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APPLICATIONS OF "BIRTH PROCESSES": EXTENSIONS OF THE 

PETERSEN MODEL AND THE PITCHER-HAMBLIN-MILLER DIFFUSION 

MODEL 

Andreas Diekmann, University of Hamburg, Institute of Sociology 

1. Stochastic "Birth Processes" 

Birth processes are a special class of discrete state and 

continuous time stochastic growth processes which are de¬ 

fined formally (see Bartholomew 1967: 292) by: 

(1) P f k—>>k+1 in (t, t+dt) 1 = ^ t)dt 

P is the probability of change from state k to state k+1 in 

the infinitesimally small interval dt, i.e. the probability 

that a new event (a new border conflict, an act of collective 

violence) will take place, k is the number of events since 

the process began at time t=0 and is the transition 

rate or intensity of the process. 

It is characteristic for birth processes that k is allowed 

to increase but not to decrease. Therefore birth processes 

are appropriate for describing cumulative growth processes 

which are governed by probabilistic laws. 

Picture 1 illustrates the "one-way street" of a general birth 

process: 

.. 

Picture 1 

The transition rate can be constant, dependent on k, dependent 

on t, or dependent on both k and t. The four possibilities are 

shown in the following table: 
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t 
independent dependent 

independent 0) Poisson © time-dependent 
Poisson 

k 

dependent © epidemic (e.g. Yule 
process) 

© time-dependent 
epidemic (e.g. 
time-dependent 
Yule process) 

If the transition rate is a function of t the process is 

called time-dependent, and if the transition rate is depen¬ 

dent on state k the process is an epidemic one. The first 

process we focus on in this paper is of type 2 and the 

second process of type 4. 

Starting with the assumptions of the process the goal of 

model building is the derivation of a time-dependent proba¬ 

bility density function, i.e. the derivation of the proba¬ 

bilities for the system to be in state k=0, 1, 2, ... for 

every point in time t^O. 

This can be done by deriving first a recursive system of 

simultaneous differential equations for all states k=0,1,2 .. 

The differential equations (2) and (3) express the change 

of probability as a function of the probability itself: 

In a more intuitive sense the equations express that the 

change of probability for state k during the time interval 

dt is the "inflow" from state k-1 minus the "outflow" of 
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state k (for a derivation of (2) and (3) see Diekmann 1979, 

chap. Ill,5, appendix 1). The process can be uniquely 

specified by the choice of a special transition rate X -£)• 

Under the restriction of P00=1, i.e. the process starts 

at state 0, a solution of (2) and (3) can be found by different 

methods. The solution is the probability density function 

we are interested in. 

2. The Petersen Model 

From a cybernetic perspective Petersen (1978, 1979a, 1979b) 

suggests the application of the Weibull distribution to 

time-series data of political events like the Sino-Indian 

border conflict, international summits, etc. The cumulative 

Weibull distribution takes the form: 

(4) P(T*t) 

where T is the stochastic variable and Pprobability 

that at least one event will occur in the time span T=t. 0i and 

X are constant parameters that are estimated with empirical 

data. 

In order to interpret the model Petersen (1979a, formula (3)) 

derives the intensity of the process: 

(5) A(t) = -1 

In Petersen’s model time is the stochastic variable and not 

the cumulative number of events k. If we look for the distri¬ 

bution of the cumulative number of events, we have to deal 

with a time-dependent Poisson process with transition rate (5). 

As a by-product the Weibull distribution (4) can be derived. 

With the density function of the cumulative events k there is 

the possibility to estimate si and X by the principle of maximum 

likelihood. 
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For a general time-dependent Poisson process with transition 

rate dependent on time but not on k the solution of (2) 

and (3) is the following Poisson distribution (Chiang 1968s 49) 

-/A(T)dTft. Ik 
oJ j/A (T)dTJ 

(6> P(t)k k ! 

With the transition rate (5) the integral is: J Ad! T°{_1dT= t* 

Hence we arrive at the distributions 

(7) p(t)k = 

-At* v M „ 
6 (>.t“)k 

k ! 

with expected value: 

(8) E(k) = A t* 

(7) is the time-dependent distribution for the cumulative 

number of events that took place since the process began at 

t=0. 

