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A ONE-DIMENSIONAL STOCHASTIC UNFOLDING MODEL WITH AN APPLICATION TO 

PARTY PREFERENCES IN THE NETHERLANDS.* 

WlJBRANDT H. VAN ScHUUR AND FRANS N. STOKMAN 

University of Groningen. 

1. Introduction.** 

This paper is confined to the elaboration of a one-dimensional pre¬ 

ference model and its application to party preferences. The model 

is given in section 2. Goodness of fit criteria to test the model 

are elaborated in section 3. After a description of our data on 

party preferences in section 4, the results of the application of 

the model to these data will be presented in section 5. 

*: This article is part of a paper delivered for the annual meeting 

of Dutch political scientists in Amersfoort, 10-11 May 1979, which 

has also been published as M & T Bulletin nr. 32, vakgroep Methoden 

en Ttechnieken, Sociologisch Instituut, Rijksuniversiteit Groningen. 

**: We thank Ivo Molenaar for his stimulating cotments during the further 

elaboration of the model. 
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2. The model 

Cocmbs (1950, 1964) developed the first one-dimensional model for 

preference data. Our model can be seen as a stochastic elaboration of 

this model. In this model each stimulus may be represented by a point 

on an underlyinq dimension. Each subject has an ideal which can also 

be represented by a point on that dimension. In our application the 

stimuli are political parties and a subject's ideal represents an, in 

general non-existing, ideal political party. Because both stimuli 

and subjects are represented as points on the underlying dimension, 

this ccrnnon dimension is called a J-scale. Coombs' deterministic 

model assumes that each individual's preference order of the stimuli 

from most to least preferred corresponds to the rank order of the 

absolute distances of the stimulus points frcm the subject's ideal 

point, the nearest being the most preferred. The individual's 

preference ordering is called an I-scale and may be thought of as 

the J-scale folded at the ideal point with only the rank order of the 

stimuli given in the order of increasing distance from the ideal 

point (Coombs, 1964,80). Figure 1 is a graphical representation of the 

model. On the underlying dimension (the J-scale) the positions of 

six stimuli are given (A,B,C,D,E,F) and the ideal point of one subject. 

The preference order from high to low for that subject will be CDBEAF. 

The data consist of a set of I scales (preference orders) of a number 

of subjects or pairwise preferences from which such I scales (in case 

of transitivity) can be constructed. The analytical problem is how 

to unfold these I scales to recover tlx1 J scale. 

The positions of the stimuli (political parties) and the ideal 

points (subjects) can be seen as unknown scale values on the continuum. 

The scale value of stimulus A will be denoted A „,- the scale value of 
A 
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Figure 1 An I scale preference ordering CDLSFAF, obtained by folding a 

J scale 
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Source: Coombs, 1964, 80. 

the ideal of subject i will be denoted 0^ In the deterministic 

itodel a stimulus A is preferred to B by subject i if and only if 

»i < *<XA+ XB); XA< XB 

The quantity B> in equation (1) corresponds to the u.iknown 

scale value of the midpoint of the scale values of A and B. 

we denote this scale value as 5ffl: 

*AB = h (XA +X B>; XA < XB 

Define the manifest function with 

(2) 
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1, when B is preferred to A 

lo, otherwise 

(3) 

With preference orders of four stimuli A,B,C,D for each of the subjects, 

we here introduce with the function x.„ six new dichotomous variables or 
AB-—- 

items for each of the midpoints AB,AC,AD,[1C,BO and CD (in general with 

n stimuli we have ^n(n-l) midpoints and functions x^g). 

Items always refer to midpoints, stimuli to the political parties themselves. 

According to the deterministic unfolding model: 

x^ =1 if and only if 0^ > 6^g and 

x„_ =0 if and only if 0. < 6 
AB J l AB 

(4) 

Figure 2 illustrates the meaning of x^g. A subject with scale value 

ei in Figure 2 will have the score 1 cn x^, and because of 

Figure 2 Scale values of one subject, four stimuli and this midpoints 

of the stimuli on a J scale 
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9i > 6bc> 6ac> ,5ab 911(3 tte score 0 on XAD' *bd ^ XCD because of 

0i< *AD* ^bd* 5CD • The reader can easily verify that the manifest 
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functions on the midpoints form a deterministic cunulative scale 

(a Guttman scale', as has been explicitly mentioned by Dawes (1972) 

Mokken (1970) developed a stochastic cumulative model for dichotomous 

data by introducting a trace function n(a, 6) of a one-dimensional 

subject pirumeter 0 and one-dimensional item difficulty [jarameter . 

