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MULTIDIMENSIONAL SCALING BY ANALYTICAL 

SOLUTION OF CUBIC EQUATIONS 

*) C. J.M. van Brunschot 

This brief article offers a description of a new 

computer program, SCALCANS, designed for the 

multidimensional scaling of (dis-Similarities 

data. The major merit of SCALCANS lies in the 

embodiment of a new principle for nonmetric 

multidimensional scaling: analytical solution of a 

set of cubic equations in unknown coordinates, 

whereby one coordinate at a time is estimated. 

Introduction 

In 1962 Roger N. Shepard published two articles 

in Psychometrika, presenting the first nonmetric 

multidimensional scaling algorithm (f, g). Since 

then prominent writers like Kruskal, Lingoes, 

Guttman, Young and many others have suggested 

and tested many procedures for nonmetric MDS. 

In nonmetric MDS we search for a set of inter¬ 

point distances that forms a representation of 

the set of dissimilarities between a number of 
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entities. The systematic treatment of data as to be 

represented by relations between points in a space 

stems from Coombs (a). One looks for a scaling 

solution that has ratio features and is based upon 

data with ordinal features. Many writers have de¬ 

voted attention to this interesting phenomenon of 

'metric structures in ordinal data'(b, c, g, h, k). 

The more points are located in a space, the more 

surplus information is contained by the set of 

(dis-) similarities, and the more the final confi¬ 

guration shows metric determinacy, which means 

that points can hardly be moved in space without 

lowering the degree to which the solution corres¬ 

ponds to the information contained by the (dis-) 

similarities. In the remainder of this article we 

shall speak of dissimilarities, recognizing that 

similarities can very easily be transformed to 

dissimilarities bij reversing their order. 

The relation between dissimilarities . and 
iJ 

distances d^j (both n(n-l)/2 in number, using n 

for the number of entities to be scaled) in non¬ 

metric multidimensional scaling usually is that 

of a monotonic transformation: 
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(2> * y < Ki =» d 
< d 

kl 

depending upon the assumption of weak of strong 

monotonicity. The deviation from monotonicity 

usually is expressed in a loss function. The aim 

is to minimize this loss function. In the method of 

steepest descent this is tried by moving all points 

(one by one, and in a series of iterations) in the 

direction of the negative gradient, using a step 

size to determine the variable distance with which 

to move the points. This means that the loss 

function F is differentiated with respect to each of 

m coordinates of all n points seperately. The n.m 

partial derivatives define the directions in which to 

move the n points in m dimensions with a variabele 

step size c( to approximate the configuration for 

which the loss function is minimal. The process can 

be represented by: 

F 

ik 
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where 1 i g n and 1 ^ k £ m. In one iter¬ 

ation all coordinates are estimated successively. Af¬ 

ter each iteration a test is carried out to determine 

if the loss function still descends. The method of 

steepest descent has some disadvantages: 

* slow minimization process when the configu¬ 

ration approaches the optimum; 

* the algorithm can get trapped in a local mini¬ 

mum; 

* the determination of a step size. Because the 

computation of the really optimal step size would 

ask a lot of computing time, in these algorithms 

one always accepts some kind of an approxi¬ 

mation to the optimal step size. 

To overcome these disadvantages proposals have 

been made for alternative minimization techniques. 

One of these was put forward by Yoshio Takane, 

Forrest W. Young and Jan de Leeuw (i). In their 

article they mention their intention to investigate 

the loss function minimization process in case one 

coordinate at a time is estimated. In this case 

they see a possibility to regard a coordinate x .^ 

as the unknown in a cubic equation that can be 
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solved analytically. Using this procedure one does 

not compute step sizes, nor would one meet local 

minimum problems. This is the principle that found 

embodiment in SCA LOANS. 

'SCA LOANS' stands for SCALing by ANalytical 

Solution of cubic equations. Successively attention 

will be focused on the answers to three questions: 

(1) how do we form these cubic equations, (2) how 

do we solve them, and (3) how does this procedure 

fit into an multidimensional scaling algorithm ? 

After this presentation of SCA LOANS mention will 

be made of some test results of the program. 

The cubic equation 

The loss function to be minimized in SCA LOANS is: 

(4) F =_2_ 
J=n 

n (n-1) 
(d.. 2 - h.. )2 , 

ij iJ 
i<j 

which measures the sum of squared deviations of 

squared distances from corresponding fitted va¬ 

lues. The use of squared distances rather than 

distances is, as will become clear, dictated by the 

application of Cardan's analytical solution. The 
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fitted values form a transformation of squared dis¬ 

tances that satisfies the requirement: 

(5) 6^. < 5kl hg ^ hkl* 

an analogue to the requirement of weak monotoni¬ 

city (1). 

