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0. Introduction 

The 1979 volume of M.D.N. contains a paper by Van Schuur and Stokman, in which 

they suggest that pairwise preference data for six political parties can 

be analysed by the Mokken scale model (Mokken, 1971). The role of an item would 

be played by a pair of parties, or rather by their midpoint on the underlying 

J-scale. Mokken compares the number of error responses for a pair of items 

with its expectation under the hypothesis of independence. Van Schuur and 

Stokman modify this expectation into one in which intransitive answer patterns 
for the six parties are excluded. 

Van der Eijk and Van der Noort criticize this modification in a subsequent 

paper, after which Molenaar wrote a rejoinder on the discussion so far. In 

December 1979 a one-day conference on the problems raised in this discussion 

was organized by the Department of Social Sciences at the University of Amster¬ 

dam. After this a workgroup was formed by the authors of this paper. Due to 

lack of time Van der Noort wasn't able to participate. The group discussed 

several problems and possibilities with respect to the proposed models. Rather 

than submitting several individual contributions, it was decided that a joint 
paper be written. 

Although the authors agree on the relevance of each of the topics discussed 

in the following pages, they do not necessarily agree on the relative importance 
of all the propositions put forward. 

1. Stochastic transitivity as a model test. 

In an interesting masters thesis, Jansen (1979) develops a Rasch homogeneous 

unfolding model (RHUM), in which he applies Rasch analysis to midpoints of 

stimuli like Sixtl (197$ has also done. In this same thesis, Jansen discusses 

stochastic transitivity as a model test, as was suggested by Coombs (1964) and 

Bechtel (1968). The models of Coombs and Bechtel make different predictions on 
the kind of stochastic transitivity the data must display. 

In Coombs' approach the stimuli as we 11 as the individual ideal points are 

characterized by a probability density function. The (within-subject) variance 

of the ideal point-distributions is small compared with the variability of, 

say, the means of the stimulus distributions, so that, for all practical purposes 

there is an overlap of a particular ideal point distribution with only a few 
stimulus distributions, (see figure 1) 

I 

Figure 1. Stochastic unfolding as Coombs vie^ws it. 

(A.G represent stimuli ; I represents an ideal point) 

From figure 1, two clear-cut cases follow : 

1. p(A > B|I) depends ' only on the degree of overlap between the distributions 

A and B, but is independent of the momentary value of the ideal 
point. 

+^with t» we mean the empirical relation * is preferred to*,'is ordered higher than' 
and the like. 
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2. p(D » E|I) is dependent on the momentary value of the ideal point, as well as 

on the momentary values of D and E. 

Evidently , as long as the distributions of both stimuli of a pair are 

situated at the same side of, and without overlap with the distribution of a 

particular ideal point X (so-called unilateral triples), the pairwise preference 

probability (of individual I) is governed solely by the stimulus distributions; 

the variability, and even the location of the ideal point is irrelevant. Stated 

alternatively: for unilateral pairs the preference model of Coombs can be 
treated as an application of the law of comparative judgement. 

In Bechtel's approach, the stimuli are fixed on the J-scale, and the ideal 

point is considered as a random variable over subjects and/or over reolications 

(variation within and between subjects), (see figure 2) 

distribution of ideal points. 
z*- 

Figure 2. Stochastic unfolding as Bechtel vie^ws it. 

(A,...,G are (fixed) stimulus values ; Md = Median of ideal 

point distribution.) 

As Greenberg (1965) pointed out already, the order of the pairwise preference 

probabilities is dependent on the order of the midpoints between pairs of 

stimuli.Letting AB, AC and BC represent midpoints, then 

(1) p(A » B) < p (A » C) ~ AB < AC 

The above equivalence makes sense only incases where the midpoints between stimuli 

fall within the range of the aggregate ideal point-distribution, which means that the 

model is testable only if the variance of the ideal point distribution is of 

the same order as the stimulus variability. In most practical applications, 

that will be the case when the ideal point is a random variable over 

(a heterogeneous group of) individuals. 

Now consider unilateral triples. According to Coombs unilateral trinles are triples 
of stimuli whose distribution is situated at the same side of the ideal point 

distribution I. According to Bechtel they are triples of stimuli whose values^ lie 
at the same side of the median of the ideal point distribution, (e.g. stimuli 

A, B and C in both figure 1 and figure 2.) For a unilateral triple, 

Coombs and Bechtel predict a different form of stochastic transitivity. 