Application of this nodel on tlie midpoints of die stimuli setms to be 

straightforward and enables us to formulate a stochastic version of 

the unfolding nodel of Coombs. This model is given in Figure 3 for the 

sane four stimuli as we considered in Figure 2. In this model_ 

Figure 3 Stochastic unfolding model for the four stimuli 

the probability of a~positive response (u»6)) on a item (ej xffi) 

increases with increasing subject values o. In other wards: the 

probability that B will be preferred above A will increase with increasing 

0 values. The trace lines therefore have the property of monotone 

homogeneity. Moreover, the trace lines of the different items (midpoints) 

are not allowed to intersect. For example, we see in Figure 3 that the 

probability to prefer C above A for a subject with a given value 

is always smaller than the probability to prefer B above A. 

The set of trace lines therefore have the property of double monotony. 
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or holomorphism. In other words: each trace line increases with increasing 

value 0; in addition to this monotony in G, we have a monotony in s: the 

probability "(0,6) is a function that decreases with increasing values 

of 6. 

Let us formulate the model once again in terms of our application: 

party preferences. The different parties have an unknown value on a one- 

dimensional continuum (A^,Ag,Ag)• Each subject has an unknown ideal 

point on this continuum, representing his ideal party (9).In the deterministic 

model a subject will prefer party B above A if his ideal is closer to B 

than to A (in Figure 2 and 3 right of the midpoint 6). Due to 

the fact that a subject will not exactly perceive the positions of the 

parties on the continuum and his own ideal position, we do not assume 

this to be the case in our stochastic model, but we assume that a 

subject is more likely to prefer B above A ( A^< Xg) the higher his 

value 8 is. For a subject with the same 0 value as the unknown value 

of the midpoint ( 0=6 ) we assume that he will prefer B above A 
AB 

half of the time. 

If we compare our stochastic unfolding model with other stochastic 

preference models, our model is the only non-parametric model. In the 

models of Bechtel (1968) and Zinnes and Griggs (1974) a normal 

distribution of the subjects over the continuum is assumed. This is 

not the case in the model of Sixtl (1973). This model differs from 

ours in that respect that he gives the trace lines a more specific 

function than we do: we require only double monotony of the trace 

lines, whereas he specifies a logistic trace line. In fact, as our 

model can be seen as an application and adaptation of the stochastic 

cumulative scaling model of Mokken (J970) for prefc.'ence data, Sixtl's 

model is such an application of the Rasch model (Rasch, I960 ; Fischer, 

1974). 

Although the stochastic unfolding model can be formulated as the 

stochastic cumulative model of Mokken on the midpoints of the stimuli, 

certain derivations frcm the model do not hold anymore, because of 
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the fact, that the "responses" on the items (the midpoints) are not com¬ 

pletely independent in case of rank orders. Moreover, certain extra 

restrictions hold on the order of the midpoints that can be used as 

additional tests of the model. These aspects will be considered in the 

next section . 

3 ■ Model 11-ills and : '.< ■ 11 o procedures 

3.1 The order of the midpoints and its restrictions 

For a holomorphic set of items the fraction of the population that 

gives the positive reponse on an item i (e.g the fraction in the population 

that prefers B above A) is directly related to the item difficulties <5^. 