For k=0 it follows from (7): 

(9) P(t)o = e"Xt 

Now, if we change the point of view and regard time as the 

random variables 

(1°) P(T6t) = 1 - P(T>t) = 1 " p(t)o = 1 

The Weibull distribution (10) informs us of the probability 
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that at least one event will happen in a certain time interval 

t, whereas (7) tells us the probability that 0,1,2,3, ... 

events will happen up to a point in time t^O. 

If time-series data of the cumulative number of events are 

at our disposal and if the time-series data are regarded as 

realizations of the stochastic process under consideration, 

the distribution (7) or the expected value curve (8) are 

useful for estimation of the parameters. 

The expected value curve (8) can be fitted to data by the 

principle of least squares. This is even possible by linear 

regression if (8) is subject of logarithmic transformation. 

However, maximum likelihood estimates (MLE) are more efficient. 

If we have the set of observations (k.pt.j); (kgjtg); ...; 

(kN,tN) the MLE's are derived as follows: 

(11) 
J£A?»ij(k1 ,t1);...; (kN,tN)] 

N 

= T 
i=1 

ci 
e 1 

kf ! 

(11) is the likelihood function which should be maximized in 

respect to X and . It is more convenient to deal with the 

log-likelihood function: 

(12) lnL( ft ,<0 = “ ^ 2*1* + Jk.ln(Xt®J) +]>iq-r 

The partial derivatives with respect to 6C and \ are: 

* Note that the MLE's are derived from the Poisson distribution 
and not from the Weibull density distribution. The MLE's (15) 
and (16) are not identical to Petersen's MLE's (formulas (12) 
and (13) in Petersen 1979a). An iterative solution of (15) and 
(1t) is an alternative estimation technique based on the 
assumption that the cumulative numbers of events are generated 
by the same time-dependent Poisson process with parameters 
oc and X . 
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14)^(»,«).. 
<Jh 1 h 

(14) yields for <J lnL( h , ?<)/<f)\=0 the MLE of : 

(15) )\ = ^ ki 

2*i 
A 

After setting cflnL(X,H)/Ju =0 and replacing A by X 

obtain from (13) the MLE of CC , el : 

A A 

(16) 1t* 2 xpaq - I ki t^ lnt± = 0 

A 

The MLE can be computed by numerical techniques and then h 

can be computed with formula (15). 

3. A Stochastic Version of the Pitcher-Hamblin-Miller 
Diffusion Model* 

Pitcher, Hamblin, and Miller (1978) presented an interesting 

deterministic diffusion model of collective violence which 

is based on Bandura's learning and imitation theory. The 

model consists of an instigation and inhibition process that 

is formalized as a system of two differential equations. 

The two equations lead to the following central equation of 

the model: 

(17) = ce"qtV , 

* We refer in this part to an application of Hamblin's imita¬ 
tion model to collective violence. The derivation of the 
stochastic model in paragraph 3 and the critical considerations 
in paragraph 4 are fully transferable to the use diffusion 
model described in Hamblin, Miller, and Saxton 1979. Equation 
(17) is identical to equation (9) in Hamblin et al. 1979 if V 
is replaced by U, c by m, and e-cl by b. 
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where V is the cumulative number of violent acts and c and a 

are two parameters. The solution of (17) is the Gompertz 

curve with V„ the initial level of V: o 

£ _ £e"qt 
(18) V = VQeqe q 

We now want to construct the stochastic counterpart of the 

deterministic model. Particularly interesting is the question 

whether the deterministic curve (18) is identical to the 

expected value curve of the stochastic model. 

If V is split into the initial number of violent acts VQ and 

the cumulative number k of new imitations since t=0 then the 

transition rate of the stochastic growth process takes the 

form: 

A (k.t) = °e-qt(V0+k) 

(19) is the transition rate of a time-dependent "epidemic" 

process, a so-called time-dependent Yule process which is a 

special case of a birth process. If ce-qt(V0+k) is substituted 

for A (k t) (2) and (3) we obtain as a solution 

of the system of differential equations (see Diekmann 1979, 

III,5, appendix 2) the density distribution of the new imi¬ 

tations k: 

/V +k-l\ V. v. 

