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COMMA 

Computations on more matrices 

Frank 3. Brokken (University of Groningen) 

Introduction 

The program COMMA is a computer program which may be used to 

solve problems related to optimizing factorial invariance between 

two or more matrices. COMMA is one of the products of the project 

"Invariantie onderzoek" and it is closely related to the disser¬ 

tation by Ten Berge (1977a). Ten Berge's terminology will be used 

in this article for the descriptions of the different rotation 

procedures of COMMA. 

In COMMA factorial invariance may be assessed by means of 

the coefficient of congruence (phi) (Tucker, 1951): 

O) phi(a,b) = a'b (a'ab'b)”7 

where a and b are n x 1 vectors containing for instance the load¬ 

ings of the same n variables on two factors. 

According to Ten Berge (1977a) this coefficient is to be pre¬ 

ferred as an index for assessing factorial invariance to other 

indices when only the factor loadings are available. However, 

when factor scores of the same subjects are available, one should 

compute the Pearson correlation between the factor scores on the 

two factors. Fortunately, when the vectors a and b in formula (1) 

have zero means, phi reduces to the Pearson correlation. 

Available Rotation Procedures 

Although COMMA was designed to optimize factorial invariance 

for more than two matrices, it is possible to perform several 

types of analyses on two matrices. Using COMMA, the following a- 

nalyses may be performed on two matrices: 
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Problem 1. Simultaneous one-sided orthogonal inproduct 

rotation. 

Here the problem is to find an orthonormal k x k matrix T 

which maximizes 

(2) g(T) = tr.(AJjA2T), 

where and A^are n x k matrices (e.g., factor loadings). 

In the sequel the matrices A^ and A^ will be used without fur¬ 

ther denotation, they always refer to n x k datamatrices. 

Problem 2, Simultaneous one-sided orthogonal Procrustes 

■rotation 
Here the problem is to find an orthonormal k x k matrix T 

which minimizes 

(3) g(T) = tr.(A1 - A2T)'(A1 - A2T). 

The solution of this problem is identical to the solution of 

problem 1. 

Problem 3» Simultaneous two-sided orthogonal inproduct 

rotation. 

Here the problem is to find two orthonormal k x k matrices 

and maximizing 

(4) = tr.(T’A'A2T2). 

It is noted that COMMA does not yield the so-called "natural so¬ 

lution" of this problem. Instead, both matrices A^T^ and A^T^ are 

rotated by a common rotation matrix W which leaves the function 
x [at] 

g unchanged but which will rotate the matrix A = to 

varimax position. I ^ *7 

Problem 4. Simultaneous two-sided orthogonal Procrustes 

rotation. 

Here the problem is to find two orthonormal k x k matrices 

and minimizing 
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(5) T2) = tr.(A1T1 - A2T2)'(A1T1 - A^). 

The solution of this problem is identical to the solution of 

problem 3« 

Problem 5» Simultaneous two-sided orthogonal congruence 

rotation after orthonormalization. 

After transforming to X., by X1 = A^AJjA )“* and trans¬ 

forming A2 to X2 by X2 = A2(A^A2)-7, X^ and X2 may be rotated by 

the procedures used in solving problem 1 or problem 3. However, 

the ’’natural solution" of the solution of the two-sided rotation 

problem 3 cannot be obtained using COMMA, Instead, and 

will be varimax-rotated by a common matrix W (cf. problem 3). 

The problems mentioned thus far may be used in cases where 

there are two matrices. Often, however, the researcher has more 

than two datamatrices (e.g,, the same test is given to three 

groups of children)• In these cases COMMA may be used to assess 

the invariance of the datamatrices (e.g., factor loadings) all 

at once. Ten Berge (1977a, p. 39) gives three functions to be used 

in assessing factorial invariance when there are more than two 

matrices: 

a) The generalized Procrustes function 

(6) f(T1*T2’-”Tm) = i?3 tr.CA.T. - A T )*(A.T. - A T ), 

b) The generalized inproduct function 

(7) f(Tl’T2,-"Tra) = i?3 tr.(T-A-A.T.), 

(8) 

c) The generalized congruence function 

k 
f(T T ..T ) = Z JZ, phi(A.t. ,A.t. ) 

1 2 m i<J P=1 i ip 1 jp 

Depending on the rotation problem, function (6) will be min¬ 

imized while the functions (7) and (8) will be maximized. 