This fraction is denoted the population difficulty The population 

difficulties 71 ^ reflect inversely the order of the item difficulties: 

6. > 6 . TT, < tt . (5) 
i 3 i 3 

The population difficulties can be estimated consistently with 

reasonable precision by the sample difficulties p.^ for large N (number 

of subjects). Therefore the order of the (and hence that of 6^) can 

also be estimated consistently and with good precision. For sample 

data therefore the numbering and ordering of the items (midpoints) 

can usually be based on the estimated order of their population 

difficulties (ftokken, 1970, 179): 

« P-j -» i < j (6) 

The order of the midpoints AB, .... CD on the continuum can therefore 

be estimated on the basis of the sample fractions 

p , .p^ that prefer the second stimulus above the first. However, 

on the basis of our model we can formulate other restrictions on the 

order of the midpoints. Given the order of the stimuli'B<Ac<X£, 

on the continuum the order of the midpoints is also.fixed with the 

exception of the order of the midpoints BC and AD. If the midpoint BC 
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Table 1. Restrictions to the order of the population difficulties, 

given the order ABCD on the continuum (A. <\ <\ <\ ) 
A B C D 

AB AC 

BC 

AD 

V 

;!bd 

v 

"CD 
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precedes AD(6 < 6 ) the distance between A and B is smaller than 

that between C and D. If on the other hand AD precedes BC( 6^,) 

the distance between C and D is smaller than that between A and B. 

The order of these two midpoints contain metric information about 

the distances between certain stimuli. 

The order of the stimuli restricts therefore the order of certain 

population difficulties A of the items. Tiicse restrictions are given in 

t-nhle 1 oil the basis of the order ABCD on the continuum (*A"'A B<A C<A D> • 

For example, given the order ABCD of the stimuli, the midpoint 

AB should precede that of AC; therfore should be larger than 

n because of (5). If we insert the population difficulties in a matrix 

of stimuli against stimuli, in the order of their scale values on the 

continuum, in the upper~diaqona1 part of the table the rows should 

monotonely from left to right, the columns decrease monotonely 

from top to bottom. As we see in table 1 only the order between u ^ 

and 71 is free. Of course, the sample difficulties p. should roughly 
BC 

follow the same restrictions as the population difficulties m. 

These restrictions, that have been formulated already for the 

deterministic model by Greenberg (1965), can be used in two different 

ways: 

1) as a first check of the goodness of fit of the model, if the order 

of the stimuli is known (e.g on theoretical grounds). 

No large disturbances of the monotony in table 1 are allowed on the basis 

of the sample difficulties p^. 

2) As a procedure to derive the order of the stimuli on the continuum 

by permutation of the natrix given in table 1. If permutation 

does not lead to the required monotony, it can be used as a first indication 

that the irodel does not fit. A straight forward algoritm for such a permutation 

is given by Lingoes and Cocmbs (1975). 

On the basis of the order of the midpoints scale values of the 

stimuli can be computed by application of the 'equal delta solution 

that has been given by Cocmbs (1964) (see also .-lcid] elland and ^oambs,1975; 

Van der Ven, 1977). In this algorithm the metric information that is 

contained in the order 
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of the midpoints, is taken into account. For each four stimuli on the 

continuum this metric information is contained in the order of the 

midpoints of the two extreme stimuli in conpirison with that of the 

two inside located stimuli: if the order of the stimuli is ABCD and BC 

precedes AD (S^ < « ) the distance between A and B is smaller than 

that between C and D. If < 5^, the distance between C and D is 

smaller than that between A and B. 

The sunmation score of the subjects (the number of midpoints on which 

the subject gives the positive response) can be used to estimate 

the location of the subjects on the continuum. Vie can then apply the 

procedure of Coombs to give the subjects a scale value (see COombs,1964 • 

Van der Ven,1977). We will not consider these procedures here, as our 

first interest is the development of a stochastic model and goodness 

of fit criteria over the midpoints of the stimuli. 

3■2 Positive correlation 

Mokken derived that in case of monotone homogeneity of the trace lines, 

responses to item pairs are positively correlated. Let us consider for 

this aspect a (2x2) table between two items i and j ( i<j, because 

> 5j). It is given in table 2. 

Table 2 Cross tabulation of two items i and j 

j 

+ "ijU.l) ^(1,0) 

«±j(0,1) »i.(0,0) 

7T . 
1 

J - I. 
i 

71 . < 7T . 

' 1 

1 
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if^jU/l) denotes the fraction in the population that responds positively 

to both item i and j. Positive correlation Implies that 

it. . (1,1) n. .11 . 
i] i 1 

(7) 

As a measure of ixisil ivr (xjrri'LHion Mokkou used wliich he 
nux 

denoted 11. .: 
ij 

II . • (1 , 1 ) — II .71 . 

