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1. introduction 

The Latent Structure Analysis (LSA) model is a general framework 

for models in which underlying variables are assumed. One very un- 

restrictive LSA model is the Latent Class Analysis (LCA) model. In 

this model the underlying (latent) variable(s) are categorical and 

no order restrictions (or even stronger restrictions) are imposed 

on the latent variable(s). In fact, the LCA model is the most basic 

LSA model. By specifying additional assumptions (e.g. order rela¬ 

tions between the latent parameters, or by specifying a metric for 

the latent variable(s)) one can define other LSA models. 

Some references regarding LSA models are: Lazarsfeld (1950), 

MCHugh (1956), Anderson (1959), Gibson (1959, 1960), Madansky 

(1960), McDonald (1967), Lazarsfeld & Henry (1968), Lord & Novick 

(with contributions by Birnbaum, 1968), Goodman (1974a, 1974b), 

Mooijaart (1978, 1980). Other references about LSA models in which 

more restrictive models are discussed are: Rasch (1960, 1966), 

Bock & Lieberraan (1970), Andersen (1973, 1980), Christoffersson 

(1975, 1977), Muthdn (1978). 

Here we discuss LCA models and among them models in which we 

impose restrictions on the latent parameters. The following kinds 

of restrictions may be imposed. 

a. Parameters may be fixed to a certain value, b. parameters may 

be equal to other parameters and c. order relations can be defined 

for the parameters. According my opinion LCA in which the user can 

specify order restrictions on the latent parameters is new in the li¬ 

terature. One nice consequence is that the problem of how to deal 



-23- 

with estimates of parameters which fall outside a permissible range 

(e.g. 0-1) can be solved. In many estimation procedures of LSA 

models this is a problem. 

In this paper we start with formulating the LCA model. Then we dis¬ 

cuss briefly how the latent parameters can be estimated and how to 

handle order restrictions on the latent parameters. As an illu¬ 

stration of the theory we discuss an example in which LCA with 

order restricitons was applied. 

2. Notation 

Scores on manifest (observed) variables are denoted by Latin 

letters and scores on latent (unobserved) variables by Greek letters. 

Vectors and matrices are written with a curl underneath to distin¬ 

guish them from scalars. Frequently, so-called indicator vectors are 

used. An indicator vector represents a score on a categorical 

variable. The number of elements of an indicator vector is equal to 

the number categories of that variable. This vector consists of 

zero elements only, except for one element which is equal to 1. 

The position of this unit element corresponds to the category 

sample element (denoted by e) belongs. 

Let x. be an indicator vector of order (r. x 1). Then E(x ) 
„i i -1 

is a vector of expectations which elements can be interpreted as 

probabilities. Element a of this vector will be denoted as 

E(x.x') defines a two-dimensional cross-table of order (r x r ). 
-i~D 1 3 

An element of this table is ir. . . ... In an analogous way more- 
iD(ab) 

dimensional tables can be defined. 

In general, let V denote a set of variables and C an order¬ 

ed set of specific categories of these variables. Then E<XV(C)> 

will be denoted as This defines the expectation of falling 

in the categories given in set C, corresponding to the variables 

given in set V. (For instance, in the two-dimensional example 

above: V — (i, j) and C = (a, b).) 

When V consists of all available variables, all possible 

elements (all elements of the highest dimensional table) 

may be collected in a vector, called it. However, in our estima¬ 

tion procedure we will mostly fit expectations of cross-products 

up to a certain order. 
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These expectations (which we call lower order expectations or 

lower order cross-products) can also be collected in a vector. 
o 

This vector will be denoted as it , where the superscript refers 

to the highest order of the fitted cross-products. It is easy to 
o 

check that each element of it can be derived from a summation of 
~ o 

elements of tt. For instance, an element tt^^ of it can be derived 

form it by tt = e' . tt where e' is a vector of zeroes and 
« S (A) _S (A) _ ^S(A) 

ones, defined in such a way that marginal elements of lower dimen¬ 

sional tables are given from elements of the highest dimensional 

table. Corresponding to each manifest variable there is a matrix 

A.. The order of these matrices is defined by the number of cate- 
-i 
gories of the variables and by a specific latent structure. Column 

t of this matrix is denoted by the vector A., and an element of 
_it 

this matrix by A. , . (this element corresponds to category a of 
i (a) t 

variable i). The matrices are collected in a super-matrix 

A '= (A ' | A' i .. .) . 