The sum of squares is multiplied by 2/n (n-1), or 

divided by n (n-l)/2, to correct the loss function for 

the number of points and, consequently, for the num¬ 

ber of (dis-)similarities. 

Minimization of F takes place in a number or 

cycle of iterations and each iteration can be 

divided into two phases. In the first phase the loss 

function is minimized by changing the fitted values, 

holding constant the n.m coordinates, by Kruskal's 

monotonic regression procedure with primary treat¬ 

ment of ties. So, the set of fitted values not only 

satisfies (5) but also is a conditional least squares 

approximation of the squared distances. We chose 

primary treatment of ties remembering Roskam's 

(d) warning that with secondary treatment of ties 

the user makes the bold assumption that each found 

minor difference between dissimilarities is meaning- 
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ful. 

In the second phase minimization is achieved by- 

changing the coordinates, holding constant the 

n (n-l)/2 fitted values. This job is done by solving 

a set of cubic equations. The present section will 

show how these equations are formed. 

Minimization of the loss function (4) is equivalent 

to minimization Df the uncorrected function: 

(6) F 
j=n 

(d ..2 - h.. )2 
ij iJ 

whereby: 

t=m 

(7) d.. = n (*it - *it ) ■ 
IJ t=l jt 

Essentially, a cubic equation is obtained by setting 
* 

the partial derivative of F equal to zero: 

(8) .il_ = 0. 

^Xik 

It can be shown that this equation is identical to: 

j=n. 
(9) 4 xz;{ (x 

j=i 

ik " Xjk 
)2 +q. -h. .}(x. ' Mijk ijJ i ‘ik-xjk)=0' 
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whereby: 

t=m 

(10) qln, = ZT (*„ - *,.) • 
‘‘j* tTk Jt 

t=l 

By some simple algebrai'c manipulations equation 

(8) can be rewritten as: 

(11) ej x.k3 + e2 x.k2 + e3 + e4 =0, whereby: 

(12) = 4 (n-1), 

J=n 
(13) e2 - 4 2Z ( -3 x^), 

j/i 
j=l 

(14) e3 = 4jf (qijk - ^ + 3 x.^), 

j/i 
j = l 

J=n 

!4=4ET < hiJ xjk - qijk "jk - Xjk )• 

j/i 
j = l 

(15) 
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t=m 2 
(16) q . n («It - x ) . 

t/k 
t = l 

Cardan's solution 

By solving the cubic equation (11) we find the coor¬ 

dinate x., that minimizes F, other things being 
lk 

equal. This x.^ also minimizes the loss function F 

corrected for the number of points. 

How can (11) be solved analytically ? for this pro¬ 

blem we make use of Cardan's method (e). The cu¬ 

bic equation can, by dividing all terms by e^ (2), 

be written as: 

3 2 
(17) x., - ax + bx 
v ' lk ik 

The substitution x^t' = 

equation to: 
yik 

0. 

reduces this 

(is) yik3 + pyik + <i =°> whereby; 

2 

(19) P = - t + b> and: 

(20) q = 2(f )3 + C. 
3 
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When we define: 

(21) A = ( - | + Z* ) 1/3, 

(22) B = ( - | ) 1/3, and: 

(23) Z = (f)3 + ( | )2, 

then the roots > and yjk^ °f the reduced 

equation (18) can be rewritten as: 

(24) y£> = A + B, 

+ 
A-B 

Z 

i 
(-3) 2, and 

(26) y 
(3) _ A+B 
ik Z 

A-B 
Z 

cl 
Given the fact that xik= y - ^ » the roots of the 

original cubic equation in x.^ can be found. One or 

three of these roots are real numbers; two of them 

may be imaginary numbers. To complement this 
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procedure there is a selection of that real x^ that 

really renders F its minimimum value by simply 

substituting the roots in F and evaluating the result¬ 

ing values of the loss function. 

This procedure is the elaboration of the principle 

upon which SCALCANS is based. It amounts to the 

minimization of the loss function by computing one 

optimum coordinate holding constant all other 

coordinates and all fitted differences 

The algorithm 

In this section it will be shown how the forming and 

solving of cubic equations fits into an algorithm for 

nonmetric multidimensional scaling. For ease of 

survey the program SCALCANS has been arranged 

in five steps. 