H = 1J 1 3 
ij 

- 1 

'id-’j) 

*ij »»°> 

"i^'V 

(8) 

in which denotes the fraction n^j(l,0), the fraction in the 'error1 

cell and ECk^ the expected fraction in the 'error' cell 

(ird-Hj) if ie<Hj) in case of statistical independence, given the 

population difficulties in and ir^. 

This coefficient can directly be used if we consider two midpoints that 

have no stimulus in common, because the responses on these items 

(midpoints) are independent from one another. In case of the four 

stimuli of Figure 3 (A,B,C,D) this coefficient can therefore be used 

for the following three pairs of midpoints: (AB,CD),(AC,BD) and (BC,AD). 

For pairs of midpoints that have a stimulus in conrnon (e.g (AB,BC)) 

this coefficient cannot be used because of the fact that the responses 

are not independent if the subjects have given a rank order of the 

stimuli■ Vfe shall therefore now investigate these pairs of midpoints 

more closely and define a new coefficient of homogeneity for triples 

of stimuli. 

Let us consider a set of three stimuli A, B and C. Let their order 

on the continuum be *A< \^< The order of the midpoints is now 

completely fixed, being 

6AB *AC < 6BC BC => n. 
'AC 

(9) 



14 

If we ask pairwise preferences. Figure 4 gives ail possible combinations 

of the responses on the three items xffl, and x^, resulting in 

8 different response patterns. In 6 resp 'rise patterns we are able to deduce 

a preference order, in 2 response patterns we are not, because of 

intransitivities in the preferences. These two intransitive response 

patterns cannot occur in case we directly ask a preference order 

instead of pairwise preferences. Two of the 6 transitive response 

patterns do not fit into a one-dimensional model with X < x < X : 
ABC 

ACB and CAB. For that reason we have given an asterix to these preference 

orders. In table 3 we have inserted the preference orders in the three 

cross tabulations between these midpoints. On the basis of (9) and according 

to the convention of (6) item BC is labelled as item i, AC as j and AB as k 

<ttac < TrAB => 3< k) . The upper left cells in the three tables 

are the 'error' cells on the basis of which in (8) is defined. We 

should now clearly distinguish two different cases, namely whether 

our data consist of: 

1) preference orders, which preclude intransitive response patterns; and 

2) pairwise preferences, which allows all 8 response patterns. 

We shall now consider these two cases successively. 

Figure 4 Possible combinations of responses to the midpoints of three 

stimuli (X^ < Xg < Xc) on the basis of pairwise preferences. 

AB 

AC AC AC AC 

preference 
orders: AK. mcransi ACB CAB BAC BCA intrans2 CBA 

preference order does not fit in one-dimensional model with X < X < X 
ABC 
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Table 3 Preference orders inserted in the cross-tabulations between 

the midpoinst AB,AC and BC 

item i(BC) 

item j (AC) 

+ 

item k (AB) 

item i (BC) 

item j(AC) 
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1. Preference orders. In case of preference orders the intransitive response 

patterns can not occur. In testing our model we are therefore 

only interested in the frequency with whicli the response [Httems 

ACB and CAB occur: the fit of our model is better, the loss these 

response patterns occur and in each case we want them to occur less 

often than we might expect in case of random preference ordering, but 

taking into account the relative popularity of the different stimuli. 

Their frequency of occurence is given in the error cell of the cross 

tabulation between the items i(BC) and k(AC), the two outside midpoints. 

Only this cross-tabulation is sufficient and should therefore be used 

to test the goodness of fit of a triple of stimuli. The expected value 

in the error cell, however, is not ^(1-1^) because of the fact 

that intransitive responses are precluded. Given the difficulties of 

the midpoints the expected value in this error cell will therefore be 

taken in case of statistical independence under the additional condition 

of transitive responses. In Figure 4 we have seen that two response 

patterns result in intransitivities. The probability of the first 

intransitive response in case of randan responses, given the difficulties 

of the midpoints is: 

£(xi = 0 << Xj = 1 n = O/ir^iTj,!^) = (1-ir^.iT. . (l-nk) (10) 

The probability of the second one under the same conditions is: 

S(x. = 1 n x, = 0 n ^ = n±. (1-ir^) .nk (11) 