COMMA may be used in finding solutions for the following problems 

when there are more than two matrices: 
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Problem 6. Generalized simultaneous orthogonal inproduct 

rotation. 

Here the problem is to find orthonormal matrices T^ , ... Tm 

maximizing (?). The mathematical solution of this problem is giv¬ 

en by Ten Berge (1977a) and is not repeated here. It should be 

noted that the solution is unique up to a common rotation W. One 

possibility is to determine W as the varimax rotation matrix for 

the super matrix 

A = 

A T 
A1 1 
A T 
2 2 

A T 
m m 

Another solution (W = I) may be called the "natural solution". 

Both the varimax solution and the natural solution may be obtain¬ 

ed using COMMA. 

Problem 7. Generalized simultaneous orthogonal Procrustes 

rotation. 

As in the case where there are two matrices (problem 4), this 

problem reduces to the orthogonal inproduct rotation problem. The 

function (6) has to be minimized. 

Problem 8. Generalized simultaneous orthogonal congruence 

rotation after orthonormalization. 

After replacing the matrices Ai by X.^ = A^(A^A^) (i = 1, 

... m) this problem is reduced to problem (6) on the X-matrices. 

The matrices X^ may be rotated by a common rotation matrix W, 

which will leave the sum of phi-coefficients unaffected. 

This solution represents the best currently available gener¬ 

alization of the canonical correlation problem, formulated as a 

simultaneous rotation problem. Especially when the canonical var¬ 

iates are to be rotated to "simple structure" (e.g., by means of 

the varimax criterion), this is a useful approach to the general¬ 

ized canonical correlation problem (cf. Cliff & Crus, 1976). 

Approximate solutions 

In addition to the proper and exact solutions of the rota¬ 

tion problems presented above, several other problems may be solv¬ 

ed by using an approximate solution. Instead of presenting these 
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problems and their solutions in extenso. they will only be men¬ 

tioned and a reference to Ten Berge (1977a) will be given. 

The following problems may be solved approximately: 

a) Two matrices. 

1) Simultaneous two-sided orthogonal inproduct rotation 

after orthonormalization, followed by a common varimax rotation 

(Ten Berge, 1977a, p. 19). 

2) Simultaneous two-sided orthogonal Procrustes rotation 

after orthonormalization, followed by a common varimax rotation 

(Ten Berge, 1977a, p. 19). 

b) Three or more matrices. 

1) Generalized simultaneous orthogonal inproduct rotation 

after orthonormalization (Ten Berge, 1977a, p. 4-1). 

2) Generalized simultaneous orthogonal Procrustes rotation 

after orthonormalization (Ten Berge, 1977a, p. 41). 

Upper bounds to the obtained invariance. 

In the case of more than two matrices, the solutions of the 

problems satisfy only a necessary condition for the maximum 

(minimum) of the functions to be maximized (minimized). However, 

Ten Berge (1977b) gives two upper bounds to the functions which 

are both computed by COMMA. Comparison of these upper bounds and 

the obtained "criterion value" will thus give an indication of 

the success of the rotation procedure. If the criterion value is 

close (or even equal) to the lowest upper bound, then the abso¬ 

lute maximum (minimum) of the function to be maximized (minimiz¬ 

ed) is (almost) reached and vice versa. The proofs of the two 

upper bounds may be found in Ten Berge (1977b). 

The first upper bound. 

Let be an Eckhart-Young decomposition of 

AiAji then the first upper bound to the inproduct function (7) is 

given by j^.-tr.D^. So if f denotes the value of the function (7) 

then the following relation will always hold true: 

(9) f 21 .tr.D. . 
i< 1 il 
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The second upper bound. 