3. Formulations of LSA 

In this section we start with formulating the latent class 

class analysis model. As we shall show this is a very general 

(not very restrictive) model. From this model other models can 

be derived by adding restrictions on the latent parameters. Let 
6 

e be a sample element, x^ an indicator vector representing the 

answer of element e on variable i. Let ( be a latent indicator 

vector. An element of £ corresponds to a category of the latent 

variable. In fact we can define several latent variables, but 

for simplicity we shall use only one latent variable. The cate¬ 

gories of this variable are the latent classes. Sample elements 

fall in one and only one latent class. Let T be a latent class. 

In the latent class model 

(1) xe|eeT = E(x.IeeT) + 6e . 
1 1 _it 

xe|e£T denotes that element e's score depends on the latent class 
~i 1 
it belongs to. E(x^|eeT) is the expectation of x^ given all ele¬ 

ments falling in class T. In general, E(x.|eeT) has some values 

e 
between 0 and 1, whereas x^ has elements 0 and 1, only. A conse- 
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quence is that «®fc has values between 0 and 1. It is worth mentioning 

that E(x.|eeT) is not a "true score" which might be observed. A 

corollary from (1) is 

(2) E(6it|eeT) = 0. 

(This is easy to check by taking expectations over the elements 

of class T in the model equation.) 

Let X. = E(x.leeT), so that 
..It 1 

(3) x®|eeT = Xit + 6®t • 

In matrix form the model equation can also be written as: 

(4) x®|eeT = AJ_Ct + «®t< 

where £fcis an indicator vector with element t equal to 1. Now we 

can write: 

(5) E (x± | eeT) = A^. 

The cross-products of two variables conditional on latent class T is 

Wt!& (6) x; x, | eeT = A.C^A; + A^S^ 
~D 

6 £'A' 
_it„t., j .it.jt 

The expectations of the cross-products is 

(7) E(xix'|eeT) = A^'S'A' + E (®it5jtIeET) ' 

In derivation of (7) we used the property given in (2). We now 

assume that the 6 variables (the residuals) are statistically in¬ 

dependent, given class T. (This is analogous to the assumption of 

uncorrelated errors made in the factor analysis model for continuous 

variables.) This assumption implies that for i ^ j, 

(8) E(6it<5't|eeT) = E («±t | eeT) E (6 | eeT) 

= 0. 

This is in fact the so-called local statistical independence assump¬ 

tion, which is the basis assumption for LSA models. 

It is worth mentioning that e.g. factor analysis for continuous 

variables is also a LSA model. In this case the factors are also 

defined by the local independence assumption, e.g. see the formulation 

of factor analysis by Joreskog and Sorbom (1979). 
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In fact factor analysis is an incomplete LSA model, 

because it uses the crossproducts of first and second order, only. 

From (7) the expectation of the cross-products given class T is 

(9) E(x.xT|eeT) = A.5 £'AT 

In an analogous way, expectations of cross-products of more than 

two variables can be given. However, it is not convenient to formu¬ 

late these expectations in terms of matrices. According to (5) and 

(9), and generalizing to higher order cross-products, we find 

E(Xi(a)|ecT) 
*i(a)t 

E(xi(a)Xj(b)leeT) 

E (x. x. .x, . eeT) 
(10) i (a) 3 (b) k (c) 1 

*i(a)tXj(b)t 

*i(a)t*j(b)t*k(c)t 

So far we have formulated expectations of cross-products conditional 

on class T only. However, to specify the distribution of the mani¬ 

fest parameters we have to formulate the unconditional expectations 

of the cross-products. Let u) = E£ be a vector of latent class sizes. 