We define 

1) Strong stochastic transitivity (SST) as : 

if p(A > B) > .5 and p(B > C) > .5 then 

p(A > C) > max(p(A » B) ,p(B » C)) 

2) Moderate stochastic transitivity (MST) as : 

if p(A » B) > .5 and p(B » C) > .5 then 

p(A o C) > min(p(A » B),p(B » C)) 

3) Exactly MST is defined as MST but not SST. 
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Coombs model predicts SST for all unilateral triples, as can be understood from 

the fact that the two outmost distributions have the least mutual overlan, and 

thus are best discriminated. Bechtels model on the contrary predicts exactly 

MST for all unilateral triples. This follows from (1). 

Jansen points out that his RHUM-model, although derived from different assumptions, 

makes the same predictions as Bechtels model. These assumptions can best be illus¬ 

trated by the model van Schuur and Stokman proposed (1979 ,p.7 and figure 3 here) 

Figure 3. Stochastic unfolding as Van Schuur & Stokman and 

Jansen view it. (to VS&S, the curves are double monotone 

functions ; to Jansen they are one-parameter logistic) 

When the trace lines for the midpoints are double monotone or even logistic 

as in the RHUM-model, the trace line for the midpoint AC is placed between 

those of the midpoints AB and BC. Hence Van Schuur and Stokman as well as 

Jansen predict exactly MST for unilateral triples. In these two models, 

the stochasticity is found in the probabilistic response function of the 

subject to the stimuli. No specific random model of stimulus points 

and/or ideal points is stated in these models. 

For the VS&S data (for details, see VS&S, 1979, p. 22-26) we tried to assess 

whether or not they conform to the prediction of MST which follows from the VS&S 

model. To do so we had to construct subgroups of respondents homogeneous in their 

position on the underlying J-scale. This is necessary because we noticed that 

unilateral triples can only be defined for a given position of the ideal-point. 

We constructed subgroups on the basis of current vote intention. For each sub¬ 

group we inspected the dominance matrix. 

The results can be found in the appendix . It turns out that all 

unilateral triples (e.g. the triple CDA-WD-SGP for PvdA voters or the triple 

CDA-PvdA-PPR for WD voters) conform to SST rather than to MST. 

In fact, almost all triples conform to SST. For subjects preferring CPN or SGP 

however, the dominant I-scale does not conform to the J-scale found fof 

the other subjects (for CPN voters : CPN-PvdA-PPR-WD-CDA-SGP ; for SGP voters : 
SGP-CDA-WD-PvdA-PPR-CPN) . 

These MST/SST results cast some doubt on the applicability of the models 

suggested by Bechtel, Sixtl, Jansen and Van Schuur & Stokman to political 

party preferences. 

for n stimuli, the dominance matrix is a n by n matrix containing the frequen¬ 

cies with which the column stimulus is preferred to the row stimulus. 



2.About the null model by Van Schuur and Stokman 

For the elementary J-scale ABC there are four inadmissible experimental outcomes 

(from the view of the unfolding model), namely, two outcomes representing intran¬ 

sitive choices, and two inadmissible orderings, ACB and CAB. 

The expectation under the hypothesis of statistical independence of the patterns ACn 

and CAB was found in the Van Schuur and Stokman approach by multiplying 

p(AB) by p(CB), where p(AB) denotes the probability, in their model, that 

stimulus A is preferred to stimulus B by a randomly chosen subject. 

The coefficient of scalability was defined as 

where E denotes the observed proportion of occurrence of the patterns ACB and 

CAB, and EQ denotes the expectation of these patterns, as described above. 

It turned out that in the data used by VS&S almost all HAgc's were negative. 

This came as a surprise to them, because after inspection of the data, only minor 

deviations from a unidimensional J—scale were observed. The explanation for 

these negative H-coefficients was suggested to lie in the non-occurrence 

of intransitivities to a large extent. In all cases, the observed proportion 

of intransitive responses was smaller than expected under the hypothesis of 

statistical independence.They therefore inflated the expected proportion of 

inadmissible patterns (E0). 

VS & S wanted to make virtue of need* first by deleting those few respondents, 
showing intransitivities, and secondly by inflating Eq by the proportion 

of intransitivities as expected under the null hypothesis of statistical independence. 

In a formula 

,,, B _ P(AB) P(CB)_ 
(3) E 

l-p(AB)p(BC)p(CA)-p(BA)p(CB)p(AC) 

By using this approach, the coefficient of scalability 

would also be applicable in cases of complete rank order data, 

rather than pairwise preferences. 