Let aTa denote the krn x km super matrix 

(10) A' A 

A 1 A 
A1 A2 

A2A1 

A'A. A’A, 
m 1 m2 

A1A 
1 m 

A'A 
2 m 

let m = PDP' be an eigenvector-eigenvalue decomposition of A A 

(di £ for i < j), then the second upper bound is given by 

(11) t! fc 
2 i=1 

d. 

Data and Syntax Diagrams 

The program COMMA was written in the language Algol-60. Con¬ 

sequently, numerical data for COMMA should be given according to 

the Algol syntax for (real) numbers. Generally this will not 

present any difficulty as the syntax is very "natural", i.e.f 

leading zero’s may be omitted, numbers may contain a minus sign 

etc.. Also, the positions of the numbers on punching cards is not 

fixed, but the numbers must be separated by commas, semicolons or 

by at least two blank spaces. However, one special Algol number 

symbol deserves some attention. The quotation mark (") may appear 

in a number meaning "(times) ten to the power".E.g., 3"-4 denotes 

the number Q0003 and "-4 denotes the number 0.0001. 

Beside the Algol-syntax for real numbers, the input for the 

program should be structured according to the "COMMA-syntax". In- 



46 

put structured according to this syntax will be accepted by the 

program and will result in a proper run of COMMA, while all oth¬ 

er input will result in an early abort of the program. In these 

cases a syntactical error is said to have occurred for which 

COMMA will frequently issue an errormessage• 

The COMMA-syntax is given by so called "syntax diagrams", 

containing terminal and non-terminal symbols. By successively 

replacing the non-terminal symbols by their definitions, which 

will usually contain one or more terminal symbols, the non-termi- 

nal symbols disappear and correct COMMA input i6 generated. 

In the syntax diagrams non-terminal symbols are represented 

by words written in lower-case letters and placed in rectangles, 

like 

On the other hand, the terminal symbols are set up in capital 

letters and are placed in rectangles having rounded angles, like 

(13) -(COLUMN S>- ■ 

Furthermore, all numbers, all literal symbols (e.g., the comma, 

the blank space (denoted by * )) and the symbol / (denoting 

"continue on a new card or line of text") are terminal symbols. 

The distinct elements of a syntax diagram are joined by 

lines containing small arrows denoting the seriation of the input 

elements. For example, in (14) the general form of the COMMA-in- 

put is depicted in the "COMMA-input" syntax diagram. The input 

jnaj£ consist of one or more sequences of the word STARTRUN (placed 

on a new card or line of text), followed by data as described by 

the "data" syntax diagram, but the last card of the input must 

contain, on a new line of text or on a new card, the word ENDRUN. 
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The COMMA syntax 

This section contains all syntax diagrams necessary for the 

generation of correct COMMA-input. Numbers in the syntax diagrams 

are represented by letters or abbreviations, set up in lower case 

letters and placed in rhombs. The meaning of these numbers will 

always be explained in the text. 

COMMA-input. 

Diagram (14) shows the general form of the COMMA-input. Thi6 

diagram was explained in the text immediately following (14) and 

is not repeated here. 

data. 

The non-terminal symbol "data" in (14) contains two non-ter¬ 

minal elements. The data syntax diagram is given in (15)* showing 

that all data for one problem are separated in two parts: predata 

and maindata. 

predata. 

The predata syntax diagram is given in (16). Starting on a 

(16) 

- / 

CT7 

ri 
“Kj 

Patrice s)- 

INNER" PRODUCT, 
'PARAMETERS 

■h 

new card or line of text either the word MATRICES appears (i.e., 

the user supplies the program with the separate A. matrices) or 

the word INNER PRODUCTS appears (i.e., the user intends to enter 

the A!A. matrices in some form). The next card contains the word 

PARAMETERS, which parameters are given on the following three 

cards. These parameters are: 

k: the number of matrices to be entered; 

m: number of rows of the A^ matrices (only if MATRICES was 

given); 

n: number of columns of the (inner product) matrices; 
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raaxit: maximum number of iterations during the rotation of 

the matrices. One iteration corresponds to one com¬ 

putation of the function (7) in which, depending on 

the problem, the matrices may represent transform¬ 

ed (e.g., orthonormal) matrices or the original ma¬ 

trices; 

mingain: the minimal gain in the function (?) between two 

successive iterations necessary to 6tart a new itera¬ 

tion. 