(20) P0=)*=( k JP V 

This is a negative binomial distribution with p=exp£—(1-e-qt)} 

and q=1-p. Because V is the sum of VQ and k (k=V-VQ) the 

distribution of V=V0,V0+1,VQ+2,... takes the form: 
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(21) p 
(t)V 

/V-1 \ V 

)p \ v-v_ / 

. V-V- 
°q ° 

with the expected value: 

c c -qt 
— — —e ^ 

(22) E(V) = V0eqe q 

It can he seen that the expected value curve (22) is identical 

to the deterministic function (18)? This is not a self-evident 

result. There are cases where the deterministic function 

deviates from the expected value function (see e.g. Bartholomew 

1967: 306-307). Therefore the deterministic diffusion model 

is a special case of the stochastic model. 

Let us now consider the variance of the process, i.e. the 

variance of (20) or (21): 

(23) Var(V) = v0£ exp { 2c/q(1-e_qt)j - exp { c/q(1-e-qt)]j 

If t is increasing the variance is also increasing. As t 

approaches infinity the variance approaches the limit 

VQ(e2c/q-ec/q). This means that predictions will become less 

certain if t is increasing, but the growth of uncertainty 

declines and will approach zero in the limit. 

* It should be emphasized that the identity of the deterministic 
and the expected value function refers to the stochastic 
version of equation (17). A stochastic reformulation of the 
two original equations (equations (5) and (6) in Pitcher et 
al. 1978) of the model may lead to other results. 
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4. Discussion 

a) Pitcher et al. (1978) and Hamblin et al. (1979) estimated 

the parameters by a non-linear regression technique. It can 

be shown that the regression estimates are not identical with 

maximum likelihood estimates (Diekmann 1979, chapt. IV). 

Because of the increasing variance least squares estimation 

faces the problem of heteroscedascity. Therefore the more 

efficient maximum likelihood estimates should be preferred. 

2 
b) Another problem is the interpretation of the r -values. 

At first sight the data fit of the deterministic model in 

terms of the r2 statistic appears extremely good. The r 

values reported by Pitcher et al. (1978) range from 0. 941 

to 0. 999. Although the model might describe the data very 

well, it should not be overlooked that the data are cumulative 

and hence monotonous by definition. It is supposed that even 

a random process model might yield r values above 0.90. A 

random process model is a Poisson process with a constant 

transition rate X . The expected value curve of a random 

process is a straight line as can be seen from (8) for =1. 

Consequently we suggest comparing the r^ value of' the imitation 

model (r^) to the r2 of a random model (rf). The difference 

a = - r„ can be interpreted as a measure of the "explanator 
G K 

power" of the theory. 

c) The two original equations (equations (5) and (6) in 

Pitcher et al. 1978) of the Pitcher et al. model are based 

on the assumption that every violent act and every "inhibited 

unit" has the same influence on potential imitators. That 

means a violent act that happened a long time ago has the 

same influence as a violent act that happened only recently. 

However, if we look at the resulting central equation (17) 

there is another possible interpretation: According to the 

Pitcher et al. theory the growth rate ce’r,1: represents the 

instigation and the inhibition effect. But instead of assuming 
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an inhibition effect the growth rate might simply mirror the 

fact that there is a decaying influence of violent acts. The 

model is completely compatible with this rival explanation 

that seems more plausible to me than the somewhat dubious 

inhibition equation. 

The same argument applies to equation (9) of the use diffusion 

model. 

d) The model of Pitcher et al. allows the derivation of the 

deterministic growth equations and the derivation of the 

transition rate of the stochastic model from the imitation 

theory. Therefore the transition rate is justified by the 

theory. But from which theory can the transition rate of the 

Petersen model be derived? In my opinion Petersen's model 

lacks somewhat in the point that there is - as far as I know 

from the english publications - no explicit correspondence 

between a theoretical proposition and the transition rate. 

To put it in other words: I miss the first link in the de¬ 

duction chain: theoretical proposition—^transition rate —4* 

differential equations for k=0,1,2,... —^density distribution. 

e) From a mathematical point of view stochastic models are 

much more complicated than their deterministic counterparts. 

So there are reasons to ask the question whether stochastic 

models pay off. The answer is "yes" if we are interested in 

a deeper understanding of the model, the comparison of the 

deterministic and the expected value curve, the construction 

of prediction intervals, and the derivation of maximum likeli¬ 

hood estimates. 
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