Van der Eijk and Van der Noort and later Molenaar showed that something was 

wrong with formula (3) . At the Amsterdam conference it was ported 
out that the proportion of orderings where A is preferred to B is not a good 

estimator of the theoretical (i.e. in the original model of VS & S) probability 

p(AB). In fact, for a triple of stimuli A,B and C, the sample space (say ft) 

consists of 8 points, 6 points representing a transitive choice, and thus an 

ordering)and 2 points resulting in an intransitivity (i.e., At>B, B*>C, OA and 

Bt>A, OB, A>C). The choice probabilities in the model of VS & S are defined 

with respect to ft. Restricting the sample space to the set of transitive choices 

(say ft ) by a process of repeated sampling as suggested by Molenaar, has the conse¬ 

quence that the proportion of orderings where A is preferred to B now is an esti¬ 

mator of a conditional probability, the condition being the restriction of the 

sample space from ft to ft. 
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These considerations make it possible to obtain an estimate of the probabilities 

p(AB) under the hypothesis that the data are transitive, i.e. that the subjects 

performed an internal check on transitivity. Let o(AB) denote an ordering 

where A is preferred to B, then 

(4) p(cr(AB)|£2*) - p(o(AB)nfl*) 

p(fi*) 

p(AB)p(AC) + p(AB)p(CA)p(CB) ‘ 

l-p(AB)p(BC)p(CA)-p(BA)p(CB)p(AC) 

One can construct a similar expression for the pairs BC and AC. Upon substituting 

the lefthand members in these expressions by the corresponding observed propor¬ 

tions, the system of three equalities can be solved, giving estimates of 

p(AB), p(BC) and p(AC)..That is precisely what Molenaar and Lewis did 

The results of their calculations were rather disappointing, because 

under certain conditions the solution yields rather trivial or implausible 

results (Molenaar* 1979, p. 122). 

Although the method used by Molenaar is not optimal (the estimate of the theoretical 

p(AB) is dependent on which midpoint is used as the third one), the overall negative 

H's that resulted don't give hope that a pooling method would give better results. 

The results they obtained cast doubt on the hypothesis of the internal transitivity 

check, or more accurately, on the compatibility of that hypothesis with the model 
VS&S proposed. 

3. About the null model by Van der Eijk and Van der Noort. 

In their own construction of a null-case Van der Eijk and Van der Noort aim 

primarily at a model applicable for the analysis of rank-order data instead of 

pairwise preferences. They therefore suggest that complete rank orders of three 

stimuli should be taken as the elementary datum, rather than pairwise probabilities. 

For the triple ABC a subject can have one of the following six values: 'ABC', 'ACB', 

BAC , BCA , 'CAB' and 'CBA', of which the values *ACB' and 'CAB' are inadmissible 

in the J-scale ABC. VdE&VdN use the same coefficient of scalability (2) as VS&S, 

they also use the same definition of E, but they differ in their definition of E0. 

E0 is found by VdE&VdN in the following way: 

The observed dominance matrix of the; 3 stimuli is the target of their work 

Thrs dominance matrix can be thought of as the result of a number' of 

different distributions of subjects over the six response patterns. 

By means of linear programming all possible distributions are found. For each 

distribution, the frequency of occurrence of the patterns ACB and CAB are given. 

VdE&VdN define E0 as the average frequency of the patterns ACB and CAB over all’ 

example6 distributions’ 0,1 pages 36-38 of their original paper they give a numerical 

Although the VdE&VdN null-model is designed for rank-or,w a,. . 

as well for pairwise preferences without intrLs tivitL: as in the'data'’11^16 

In their computer program they used the correct formula 

instead of the misprint t=1-y+xy+yz+xz. (Molenaar,p.122) 
t= 1 -y+xy+yz-xz 
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Some points of criticism to this approach (Molenaar, p. 123) can be set aside 

as misperceptions once it is noticed that: 

i. This approach does not need the assumption that pairwise preferences 

are given independently; 
ii. As complete rank ordea of three stimuli are taken as the 

elementary datum, this approach should not be compared to the calculation 

of expected frequencies in the 2x2 table formed by 2 stimuli-pairs. 

Another criticism, namely that in the construction of all possible distributions 
only integer-valued distributions over the six patterns are taken into account, 

is still open. An alternative would be to consider a continuous five-dimensional 

distribution within the constraints set by the proportions in the dominance 

matrix. VdE&VdN expect - without having had time to prove so - that this 

alternative yields the same result as the 'integer-valued' procedure. 

4. General problems of model formulation 

In the pairwise preference models discussed so far, a subject was imagined 

either first to produce a perfect rank order in his head and then answering 

each pair accordingly (Van der Eijk & Van der Noort), or first get tentative 

answers to each pair and then checking his answers for transitivity (VS&S). 

Now that we come to think more closely about this, all models involving the 

choice of a rank order or involving consistency checks may be too far from 

the mental processes of an actual subject. Still, we see no way around such 

a description of the preferential choice process. 

Problems really get insurmountable when we turn from a three stimulus J-scale 

to a four stimulus J-scale. Imagine that four stimuli A B C D are to be ordered 

with the order-obtaining strategy described above. 