Maxit and mingain together determine whether a new iteration 

cycle will be started. A new iteration is performed whenver the 

current iteration number is less than maxit and the gain of the 

function (7) between the last and the last but one iteration ex¬ 

ceeds mingain. Maxit and mingain must always be specified, even 

if no rotation will be requested (cf. the NOGO option of the 

"maindata" syntax diagram). However, in these cases the actual 

values of these parameters are immaterial. 

cols: the number of columns to be used in reading subsequent 

input information. E.g., 72: information beyond column 

72 is to be ignored). 

Example. 

Using the syntax diagrams presented above, the following in¬ 

put may be constructed: 

STARTRUN 

MATRICES 

PARAMETERS 

3, 50, 10 

15, "-4 

8o 

From this input fragment COMMA will expect three matrices having 

50 rows and 10 columns each. If the remaining input will request 

a rotation of these matrices, then the function (7) may be comput¬ 

ed at most 15 times while each new value of (7) must be at least 

0.0001 higher than the previous value of (7). The remaining input 

will be read over at most 80 columns. 
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maindata. 

The data (elements of the A^ or matrices) may be enter¬ 

ed in two major ways: after ROWS the elements of each matrix are 

to be entered in the order a„„ to a. , a_„ to a. , a , to a . 
11 1n’ 21 2n’ n1 nn' 

after COLUMNS the elements are to be entered in the order a„„ to 
11 

an1 ’ al2 anCL* * * * aln ann* *'rom the maindata syntax diagram 

(1?) it can be seen that the program after the rows or columns 

specification chooses between the non-terminal "matrixpart" or 

the non-terminal "inprodpart". It can do so thanks to the speci¬ 

fication on the first card (terminal symbol) of predata. 

Next the user may request the computation of the phi-coeffi¬ 

cients between all columns of the data matrices and the printing 

of the inner product matrices may be requested. These parameters 

appear immediately after the non-terminals "matrixpart'1 and "in- 

prodpart" thus indicating that they will become effective immedi¬ 

ately after the input of the datamatrices. However, they will re¬ 

main active during the complete run. Wherever phi-coefficients 

and/or inner products may be computed they will also be printed 

if requested so at this point. 

The datamatrices may be transformed in many ways (e.g.t the 

matrices A. may be orthonormalized by means of the transformation 
1 -4 

X. = A^(A^A^) z). All possible transformations are described in 

the "transform" section. 

The user who has nothing else in mind but to produce a nice 
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output showing his data (perhaps after performing 6ome trans¬ 

formations) may leave the maindata section by presenting the 

word NOGO. On the other hand, the presentation of the terminal 

GO will activate the rotation procedures by which the current 

datamatrices will be transformed in such a way that the invari¬ 

ance between the individual matrices is maximized (i.e., func¬ 

tion (7) or (8) will be maximized or function (6) will be mini¬ 

mized), During this rotation process the function (7) will be 

computed repeatedly. Presentation of the SINGLE VALUE card will 

result in merely printing the final value of (7), after conver¬ 

gence or after "maxit" (cf. the predata section) computations 

of (7)« Presenting the card containing CYCLE VALUES results in 

the printing of the value of (7) each time it is computed, which 

happens once during each rotation cycle. However, the user must 

decide where these values will be printed. To this end he pres¬ 

ents a so-called channel number "chnr". The easiest way is to 

substitute the value 61 for chnr, whereafter the individual func¬ 

tion values will be printed on the line-printer, generally half¬ 

way through the output, immediately after the initial presenta¬ 

tion of the data. Alternatively another value may be given. As 

this requires the preparation of another channel card and usual¬ 

ly also the preparation of some more job control cards, both be¬ 

yond the scope of this article, it was decided not to discuss 

this alternative within the context of this article. 

matrixpart 

If the terminal symbol MATRICES was given, the program will 

expect k datamatrices, having m rows and n columns. Syntax dia¬ 

gram (18) shows that each matrix ha6 to start on a new line, 

while the elements of the individual matrices must be given ac¬ 

cording to the ROWS or COLUMNS definition in maindata. 
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After the input of the k matrices the user either explicitly 

requests the printing of the datamatrices (by using PRINT MATRI¬ 

CES) or this printing will be supressed (NO MATRICES), This lat¬ 

ter option is especially useful when the matrices have many ele¬ 

ments. 