From (10) 

it . 
r (a) 

= Ex. 
■ i (a) 

s 

= Z w X 

t=l 
i (a) t 

rij (ab) Exi (a) xj (b) 

(11) TT . v = EX. . . X. ,, .X, . . 
i3k(abc) i(a) 3(b) k(c) 

t^l“tAi(a)tXj(b)t 

s 

t^l“tAi(a)tAj(b)tXk(c)t 

Generally, 
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(12) it. 
VIC) 

E to IU , . 
t=l fci W* 

(11) and (12) define the so-called accounting equations. From these 

equations the latent parameters have to be estimated. We estimate 

the left hand side of (11) and (12) consistently by the proportions 

in the sample. 

4. Estimation of (latent) Parameters 

So far we discussed the expectation of cross-products as functions 

of the latent parameters. These latent parameters can be collected 

in a vector X. 

We may specify X itself as a function of other parameters, 

say 0. The unrestricted model specifies tt = tt(X), 

whereas the restricted models are specified by X = X(0). A general 

method for estimating 0 will be discussed here. In this method 

expectations of cross-products are estimated consistently by cor¬ 

responding cross-products in the sample. For a discussion of the 

identification conditions of the parameters in the models we discuss 

in this paper, see Mooijaart (1980). 

Estimation of parameters in models with order restrictions can be 

done by the method "Optimization by Manifold Suboptimization” (see 

Zangwill, 1969). However, we do not discuss this method here. (See 

Mooijaart, 1980, forthcoming.) 

The general loss-function can be written as 

(13) S = (p - ir(0))'W(p - tt (0)) . 

which defines the least squares loss function if W is the identity 

matrix and if W is specified as an inverse of the population cova¬ 

riance matrix of p (say W = E (0)) the generalized least squares 

loss function (see for more details and important theorems e.g. 

Rao (1965)). In practice it is hardly possible to use all information 

from the data, because the total number of cross-products (or the 

total number of response patterns) increases sharply with the number 

of variables. That is why we use limited information by fitting 

lower order cross-products only. In that case the loss-function is 

o o o o o o 
(14) S = (p - n (0))'W (p - w (6)). 

15° Ls still asymptotically chi-square distributed if W is an Inverse 
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of the covariance matrix of p°, because p and tt are linear functions 

of p and tt. By using limited information it is therefor still possible 

to test the model, but in this case with a fewer number of degrees of 

freedom. How to estimate elements of the matrix W can be found in 

Mooijaart (1980). 

5. Example: Dutch people about abortion 

In this example we discuss attitudes towards abortion. Data for 

a Dutch sample of people have been collected by Veenhoven and 

Hentenaar (1974). This was a project of the Dutch foundation "Stimezo" 

(Foundation of medical interruption of pregnancy). 

This project was concerned with several issues like attitudes towards 

Capital Punishment, Abortion, Euthanasia, Sexual Liberty. 

For our purpose we use a sample of 543 subjects for which there were 

no missing values on eight abortion items. For discussion of the 

results we have to translate these items. The translation of the 

questions resembles the wording of items of a similar American research 

project (see Davis et al., 1978) very much. 

The wording of the abortion items is: 

I think abortion should be possible for a 

pregnant woman if: 

H: the woman’s health is seriously endangered by the 

pregnancy. 

O: the woman wants an abortion for some reason and if 

there are no medical objections. 

D: there is a strong chance of serious defect in the 

baby. 

W: the woman is not married and doesn't want to marry 

the man. 

R: the woman became pregnant as a result of rape. 

F: the woman already has a large family and cannot 

afford more children. 

A: the woman is not married and is not able to marry 

the man. 

L: it is likely that the child will be unhappy because 

the parents do not love him. 
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The underlining of some words above is done by me. 

In the following the abortion items will be labeled by the letter 

given in front of them. These letters correspond with the underlined 

words. 