In terms of the original model of VS&S the sampling space a now consists of 
2^ = 64 points (each point corresponding to 6 independent binary decisions), 

whereas the sampling space of transitive responses consists of 4! = 24 points. 

The 40 intransitive patterns which are possible in this experiment are not 
simply the union of the intransitive patterns in the 4 three-stimulus 

experiments that can be constructed with the four stimuli. 

For example, the 2 three stimulus orderings ABC and BAD, both admissible 

in a three stimulus experiment do not lead to an ordering in a four stimulus 

experiment. When one sticks to the hypothesis of repeated sampling with more 

than 3 stimuli, then the definition of £2* , and consequently the denominator 

in formula (3), must be adapted (and gets very complicated). But apart from 

the resulting numerical problems , there are other difficulties too. 

In the case of n stimuli the number of admissible patterns is n! and the 

total number of patterns is 2in(n_1). The proportions of admissible patterns, 

being 0.75 for 3 stimuli goes down to 0.02 for 6 stimuli and decreases further 

at an exponential rate, being only 10-7 for n = 10. That implies that a full 

application of the repeated sampling procedure would take enormous response 

times, a false prediction as one knows. Am-other possibility, e.g. in the case 

of pairwise presentation of the stimuli, would be a consistency check 

conditional on the responses already given, but in that case the whole experiment 

is a path-dependent (dependable on the order of presentation), subject-controlled 

(dependable on the responses actually given) process,and such processes are 

mathematically very untractable. 

Finally, it must be said that the 'repeated sampling hypothesis' is rather 

gratuitous, since no other evidence than a low proportion of intransitivities, 

is brought up as an argument.Luce (1959, p. 70-72) already pointed out that 

several rank ordering strategies are possible, all leading to a different 

pairwise preference probability estimate. And the problem is especially 

sharp to Vs&S, because their model requires stochastic independence between 
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all pairwise choices, whereas a rank ordering strategy needs in any case the 

functional dependence of transitivity. The question if, and how functional 

dependence and stochastic independence can go together is not easily solved. 

The VdE&VdN "explanation" for transitivity in pairwise preferences is also a 

problematic one when the number of stimuli increases. In a 3-stimuli case it 

is easily conceivable that pairwise preferences are deduced from a complete 

rankorder in a subject's mind. In a case with many stimuli (say K) such a 

hypothesis would require the calculation of expected frequencies (by means 

of linear programming) of all K.' response-patterns. This is not possible because 

of algorithmic problems. Hence the suggestion (VdE&VdN, 1979, p. 36) to use 

this approach only for triples, and combining the results in the same way as 

VS&S do. We see that algorithmic problems lead to an inconsistency in this 

approach: transitivity is explained by the premise of a complete rank-order in 

a subject's mind, but this premise is not taken seriously as far as the complete 

K-tuple is concerned, but only for triples. 

5. Data problems 

It is highly questionable that we can ignore the problem of functional 

dependence when we arrive at many more transitive rank orderings on the basis 

of pairwise preferences than would be expected on the basis of 

statistical independence. Norpoth (1979), in a similar context as VS&S 

(pairwise preferences for five West German political parties), remarks that 

'... surprisingly few individuals were caught in intransitive rankings - no more 

than 3% of those making all ten comparisons...'. This seems to be especially 

true when the stimuli are clearly recognizable and distinct objects, such as 

political parties. We expect these dependency problems to arise less often 

with less easily recognizable stimuli, as for instance in the case of psycho¬ 

physical experiments. 

Returning to the original VS&S data set, life becomes even more difficult 

if there are ties and missing data, so when subjects have not produced 

a perfect rank order. In the actual data, a few persons have tied all fifteen 

pairs of political parties (a polite way of telling the interviewer to 

go to hell), a few more have tied all pairs not involving their most 

preferred party and still more use ties occasionally (mostly among pairs 

not involving their first choice). As yet we have no satisfactory and simple 
treatment for such ties. 

Moreover, the data contain some indication that unidiraensional unfolding 

may be unsatisfactory regardless of the models we propose. Although many 

voters agree on a latent ordering CPN-PPR-PvdA-CDA-WD-SGP, especially among 

CPN and SGP voters we find systematic deviations from this J-scale. 

Preferably, such phenomena should be studied when they stand out as residuals, 

as idiosyncratic individuals or stimuli that fail to obey a model largely 

confirmed by the others. 
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6.On the usefulness of characteristic monotony. 

When in a dominance matrix the rows and columns are ordered according to the 

order of the J-scale, then the entries 

above the main diagonal decrease (weakly) monotonically from left to right 

and from top to bottom. This phenomenon we call ’characteristic monotony'. 

Van Schuur and Stokman propose the use of the property of characteristic monotony 

(CM) in a dominance matrix in the selection of possible J-scales. They do this 

in a fairly liberal sense, but they are also convinced that CM is 

a necessary condition for a stochastic J-scale. Therefore the usefulness 

of CM in stochastic unfolding is examined in this section. 

