.267	0.078	< 0.001			
Effect of cerebral anatomy	MCI	α_{CA}^{I}	0.016	0.060	0.792			
	dAD	α_{CA}^2	-0.049	0.080	0.535			
	Intercept	α_{CF}^0	0.168	0.096	0.079			
Effect of functional autonomy	MCI	α_{CF}^1	-0.030	0.097	0.760			
	dAD	α_{CF}^2	-0.034	0.113	0.766			
Influence on functional autonomy :								
	Intercept	$\alpha_{F\!A}^0$	0.114	0.045	0.012			
Effect of cerebral anatomy	MCI	α_{FA}^1	0.022	0.053	0.681			
	dAD	α_{FA}^2	-0.053	0.069	0.441			
	Intercept	α_{FC}^0	0.111	0.049	0.023			
Effect of cognitive ability	MCI	α_{FC}^1	0.021	0.053	0.696			
	dAD	α_{FC}^2	0.082	0.072	0.259			

Summary of temporal relationships between dimensions

Significance code: $^{***} < p=0.001 < ^{**} < p=0.010 < ^{*} < p=0.050 < \cdot < p=0.100$

Cécile Proust-Lima (INSERM, France) Modeling inter-related longitudinal processes BMS-ANed Meeting - November 2020 14/17

Predicted trajectories of the dimensions

- Trajectories according to two profiles :
 - high risk (—): (woman) low educated apoE4 carrier
 - Iow risk (- --): (woman) high educated apoeE4 non-carrier

Concluding remarks

- Dynamic modelling of multivariate dimensions :
 - translates local dependence graphs to explore temporal relationships :
 - With latent processes : temporal associations independent of the visit process
 - With fine discretization : numerically feasible method causal interpretations not altered with realistically small discretization step
 - relies on equations of difference and multivariate mixed models enjoys mixed model properties
- Understanding of temporal associations relevant in many contexts
 - between markers of disease
 - with time-varying exposures
 - in mediation analysis \rightarrow
- Extensions to other types of data :
 - event history data
 - binary/ordinal/count repeated markers

Funding and References

Grant SMALA ANR-15-CE37-0002
 Grant DyMES ANR-18-CE36-0004

Grant France Alzheimer 2018-2020 DataLink

- Methodology detailed in
 - Taddé et al. (2020). Dynamic Modeling of Multivariate Latent Processes and Their Temporal Relationships : Application to Alzheimer's Disease. Biometrics. 2020;76 :886–99.
- Program available at
 - https://github.com/bachirtadde/CInLPN
- Other references :
 - Aalen et al (2016). Stat Methods Med Res 25, 2294-314
 - Didelez (2008). JRSS B 70, 245-264
 - Driver & Voelkle (2018). Psychol Methods 23, 774–799
 - Voelkle et al (2018). Multivariate Behav Res 53, 782–805
 - Philipps et al. (2020) on arxiv https://arxiv.org/abs/2009.03840