The probability of an intransitive answer is therefore the sum of the 

two probabilities: 

(12) 
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The expected value in the error cell of the midpoints i(BC) and 

k(Ah) in case of random response given the difficulties and transi¬ 

tivity is therefore: 

ED 
ADC — t (ACB U CAD / it ,11.,ii , transitivity) = 

1 j K 

(13) 

1_1,i(7,k“"J) 

Tlte coefficient of homogeneity for a triple of stimuli, H.^., ran 

now be defined as: 

H =i- Ebc-AB 

“ “ABC 
(14) 

in which ED^., is given in (13) and E^, is the observed fraction 

of the population in the error cell of items i(BC) and k(AB). 

Although this coefficient is a coefficient for triples of stimuli, 

it should be stressed that it is still defined on the basis of comparison 

of pairs of midpoints (items). 

2. Pairwise preferences. In case of pairwise preferences all response 

patterns can occur, also the intransitive ones. Two different 

strategies can be followed in this case, of which we advocate the secorri 

one: 

a) Application of the Mokken scaling procedures on the midpoints without 

any changes. For each of the cross-tabulations in table 3 H^, as 

given in (8), can be confuted and Ioevinger's coefficient of scalability 

H can be taken as a goodness of fit for the three stimuli as a whole. 

If the subjects give only transitive answers, however, our test on the 

scalability of the items i(BC) and k(AB) will be rather severe. Although 

transitivity is not imposed in this case, internal consistency checks 

by the subjects may well result in the same restrictions as we considered 

in case of rank orders. This implies that the answers of tie subjects 

on the pairwise preferences may not be considered to be independent, 

as is assumed in the Mokken model. In our data on party preferences we 
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discovered that indeed the H., 's were consistently lower than the H..'s 
i j 

31x3 Hjk's *see 1:31516 31 within all triples of stimuli. We therefore propose 

another strategy in which the check on transitivity is seperated fran 

that on the error response patterns ACB* and CAB*: 

b) First test whether the pairwise preferences are transitive; if so, 

check the scalability of the three stimuli by application of the 

coefficient of scalability f. as given in (14) for preference orders. 

Kendall (1948) has given a coefficient of consistence for paired 

oonparison judgements that can directly be used here. In this coefficient 

the number of circular triads (d)is counted and related to the maximum- 

number of circular triads that can occur with n stimuli (d ). This 
max 

maximum number of circular triads is: 

n3-n 

24 
when n is odd 

and (15) 

n3 - 4n 

—24 
vhen n is even 

The coefficient of consistence, ? , is then defined as: 

Kendall also developed a significance test for this coefficient to 

test whether the number of circular triads is significantly smaller 

than expected in case of random judgements. 

Under the hypothesis of random judgements ax2 distribution has 

been derived which can be used for this test, (see also Edwards,1954). 

After elimination of subjects that fail to meet the criteria 

of transitivity, the data are analyzed in the same way as preference 

orders, as considered above. 

In sumrary in case of preference orders or after testing the 
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transitivity of pairwise preferences two different coefficients 

of correlation are defined: one between midpoints that have no 

stimulus in comrpn and one for triples of stimuli. The first one 

is given in (8), the second in (14). 

On the basis of these coefficients we can now define a coefficient 

of scalability for a whole set of stimuli. This coefficient of scala¬ 

bility, H, is a weighted average of the coefficients for triples and 

midpoints without a stimulus in cannon: 

H = 1 

EAB' K +CDl<A3EcD-m 

l ED. 

ABC 
ABC 

f Z ED, 

CD<AB 
CD,AB 

(17) 

in which EaBjBC and EO^, are given in (14) and and in 

(8) . The first suimations in numerator and denominator are taken over 

all triples, the last sunrations over all pairs of midpoints with no 

stimulus in canton. The errors in the triples are weighted double, 

because two pairs of midpoints are involved in each error within 

a triple. This can easily be seen in table 3. The response pattern ACB* 

is located in the error cells of item i with j and of item i with k; 

the response pattern CAB* is located in the error cells of item i with k 

and of item j with k. In each error between two midpoints with no stimulus 

in common only one pair of midpoints is involved.* 

The statistical properties of the coefficients under different 

assumptions (the null-case and non-null case) are a subject of 

further research. The same applies for the investigation of the 

double monotony of the trace lines. 
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3.3 Scale procedures 

On the basis of the model tests, given in sections 3.1 and 3.2, the 

following scale procedures have been developed until now: 

3) --Sting of stability of a whole set of stimuli with a fixed order 

of the stimuli on the continuum. The program prints the matrix of 

difficulties, as given in table 1, which makes it possible to investigate 

the required monotony in this matrix. All H^’s for triples and 

HAB,Cd's for Pairs of midpoints without stimuli in ccmron are printed 

as well as the coefficient of scalability for the whole set of stimuli. 