As the datamatrices are available, another type of rotation 

is possible apart from the rotations performed to achieve the 

invariance of the matrices. The matrices may be varimax rotated, 

either separately before the invariance producing rotations or 

following the invariance rotations, in which case the super ma¬ 

trix (19) will be varimax rotated. 

(19) 
A2T2 If 
AkTk 

By separately varimax rotating the k matrices before the 

(iterative) invariance rotations the matrices are generally ro¬ 

tated to a position which speeds up this iterative process. On 

the other hand, the user may of course be merely interested in 

the matrices in their varimax positions. 

These PRE VARIMAX rotations of the matrices produce a new 

set of datamatrices. During subsequent rotations or transforma¬ 

tions of the matrices the varimax rotated matrices will be used 

and so subsequent rotation matrices must be applied to the ma¬ 

trices in their varimax positions. 

The varimax rotation of the matrix A (19) (POST VARIMAX) 

produces one rotation matrix for all datamatrices. The required 

rotation matrix W will be printed in addition to the k resulting 

rotation matrices obtained after the multiplication of the k 

previous rotation matrices by W. 

inprodpart 

In some cases the data matrices are not available while their 

inner product matrices are available. When there are k matrices, 

having n columns each, a kn x kn super matrix as depicted in (20) 

represents all inner product matrices. In diagram (20) i*j repre¬ 

sents the n x n inner product matrix of data matrix i (transpos- 
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k 

1 'k 
2'k 

k'k 
4 

ed) and data matrix j. (Parts of) the inner product super matrix 

(20) may be entered according to the inprodpart syntax diagram 

(21) . The order in which the individual elements of the inner 

product matrices of (20) will be entered has already been speci¬ 

fied by the ROWS or COLUMNS terminal symbol of the maindata sec¬ 

tion. The order in which the individual inner product matrices 

will be entered is specified by using the inprod syntax diagram. 

(20) 
1 • 1 

211 

k11 

112 
212 

k 12 

-(diagonal)- 

!MISSING’ 

-(submatrices)-£ subarrays | 

■»-(0NEMATRIX )- 

(21)L/-1 

complete)- input matrix (see text)[" ) 

incomplet: l=l 
lowertriangle)- input lowertr. 

(see text)_ 

uppertriangle)- input uppertr. 
(see text) 

The user may: 

a) Either omit the main diagonal inner product matrices 

(i«e.t 1'1, 2'2, • •«, k'k) by specifying MISSING or enter these 

matrices by specifying DIAGONAL. 

b) Either enter the inner product matrices separately, one 

by one, by specifying SUBMATRICES, followed by the non-terminal 

"submatrices", or enter the supermatrix (20) as one matrix by 

specifying ONEMATRIX. 

If ONEMATRIX is given and the user has available the complete 

supermatrix, then COMPLETE must be given followed by the input of 

the complete matrix (20) ( (kn) numbers). Frequently, however, 

the super matrix is not complete, but, as the super matrix is 

symmetric, only the lower- or uppertriangle is available. After 
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specifying INCOMPLETE followed by LOWEBTRIANGLE or UPPERTRIANGLE 

the user enters the elements of the supermatrix (20) accordingly, 

simultaneously taking into account the ROWS/COLUHNS terminal and 

the DIAGONAL/HISSING terminal. The number of matrix elements 

which are to be entered depends on which terminal symbols are 

specified and may be read from Table 1. 

Table 1. 