We shall now discuss some unrestricted and restricted LCA 

models. In all estimation procedures we fit first, second and third 

order cross-products. In the tables below only estimators of the 

parameters of the yes-categories are given, the estimators of the 

parameters of the no-categories can simply be deduced from them. 

in the table below we see the estimators of the unrestricted two 

class LCA model. 

Table I 

Unrestricted OLS estimates. Two classes. 

Least squares value .235 . Mean deviation 

.020 . 

Item CLASS 1 CLASS 2 

H 

O 

D 

W 

R 

F 

A 

L 

.93 

.84 

.99 

.81 

1.00 

.89 

.87 

.84 

1.00 

.10 

.66 

.00 

.73 

.11 

.03 

.13 

SIZE .49 .51 
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Fitting first, second and third order proportions means here 

fitting 576 proportions. Because the least squares value depends on 

the number of fitted proportions a reasonable measure for the goodness 

of fit is S/NP in which S is the least squares value (see (14)) and NP 

the number of fitted proportions. This measure is called 'Mean 

deviation'. 

In the table below estimators of the unrestricted three class LCA 

model is given. 

Table II 

Unrestricted OLS estimates. Three classes. 

Least squares value .013 . Mean deviation .005 . 

Item CLASS 1 CLASS 2 CLASS 3 

H .96 .97 

0 .90 .20 

D .97 .95 

W .89 .06 

R .99 .96 

F .94 .24 

A .95 .12 

L .89 .25 

.74 

.02 

.17 

.02 

.35 

.00 

.00 

.01 

SIZE .41 .19 

In table II we see that the least squares value (and the mean 

deviation) is much smaller than in table I. Up to now experience with 

these measures shows that in table II we have a reasonable good fit for 

the model. But more important is the following interpretation of this 

solution. 

There are three latent classes of 41, 40 and 19 percent of the subjects. 

The first class is a class in which oeople most likely will say yes to 

all questions. Class two consists of people who are very likely to say yes 

to the items H-D-R. Class three consists of people who are very likely to 
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say no to all items, except for item H. 

A labeling of the items H-D-R could be "medical" (see also MuthSn), 

"hard" or "physical" and a labeling of the other items could be 

"social" or "soft" (of course other labels are possible). 

Applying these labels the results can be interpreted as follows. 

Class 1 consists of people who say yes to abortion for both physical 

and social reasons; class 2 consists of people who agree with abortion 

for physical reasons only and class 3 consists of people who do not 

agree with abortion for any reason (except for item H). 

This interpretation suggests an ordering of the latent classes. 

And indeed, the estimates show, almost consistently for all items, a 

specific ordering of the latent parameters over all classes. This 

could be interpreted as an underlying one-dimensional structure which 

can be labeled as a liberal versus non-liberal attitude towards 

abortion. Of course, this continuum is non-linearly related to the 

manifest variables. 

Table III shows the estimates of the parameters of the model in which 

we imposed order restrictions for the latent parameters. 

Table III 

Restricted OLS estimates. Three classes. 

For each item parameters are ordered from 

high to low over the classes. Least squares 

value .014 . Mean deviation .005 . 

Item CLASS 1 CLASS 2 CLASS 3 

H 

0 

D 

W 

R 

F 

A 

L 

.96 

.90 

.97 

.88 

.99 

.94 

.94 

.89 

.96 

.19 

.93 

.05 

.94 

.23 

.11 

.24 

.75 

.01 

.12 

.02 

.32 

.00 

.00 

.00 

SIZE .41 .41 . 17 
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Table III shows similar results as in table II, so an underlying 

one-dimensional structure seems reasonable. 

We have seen now an ordering of the latent classes. However, is 

there an ordering for the items too? Inspecting proportions of the 

items for the whole sample we find an ordering of items: 

H-R-D-F-L-O-A-W, in which item H has the highest proportion (.92) and 

item W the lowest proportion (.39). An interesting question is: does 

the given ordering of items hold not only for the whole sample of 

people but does it also hold within each latent class? It is possible 

to formulate this by a LCA model in which order restrictions hold for 

the parameters within each class. Estimates of the parameters are 

given in table IV. 