Step 1: Reading/writing/processing of input data 

* text card; 

* card with parameters for steering the program: 

- number of points (l^Ln ^ 30); 

- number of dimensions (l^Tm 4; 10); 

- similarities of dissimilarities as input ? 
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- input or computation of initial configuration ? 

- punched output of final configuration required ? 

- plot ofiinal configuration required ? 

- maximum number of iterations; 

- class width for ties in (dis-) similarities; 

- criterium for stabilization of loss function; 

* (dis-) similarities. No missing data are per¬ 

mitted and only the upper triangular matrix of 

(dis-) similarities is read in. 

* (if necessary) initial configuration. 

In the first step this input is processed in three ways: 

* if necessary, similarities will be transformed 

into dissimilarities by simply altering their sign; 

* dissimilarities are ranked. . . 

* ... and scanned for ties. 

Step 2: Computation of initial configuration 

Of course, this step will be skipped when the initial 

configuration is part of the input. Computation is 

based on a metric scaling procedure of Torgerson 

(j) that proved to be very succesful in suggesting 

initial estimates of coordinates. 

Step 3: Initialization of process 

* centration and standardization of configuration 
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* computation of squared euclidean distances be¬ 

tween points 

% ranking of these squared distances within ties 

detected in the first step. This is necessary for 

the primary treatment of ties 

* computation of fitted values, using Kruskal's 

monotonic regression procedure with primary 

treatment of ties 

* computation of loss function (4) 

Step 4: Minimization of loss function in the speci¬ 

fied maximum number of iterations. In each 

iteration the program moves all n.m coordinates 

(one by one) so that the loss function is actually 

minimized. After each estimation of a coordinate 

new squared distances and corresponding fitted 

values are computed before turning to the next 

coordinate. After each iteration a test is carried 

out to determine if the new loss function deviates 

more then the specified criterium from the loss 

function in the previous iteration. (Because of 

the analytical character of the second phase of 

the minimization process the loss function can 

never rise . ) If so, the next iteration is started. 

If not, step 5 follows. 
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Step 5: Output 

After rotation to principal axes, centration and 

standardization SCALOANS gives the following out¬ 

put: 

* number of iterations 

* loss function; 

* squared euclidean distances; 

* fitted values; 

* final configuration; 

* (if required) plot of the final configuration; 

* (if required) punched output of final configu¬ 

ration. 

Some test results 

Out of all tests of SCALCANS we selected one series 

of tests that appears very clear through its geographic 

interpretation. On a map we measured (as the crow 

flies) the distances between 8 cities in the province 

of Noord-Brabant, namely Bergen op Zoom, Roosen- 

daal, Breda, Tilburg, Eindhoven, Oss, 's-Hertogen- 

bosch and Waalwijk. This resulted in a matrix of 

dissimilarities that served as input to SCALCANS. 

An initial configuration in two dimensions appeared to 

be a perfect solution. This configuration served as 

input to 8 runs of the program, whereby several cities 
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changed places (with a varying number of dimensions). 

This was done in order to get indications of the possi¬ 

bility that: 

1. a bad initial configuration prevents the pro¬ 

gram to find a satisfying solution, i. e. the 

algorithm gets trapped in a local minimum; 

2. solutions in one dimension show varying values 

of the loss function, i. e. some solutions appear 

to be local minimum solutions. 

In each run a maximum of 25 iterations was used. 

These runs made the following conclusions possible: 

1. All solutions in 2 dimensions were excellent 

2. The one-dimensional solutions showed prac¬ 

tically identical coordinates and loss functions. 

3. The geographic intercity structure was clear¬ 

ly recognizable in all two-dimensional solu¬ 

tions. 

4. From 1) to 3) we can conclude that no local 

minimum problems were encountered. 

5. After, say, 5 iterations the minimization 

process slows down considerably, but this 

hardly is a problem because of the high speed 

of minimization in the first few iterations. 
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Combined with all the other test results, we arrive 

at the following general conclusions: SCALCANS is 

a sound computer program for the scaling of stimuli 

by using the rank order of (dis-) similarities. The 

solution of cubic equations as the fundamental prin¬ 

ciple of the algorithm ensures a decline of the loss 

function. No local minimum problems were encoun¬ 

tered. The minimization process goes very fastly 

in the first few iterations but very slowly thereafter. 

The procedure for the calculation of an initial con¬ 

figuration proved very sound. 

One disadvantage of SCA LOANS is that it makes use 

of squared distances, rather than distances. This 

disadvantage is minor, however, because a rank 

order of distances corresponds perfectly with the 

rank order of squared distances. 
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