Number of matrix elements 

as a function of terminal symbols 

Terminal symbols Number of 
matrix elements 

DIAGONAL COMPLETE (kn)2 

DIAGONAL INCOMPLETE i kn (kn + 1) 

MISSING COMPLETE 

MISSING INCOMPLETE i kn (kn - 1) 

Explanation 

all elements of the 

matrix (20). 

elements in lower- 

or upper triangle 

of (20) including 

kn main diagonal 

elements. 

error: no matrix is 

complete if diagonal 

elements are missing, 

elements in lower- 

or upper triangle 

of (20) without kn 

main diagonal ele¬ 

ments. 

subarrays 

The syntax diagram of the nonterminal subarrays is given in 

diagram (22). Either } k (k + 1) (DIAGONAL given) or ) k (k - 1) 
2 

(MISSING given) matrices having n elements are expected. The 

particular inner product matrix which is entered i6 specified by 

the two integers r (for row) and c (for column). Following r and 

c the elements of the inner product matrix r'c of the super ma¬ 

trix (20) are entered. It is the users responsibility to ensure 

that all relevant inner product matrices are entered, while the 

order of entering the inner product matrices is immaterial 



54 

/ 

(22) 

input n numbers 

If DIAGONAL given then i k (k + 1) times 

else i k (k - 1) times. 

However, it is important to note that the program checks the 

relation between r and c. When DIAGONAL was specified r must be 

at least c, while r must be greater than c when MISSING was spec¬ 

ified. 

transform 

After the input of the data matrices or their inner product 

matrices, the matrices may be transformed in several ways. For 

example, the user has raw-data matrices but matrices with stand¬ 

ard scores are wanted or, in order to solve problem 5, the matri¬ 

ces must be orthonormalized. These and other transformations of 

the matrices are requested within the transform section. 

From the transform syntax diagram (23) it can be seen that 

the terminal symbol NO CHANGES always appears as the final trans¬ 

form terminal symbol. On the other hand, if the terminal symbol 

(23) 

—(no'changes)- 

* 

—5— / — 

—( change')- 

-*-(matrices)—^v-| 

- change - 

NNER * PRODUC TS>-*-J 

- 

CHANGE is given, then the program expects further transform com¬ 

mands. The terminal symbol CHANGE must be followed by the termi¬ 

nal MATRICES (i.e., the data matrices will be transformed) or by 

the terminal symbol INNER PRODUCTS (i.e., the inner product ma¬ 

trices will be transformed). 

Transform commands on MATRICES produce different results 

than transform commands on INNER PRODUCTS. Table 2 shows the ef¬ 

fect of the different transform command combinations. 
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Table 2 

transform command 

combinations 

Available a terminal symbol 
matrices in transform effect 

data 

inprods 

data 

inprods 

MATRICES 

MATRICES 

INNER PRODUCTS 

INNER PRODUCTS 

Data matrices are transform¬ 

ed before they are printed 

(cf. the effect of PRE VARIA 

MAX). 

error: the data matrices are 

not available, so they can 

not be transformed. 

Data matrices are not trans¬ 

formed before they are 

printed, but the transforma¬ 

tion matrices T^ (i = 1 •• 

k) are prepared in such a 

way that T^A^A^T^ represents 

the inner product matrix of 

matrices i and j after the 

required transformation. 

Inner product matrices are 

transformed before they are 

printed. _ 

adata: data matrices available (i.e., terminal symbol following 

STARTRUN is MATRICES) 

inprods: inner product matrices available (i.e., terminal symbol 

following STARTRUN is INNER PRODUCTS). 

change 

The specific change commands are entered in the change sec¬ 

tion. Depending on the terminal symbol MATRICES or INNER PRODUCTS 

of the transform section either data matrices or their inner 

product matrices will be changed (as defined in Table 2), but not 

both. 

The user requests a particular change operation by present¬ 

ing a change—code, generally followed by additional information 

(cf. sections newall until normsome). From the change syntax dia¬ 

gram (24) it can be seen that each change command starts on a new 
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card or line of text, while the last change code roust be code 9, 

which produces an exit from change. It is important to note that 

code 9 produces not only an exit from change, but also a return 

to transform. According to the transform syntax diagram (23) a 

CHANGE or NO CHANGES terminal symbol follows the change non-ter¬ 

minal symbol. As the last symbol of change is the terminal symbol 

9, this 9 is always followed either by CHANGE or by NO CHANGES. 