In the first part the argument for the use of CM is reconstructed. In the second 

part the conditions are sketched under which CM is disturbed. In the third 

part some conclusions are drawn with respect to the limitations of CM and in 

the fourth part a numerical illustration is presented. 

6.1 Characteristic monotony. 

Given n stimuli, a dominance matrix based on all Jn(n-l) pairwise preferences 

has the property of weak monotony if all comparisons fulfill the restriction 

of transitivity and if the columns and rows are ordered properly. Since ranking 

n stimuli is identical to making ^n(n-l) paired preferences under transitivity,a 

preference pattern can be written as a dominance matrix with the property 

of weak monotony (this does not imply any specific psychological theory of 

choice; it is merely a matter of notation). 

More specifically : a preference pattern that can be reproduced from a given 

qualitative d-scale, can be transformed into a dominance matrix with the property 

of weak monotony by ordering the columns from left to right and the rows 

from top to bottom corresponding to the left-right order of the stimuli on the 

J-scale. (Notice that weak monotony in this sense is connected with nothing mere 

than the idea of a qualitative J-scale.) 

The sum of a set of dominance matrices like this, of course, is a matrix that 

has at least the property of weak monotony. The matrix approaches strict monotony 

dependent on the occurrence of different patterns (their frequency being ir¬ 

relevant) that can be reproduced from the same qualitative J-scale. 

A sum matrix like this, based on a lot of preference patterns that have a quali¬ 

tative J-scale in common has another important property : the sums of the 

columns from left to right show a monotone increase to a certain point in the 

centre and after that a monotone decrease. The rowsums show the opposite figure : 

from top and bottom they decrease monotonically towards the centre. 

If, in reverse, a set of preference patterns has un unknown qualitative J-scale 

in common, then its identity can easily be recovered by computing a dominance 

matrix. Rearrangement of rows and columns, resulting in a matrix with the property 

of (weak) monotony, reveals the stimulus order on the J-scale. Rearrangement 

is facilitated by the property mentioned above concerning the sums of columns in 

such a dominance matrix. 
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6.2 Disturbance of CM. 

If in a dominance matrix the rows and columns are ordered corresponding to the 

stimulus order of a given qualitative J-scale, then the dominance matrix re¬ 

sulting from a preference pattern that cannot be reproduced from this given 

J-scale, does not have the property of weak monotony. 

Furthermore, two mutual mirror image patterns (e.g. ABCD and DCBA) with equal 

frequencies i result in a summated dominance matrix having i in each cell, 
irrespective of the ordering of rows and columns. 

So, taken seperately, patterns which are not derived from the underlying J-scaie 

disturb (weak) CM of a dominance matrix, but if they are mirror-images and 
equally frequent, they do not affect CM. 

Consequently , a CM matrix will generally result from a subset S of preference 

patterns that can be reproduced from an identifiable J-scale. The relative share 

of S in the total set of cases , however, can still vary enormously. ’ 

Two characteristically different situations can be distinguished in this resnect 

The first situation is the subset S relatively dominating the remaining cases; 

the reproducibility of the model now mainly depends on the occurrence of 

metric intransitivity. The CM matrix however, does not provide any information 

on this point as was noticed before. Since triples do not suffer from this 

inconvenience, the coefficient H as adapted by van Schuur and Stokman will 

presumably attain acceptable values. 

The second situation places subset S in a relatively minorit^+^osition, the re¬ 

maining ceses consisting of pairs of mutual mirror images . The reproduci¬ 

bility of the model is small. The H-values even tend to become negative. 

(By 'the model1 we mean : the qualitative J-scale that is indicated by the 

CM matrix.) 

One can easily simulate situation 2, in which the CM matrix identifies a J-scale 

without scalability, even with negative H-values. Moreover, situation 2, cqn 

take a form in which the majority set of remaining cases not only 

consists of random pairs of mutual mirror images, but contains a J-scale that 

is hidden by the CM matrix, (see the illustration in 6.4) 

+^it is even possible to construct a nontrivial CM-matrix, resulting exclusively 

from I-scales not compatible with the underlying J-scale. e.g. the I-scales 

BDECA and CEDBA are not compatible with ABCDE as a J-scale, but their sum- 
mated dominance matrix is CM.(see also subsection 6.4) 

++^The equal occurrence of orderings and their mirror images is not the only way 

in which all cells in the dominance matrix are increased by a constant. 

For example the I-scales ACBD, BDCA, CADB and DBAC give a summated dominance 

matrix containing 2 in all offdiagonal cells. 
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6.3 Some conclusions. 