Table IV 

Restricted OLS estimates.* Three classes. 

Latent parameters are both ordered over classes 

and within each class. Least squares value .025 . 

Mean deviation .007 . 

Item CLASS 1 CLASS 2 CLASS 3 

H .97 .97 

R .97 .97 

D .97 .96 

F .94 .23 

L .91 .23 

O .91 .19 

A .91 .14 

W .88 .06 

.75 

.35 

.18 

.02 

.02 

.02 

.00 

.00 

SIZE .42 .39 .20 

* Note: the ordering of the items is not the same as 

in table I III. 
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Substantially the interpretation of table IV is similar to that 

of table III, so the model seems good. In fact this model specifies 

double monotonous (holomorf) items. This is analogous to the definition 

of the Mokken-scale. The difference of our model and the Mokken-scale 

is that Mokken formulates quantitative underlying variables whereas 

LCA defines qualitative variables. So the LCA model with double mono¬ 

tonous items is weaker, but essentially both are the same. 

In fact, Mokken's main concept is the concept of non-crossing trace¬ 

lines . 

Of course, other orderings of items within the classes are possible. 

We chose for the ordering above because then the model specifies that 

the ordering of the items in the whole sample and in the latent classes 

are the same. The interpretation of the solution can now be stated as: 

an underlying continuum reflects the attitude towards abortion. 

The extremes of this continuum can be labeled as a "liberal" and a 

"non-liberal" attitude. 

Besides defining specific latent structures it is also meaningful to 

define so-called discrimination measures for each category. These 

measures denote how well a category gives information about the under¬ 

lying structure. For instance, if the latent parameters of a category 

are equal for all latent classes, then that category does not give any 

information about the underlying structure. If, on the other hand, the 

parameters differ very much then the category tells something about the 

latent structure. The discrimination measure for category "a" of item 

"i" we use is: 

D. . . 
1 (a) 

JTZ 
= VlE.u 

t=l“t ^i(a)t 
X. , , ) 
1 (a) 

in which X 
i (a) 

£.u) ^, , . /-S. 
t=l t i(a)t 

i) and A . , . . are estimates of 
t i ia /1 

latent parameters (see section 1). 

In our example with an underlying latent scale these discrimination 

measures can be interpreted as measures of scalability of items. 

In table V the items are ordered with respect to their scalability. 

Also in this table results of three different analyses are given. 

(For a more detailed discussion of these analyses see Albert Gifi, 1980.) 
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Table V 

Ordering of items with respect to their sea' 

lability for 5 different analyses. 

most 

scalable 

items 

least 

scalable 

HOMALS Guttman 

A A 

W W 

F F 

0 0 

L L 

D R 

R D 

H H 

Mokken LCAl LCA2 

W AW 

* R W A 

A F F 

D O O 

F L L 

L D D 

0 R R 

H H H 

In table V discrimination measures of two LCA models are given: 

LCAl is the unrestricted 3—class model and LCA2 is the double monotonous 

3-class model. From the table we see that the ordering for the 

Mokken-scale is quite different from the other ones. 

It is striking that LCA2 differs so much from Mokken's analysis 

because both models assume double monotonous items. (A more detailed 

comparison of the two methods have to be carried out.) In all 5 analyses 

we see that item H is the least scalable item, so this item has 

almost nothing to do with the underlying structure. 

Further in this table it is remarkable that Homals, Guttman's analysis, 

LCAl and LCA2 do not differ very much with respect to the ordering of the 

scalability measures. So a not very risky conclusion may be that these 

analyses show about the same underlying structure. 

Some final remarks 

- In this example we have seen that the OLS procedure can be applied 

very useful for exploring the data. 

- The proposed discrimination measure can be very helpful in inter¬ 

preting a solution. 
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What we did not discuss in this paper 

- How are background variables related to an underlying structure. 

- What are the GLS estimators and how to test a model. 

- A more-dimensional underlying structure. 

These last three points will be discussed in Mooijaart (1980, forthcoming). 
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