The meaning of all change codes is explained in Table 3. 
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Table 3 

meaning of change codes 

APPLICABLE ONLY ON MATRICES 

CHANGING MEANS3_ 

code effect 

1 all columns of all matrices will get one new mean 

(cf. section newall). 

2 all columns of specified matrices will get a new 

mean (possibly different per matrix, cf. section 

newsome)• 

3 some columns of specified matrices will get new 

means (cf. section newparts). 

CHANGING STANDARD DEVIATIONS3_ 

code effect 

4, -4 all columns of all matrices will get one new stand¬ 

ard deviation (cf. section dilateall). 

-5 all columns of specified matrices will get a new 

standard deviation (possibly different per matrix, 

cf. section dilatesome). 

6, -6 some columns of specified matrices will get new 

standard deviations (cf. section dilateparts). 

_APPLICABLE ON MATRICES AND INNER PRODUCTS_ 

CHANGING SUMS OF SQUARES^* 

code effect 

14,-14 all columns of all matrices will get one new sum of 

squares (cf. section dilateall). 

24 the total sum of squares of all elements of all ma¬ 

trices will be changed (cf. section dilateall). 

all columns of specified matrices will get a new 

sum of squares (possibly different per matrix, cf. 

section dilatesome). 

25 the total sum of squares of all elements of specifi¬ 

ed matrices will be changed (possibly different per 

matrix, cf. section dilatesome). 

(Continued) 
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c°de effect 

16,-16,26 the sum of squares of all elements of some columns 

of specified matrices will be changed (cf. section 

dilateparts). 

DIVISION OF MATRIX ELEMENTS*1_ 

code effect 

—all elements of all matrices will be divided by one 

number (cf. section dilateall). 

-25 all elements of specified matrices will be divided 

by a number (possibly different per matrix, cf. sec¬ 

tion dilatesome). 

-26 all elements of some columns of some matrices will 

be divided by a number (cf. section dilateparts). 

ORTHONORMALIZATION OF MATRICES0’b’a 

code effect 

7 all (inner product) matrices are orthonormalized. 

8 specified (inner product) matrices are orthonormal¬ 

ized (cf. section normsome). 

As a side-effect sums of squares may be changed 
b 

As a side-effect means and standard deviations may be 

changed 
c 

Whenever matrices have linearly dependent columns, the 

program will stop its run. Whenever inner product matri¬ 

ces have linearly dependent columns, the computer system 

will abort the COMMA-run and produce a numerical Algol 

dump. 

newall 

All columns of all matrices will get the new mean 'const* 

of the newall syntax diagram (25). 

(25) ■ > const->- — 

newsome 

From the newsome syntax diagram (26) it can be seen that the 
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user must provide the program with pairs of numbers* The first of 

these two numbers ('const') represents the new mean of all columns 

of the matrix 'matnr' which is the second number of each pair. 

(26) 
matnr ■ 

.*-r 
I*- matnr - 

□ 
If 'matnr'‘is immediately followed by a comma, then the pro¬ 

gram expects another pair of numbers. The last 'matnr' should be 

followed by a semicolon. 

newparts 

In newparts ordered triplets are expected as can be seen 

from the newparts syntax diagram (27)• Column 'col' of matrix 

'matnr' will get the new mean 'const'. If 'col' is immediately 

(27) 

r-*-matnr ———col ■ 
-const —I 

L>-matnr-col • 

1 

followed by a comma, then the program expects a new triplet of 

numbers. The last 'col' should be followed by a semicolon. 

dilateall 

The syntax diagram of dilateall (25) shows only one value: 

'const'. Depending on the change code *const' will be interpreted 

differently. Table 4 shows the different interpretations of 

'const'. 

dilatesome 

The value 'const' in the syntax diagram of dilatesome (26) 

will also be interpreted differently, depending on the change 

code. However, instead of changing all columns of all matrices, 

dilatesome will only change all columns of specified matrices. 