Van Schuur and Stokman classify their scaling procedures according to two 

criteria : the stimulus order on the continuum (fixed or free), and the 

admissibility of selecting out 'bad' stimuli. The last point is of minor 

importance with respect to the usefulness of the CM matrix. 

With a fixed order it is difficult to see why a CM matrix 

should play such an important role as even to decide a priori on not computing 

H-values, which is the heart of stochastic unfolding. Only under situation 1 
Subset S in the majority position) is this decision justifiable, but at the same 

time somewhat superfluous, because in that case high H-values and a smooth CM-matrix 

are two sides of one coin. However in reality we do not know under which 

situation we are working. On the contrary, the analysis will generally be done 

to reveal the kind of situation. 

With a fixed order under situation 2, we are misled by the the CM matrix, as 

soon as fixed order and CM order are different, and the fixed order ls(partly) 

scalable (see illustration ; subsection 6.4) 

Without a fixed order the situation is certainly not less 

complicated, because the CM matrix's ’verdict' is now no longer regulated by 

some theoretical notion. 

These objections presumably become even more serious when leaving out stimuli 

is admissible. Therefore, there seems to be good reason to put the main weight 

where it belongs in a stochastic approach : in the error cell. The realisation of 

this suggestion is indicated in the next subsection. 

6.4 A numerical illustration 

The preceding considerations will now be illustrated by an example (see Table 1). 

This table reads as follows: the first preference pattern is BDCAE, B being 

preferred first, etc. 

Table 1 

preference rankings (artificial example) 

ABODE f req. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 1 

12 

13 

14 

15 

16 

4 13 2 5 

2 5 3 4 1 

3 4 2 15 

1 5 2 4 3 

5 14 2 3 

3 2 4 5 1 
3 15 4 2 

1 2 4 5 3 

4 3 5 12 

4 2 5 3 1 

2 14 5 3 

13 2 5 4 

12 3 5 4 

3 14 5 2 

3 2 5 4 1 

4 3 5 2 1 

20 

20 

20 

20 

20 

20 

1 

2 

3 

1 

2 

3 

1 

2 

3 

2 
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We take 4 I-scales in relatively large frequencies from J-scAle BDCAE, 

including the mirror images BDCAE (1) and EACDB (2). The two remaining I-scales 

DCABE (3) and ACEDB (4) are 'neutralized’ (from the point of view of monotony) 

by EBACD (6) and BDECA (5) respectively. 

Now we admix in much smaller frequencies nearly all the I-scales that can be repro¬ 
duced from another J-scale: DEBAC (patterns 7 to 16) (Except the mirror image 

CABED; this omission, however, is not essential at all for the argument). 

The next step consists of computing the dominance matrix and re-arranging it 

into characteristic monotony (see Table 2). Now H-values can be computed, 

guided by this CM-matrix. 

Table 2 

Dominance matrix, rearranged to CM 

based on the data in table 1 

We do, however, not just regard the triples that are relevant in this respect. 

On the contrary, all the possible triples are investigated (see Table 3). 

J-scale DEBAC, indicated by the CM matrix, fails, as can be seen from Table 3 

(consider the x marked cells). On the other hand, looking for error cells 

containing smaller frequencies than expected under the null hypothesis, the 

eye is stricken by nearly all the triples compatible with J-scale BDCAE, 

introduced in large frequencies earlier (consider the + marked cells in 

Table 3) . This conclusion holds regardless of whether the VS&S definition of 
expected frequencies, or the VdE&VdN one. (N.B.: It can easily be noticed in 

table 3 that in some cases the expected frequencies according to VS&S and ac¬ 

cording to VdE&VdN differ only slightly .At this moment it is not evident under 

which circumstances these approaches lead to different results. This remains 

a point for further study, and should be taken into account in a more definite 

evaluation of both approaches). • 

These results lead to the conclusion (following an idea of Dijkstra (1978)), 

that the function of the CM matrix in stochastic unfolding, as proposed by 

Van Schuur and Stokman, probably can be performed better by starting from 

acceptable triples to be selected out of all possible triples (see Table 3). 

From this starting point on, building more complex scales does not seem to be 

difficult in principle. For example, all acceptable triples in Table 3 

(excluding ABE and BCE) are compatible with J-scale BDCAE. With the fore¬ 

knowledge we have, this is not surprising. Error cell frequencies associated 

with J-scale BDCAE that have not been considered thus far, and their expected 

frequencies, look like this (calculated according to VS&S,1979,p.13): 
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Table 3 

Triples, error-cell frequencies (E), and expected error-cel 1- 
'frequencies (Eq). Expected error-cell frequencies: upper number: 
expectation calculated according to Van Schuur and Stokman i.e. 
Corrected for transitivities). Middle number: expectation based 
directly on marginal totals in table 2 (no correction for transitivities). 
,Lower number: expectation calculated according to Van der Eijk and 

Van der Noort. 

* ■ 

triples 
I 

E Eq 
II 

E Eq 
III 

E Eq 

ABC 

42.1 

40 31.7 x 

40 

39.4 

63 29.7 

43 

58.4 

37 44.0 + 

57 

ABD 

46.4 

46 34.9 

44.3 

40.8 

60 30.6 x 

43.3 

52.8 

34 39.6 + 

52.3 

ABE 

50.7 

52 38.1 ♦ 

50 

43.3 

40 32.5 x 

45.9 

48 34.5 

46 

ACD 

37.6 

60 28.3 x 

40 

53.2 

|() 40.0 + 

30 

49.2 

70 37.0 

50 

ACE 

41.0 

20 30.9 * 

40 

37.7 

56 43.4 

56 

41.3 

64 31.1 

44 

ADE 

45.2 

26 33.9 ♦ 

45 

54.1 

74 40.7 

53 

40. 7 

40 30.6 x 

42 

BCD 

38.9 

60 29.3 x 

42 

51-2 

50 38.5 

49 

49.9 

30 37.5 ♦ 

49 

BCE 

41.3 

40 31.1 x 

42 

55.6 

56 41.8 ♦ 

55 

43. 1 

44 32.5 

43 

BDF. 

CDE 

42.6 

45 32.0 

44 

54.9 

35 41.3 ♦ 

54 

42.5 

60 32.0 x 

42 

50.5 

30 30.0 ♦ 

49 

51.2 

70 38.5 

49 

38.3 

40 28.8 x 

42 

x : eorr 

♦ : eorr 

note : 

esponding J-scale co 

esponding J-scale c 

ee next nap.e 

mpatible with J-scale DEBAC 

mpatible with J-scale BOCAE 
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| note concerning table 3: 

The notation in table 3 reads as follows : out of the 3 stimuli in alpha¬ 

betic order (say ABC) in column I the first stimulus (in this case A) 

is the middle one on a J-scale ; so the J-scale is BAC. 

In column II the second stimulus (in this case B) is the middle one, 

and in columnUI the third stimulus is the middle one. So, with the Stimuli 
ACE, columnUI means J-scale AEC. 

The numbers not between parentheses are the frequencies of the in¬ 

compatible patterns. For example the patterns of 37 cases that 

cannot be reproduced from J-scale ACB. It can be shown that the fre¬ 

quencies in table 3 correspond to the concept of error cell frequencies as 

developed by van Schuur and Stokman. For example, ABC 1 contains the 

sum frequency of patterns BCA and CBA, neither of these being compa¬ 

tible with J-scale BAC. This stress frequency of J-scale BAC is identical 

with the error cell frequency in the van Schuur and Stokman approach, 

since they define the error cell frequency of J-scale BAC as the number 

of respondents that did not pass midpoint BA but at the same time did 

pass midpoint AC. Therefore, in the triple ABC, stimulus A is ranked 

last by these persons, which is expressed in the patterns BCA and CBA. 

not passed 

BD 

BD 

BD 

DC 

midpoints 

passed 

CA 

CE 

AE 

AE 

o e 

35 42.9 

71 40.7 

47 38.6 

30 36.0 

Consequently BDCAE is rejected as J-scale. The remaining possible J-scales 

are now BDCA and DCAE, both having error cell frequencies smaller than the 
corresponding expected frequencies. 

The example presented above is intended to warn against putting too much 

weight on the property of CM in the (overall) dominance matrix in the 

construction of a J-scale. It is not intended to propose that CM can be 

totally discarded as a criterion for the evaluation of J-scales. The property 

of CM follows directly from the notion of a one-dimensional scale where stimuli 

(or rather, their midpoints) and subjects have a certain (fixed, or momentary) 

location. This means that according to this formal model, triples to be 

selected for the formation of a J-scale on the basis of their H-value, should 

be CM themselves (i.e. in case of the qualitative J-scale ABC: p(AB) <p(AC) < 

p(BC)). In the example presented above not all triples with satisfactory H-values 

pass this test. It remains a point for further research to establish whether 

or not the criterion of CM for the evaluation of a J-scale can be relaxed, and, 
if so, under what conditions, and to which degree. 
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7. Conclusion. 

The problems discussed in this article, and the problems of stochastic unfold¬ 

ing in general are serious ones. Apart from some minor problems, such as how to 
treat ties (though not yet solved)» we discussed three main problems : the 

problem of stochastic transitivity, the problem of the transitivity check by subjects, 

and the problem of the dominance matrix. 