The six dilatesome change codes 5i 15* 25* -5» — *15» -25 correspond 

to respectively the six dilateall change codes 4, 14, 24, -4, -14 

and -25* Consequently, the interpretation column of Table 4 may 

easily be adapted to dilatesome by changing 'all matrices' into 

'the specified matrix'. 
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Table 4 

different interpretations 

of 'const* 

change code 

4 

14 

24 

-4 

-14 

-24 

interpretation 

the standard deviations of all columns of 

all matrices will be made equal to 'const'• 

the sums of squares of all columns of all 

matrices will be made equal to 'const', 

the total sum of squares of all elements of 

all matrices will be made equal to 'const'. 

the standard deviations of all columns of 

all matrices will be made equal to 1/const, 

the sums of squares of all columns of all 

matrices will be made equal to 1/const, 

all elements of all matrices will be divid¬ 

ed by 'const'. 

dilateparts 

The interpretation of the value 'const' in the syntax dia¬ 

gram of dilateparts (2?) depends also on the change code. Dilate¬ 

parts will only change specified columns of specified matrices. 

The six dilateparts change codes 6, 16, 26, -6, -16, -26 corre¬ 

spond to respectively the six dilateall change codes 4, 14, 24, 

-4, -14 and -24. Consequently, the interpretation column of 

Table 4 may be adapted to dilateparts by changing 'all columns' 

into 'the specified columns', 'all matrices' into 'the specified 

matrices' and 'all elements' into 'all elements of the specified 

columns'. 

normsome 

As can be seen from the normsome syntax diagram (28), the 

user provides the program with numbers ('matnr') separated by 

(28) 

--- 
matnr- 

matnr -- -v 
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commas except for the last number, which should be followed by 

a semicolon. The matrices indicated by the numbers will be 

orthonormalized. 

Error Handling 

In its current version, COMMA performs several checks on 

the input data. The program counts the number of terminal sym¬ 

bols which appear in the syntax diagrams in rectangles having 

rounded angles and calls them "keywords"• After an error, 

COMMA issues a message in which the number of the last key¬ 

word is given and in which an errornumber, indicating the kind 

of error is given. E.g., 

AFTER KEYWORD 4 ERROR 18 HAS BEEN ENCOUNTERED. 

The definition of the errornumbers is given in Table 5« 

Table 5 

errornumbers and 

errorcodes 

errornumber errorcode 

2 

1 

4 

3 

5 

6 

7 

8 

keyword PARAMETERS not found 

changing standard deviations is impossible if 

there ar# only inner product matrices 

no orthonormalization possible: data columns 

are linearly dependent 

no orthonormalization possible: diagonal in¬ 

ner product matrices are missing (normall) 

equal to error 4, but encountered in the 

normsome section 

datamatrices cannot be changed if there are 

only inner product matrices 

first matrixnumber may not be less than the 

second matrixnumber 

after COMPLETE a complete matrix is expected, 

the previously given keyword MISSING, however, 

suggests an incomplete matrix 

(Continued) 
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Table 5 - Continued 

orrornumber errorcode 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

in section newsome or newparts: matrix num¬ 

ber out of range 

in section newparts: column number out of 

range 

in section dilatesome or dilateparts: matrix 

number out of range 

in section dilateparts: column number out of 

range 

in section normsome: matrix number out of 

range 

in section change: change-code out of range 

on channel number 6: erroneous data format 

found 

on channel number 66: erroneous data format 

found 

on channel number 6: end of information prema¬ 

turely reached 

on channel number 66: end of information pre¬ 

maturely reached 

division by zero in section dilateall, dilate¬ 

some or dilateparts 

Error processing 

Currently, COMMA serves two functions. It both checks the 

input for syntactical errors and, if possible, it processes the 

input. These two functions will be separated in the future 

when a separate syntax analyzer becomes available which will 

perform a complete syntax-check on all input data. However, the 

user will notice the existence of the syntax-analyzer only from 

his dayfile or (if COMMA was given input containing errors) from 

the printed information about the nature and location of the 

error(s). In other words: the way to start COMMA will not be 

affected by the presence of the syntax analyzer. 
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