(1) All models considered, with the exception of Coombs', predict exactly 

MST for unilateral triples, whereas the data set of van Schuur and Stokman 

(along with several others) show SST. Since no acceptable explanation is 

offered for this failure, maybe it must be considered fatal, leading to the 

rejection of the 'weak' models (van Schuur and Stokman, Bechtel) as well as the 

'strong' ones (Sixtl, RHUM) discussed. 

(2) The data analysed by Van Schuur and Stokman as well as those presented 

by Norpoth show clear evidence of an internal 'transitivity check'. Two strategies 

are presented to cope with this phenomenon : 

(a) The approach of Van der Eijk and Van der Noort in a sense makes the 

transitivity check the heart of the model, in that they consider the pairwise pre¬ 

ferences from an implicit ordering of the stimuli, thus excluding intran¬ 

sitivities a priori. It must be asked if their model, notwithstanding the 

statistical procedure used, is a stochastic model of individual choice. 

(b) The approach by Van Schuur and Stokman, together with the correction 

for transitivity (formula (3)) leads to the very serious dilemma of 

simultaneously requiring stochastic independence at the level of pairwise 

preferences, and functional dependence brought about by the transitivity check. 

(3) The third kind of problem encountered is an algorithmic one. As shown in 

section 6, there is a risk of losing important information when one puts too 

much weight on the CM-property of the dominance matrix. This risk applies 

to the VS&S approach, as well as to VdE&VdN. The suggestion nade in section 6, 

namely, to build J-scales, starting from acceptable triples (in fact, this is 

a stochastic extension of Dijkstra's study on unfolding, and resembles very 

much Mokken's algorithm of scale construction) can be an elegant solution to 

this problem. 
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APPENDIX. Dominance matrices for respondents with similar vote intention 

Vote intention was measured by the response to the question : 'If elections for the 

"Tweede Kamer" would be held now, would you vote at all ? If yes, what party 

would you vote for ?' 

Table A.l 

Dominance matrix of respondents who express 

Reading example : 161 out of the 178 respondents who express a vote intention 
for CDA .prefer CDA to VVD, whereas 12 respondents prefer 

WD to CDA. 
Apparently 5 respondents (178 - (161 + 12)) did not choose between both parties 

(i.e. they produced a tie). As the number of ties differs substantially for 

different pairs of parties in this dominance matrix, we should correct for 

this before testing on stochastic transitivity. This correction can be accomplished 

in two ways : 

(a.) Calculate the proportion for those respondents only who pronounced a choice. 

161 
eg.: CDA-WD : = -93 , 

(b) Allocate the respondents who did not make a choice equally over both alternatives 

161 + HI 78 
e.g : CDA-VVD : 178 

-161 -12) = 92 

I/O 

In the original S & S paper the qualitative J-scale was found to be : 

CPN-PPR-PvdA-CDA-VVD-SGP. For respondents who express a vote intention , 

the only unilateral triple among the possible triples is PvdA-PPR-CPN. 

We therefore must consider the order of the probabilities p(Pv A p » 

p(PvdA » CPN) and p(PPR » CPN) 

The'exactly MST' prediction is p(PvdA » PPR) £ p(PvdA b CPN) £ p(PPR ® CPN) 

The SST prediction is : 

p(PvdA b CPN) > p(PvdA P PPR) and p(PvdA » CPN) k p(FpR * CPN 

As far as the frequencies are concerned, the data confirm the SST prediction 

tsee table A.l). Using the proportion with correction for ties gives the same 

result, independent of the type of correction (a or b) applied. 

ad a.: 

ad b. : 

p(PvdA B CPN) = .96 ; p(PvdA b ppr)=.81 ; p(PPR » 

p(PvdA b CPN)=.90 ; p(PvdA » PPR)=.75 ; p(PPR * CPN)-.79 
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Theproperty of SST for unilateral triples holds for all respondents 

with identical vote intentions for each of the six parties used. For CPN- and 

SGP-voters, the exception must be made, however, that their dominant qualitative 

J-scale on the basis of the dominance matrix does not conform to the overall 

J-scale. Hence the unilateral triples with parties in different order 

(as CDA-WD instead of WD-CDA as in the overall J-scale) do not conform to 

the SST-prediction. As the results do not differ when using the frequencies, 

or one of the two fomentioned proportions-corrected-for-ties, we will only present 
the results with the frequencies. 

Table A.2 

Dominance matrix of respondents who express 

a vote intention for PvdA. (N=157) 

Table A.3 

Dominance matrix of respondents who express 

a vote intention for WD.(N=83) 
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Table A.4 

Dominance matrix of respondents who express 
a vote intention for PPR.(N=16) 

Table A.5 

Dominance matrix of respondents who express 
a vote intention for SGP.(N=10) 

Table A.6 

Dominance matrix of respondents who express 
a vote intention for CPN.(N=8) 