Midpoints with fixed order due to restrictions from table 1 are taken 

in that order, irrespective their difficulties. 

b) of scalability of a whole set of stimuli with a free order 

of .the stimuli on the continuum. Using the algorithm, of Lingoes and Coctrfcs(1975) 

the program first determines the order of the stimuli by permutation 

of the matrix with difficulties (see table 1). If none of the 

permutations result in a monotone matrix, no further testing occurs. 

Otherwise, that matrix, all H^'s for triples and H "s for 

pairs of midpoints without stimuli in cormon are printed as well as 

the coefficient of scalability for the whole set of stimuli, of course, 

in this case the order of the midpoints is determined solely on the 

basis of their difficulties. 

C) ~-C-hlng o£ a scale a fixed order of the stimuli on tte 

continuum. Again, as under point a, the order of the midpoints 

is partly determined on the basis of the restrictions fran table 1, 

irrespective their difficulties. First the H^’s of all triples 

are carpeted and printed. The procedure continues with the best scaling 

triple. The coefficients of scalability H for all 4-tuples that 

include that triple, are computed and printed. Again the best scaling 

4-tuple is chosen as start set to search a scale of 5 stimuli etc. 

d) ggarchlng of a scale with a free order of the stimuli on tli. • continuum. 

First all H^'s of all triples are computed and printed, the order 

of the stimuli within a triple being determined on the basis of the 

difficulties of the midpoints. The best scaling triple is chosen as 

start to search a scale of 4 stimuli. For all possible fourth stimuli 
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it is first investigated whether the matrix of difficulties 

is monotone or not. If not, they are rejected. For the remaining 

possible scales of four stimuli, the coefficients of scalability H 

are computed and printed. Again the best scaling 4—tuple is chosen 

as start set to search a scale of 5 stimuli etc. 

If the data consists of pairwise preferences, first subjects are 

eliminated that do not fulfil the requirements of sufficient transitivity 

in their preference. The researcher can specify a maximum number of 

circular triads that he allows. The program prints the probability 

that at mast such a number of circular triads will occur under the 

hypothesis of randctn preferences. 

In the searching procedures the researcher can specify a startset 

of three or more stimuli with which the searching procedure starts. 

If the order of the stimuli is kept free, the search procedure is stopped 

at once, if the matrix of difficulties cannot be made monotone for 

these stimuli.*^ 

The scale procedures make it possible to search for a maximal 

subset of stimuli that can be represented in one-dimension. 

In this respect our approach is similar to that of Dijkstra (1978) . 

In our model the J-scale is estimated in a canpletely different way, 

however; moreover he devises different goodness of fit criteria. In 

his approach estimation of the order of the stimuli and goodness of 

fit are not separated, making it possible that scales are simultanously 

accepted with different orders of certain stimuli (Dijkstra, 1978, 173). 

**In consultation with the authors the computer program is being 

implemented by Charles E. Lewis (Social Faculty, University of 

Groningen). 
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4■ The Data 

To a random sample of the Dutch population of 18 years 

and older, (N = 692),pairwise preferences were asked for 

six Dutch political parties. The survey is part of a longi¬ 

tudinal project of the Department of Political Science at 

the University of Amsterdam. For each of the respondents 

the order of the 15 pairwise preferences was determined at 

random. Moreover, the order of the stimuli (political par¬ 

ties) within each pairwise preference question was deter¬ 

mined at random for each of the respondents.* These measures 

were taken to prevent any possible perceptual or preferential 

effect from the order of the questions or the order of the 

stimuli within the questions (see Boon and Niemoller (1976) 

for a similar problem in the context of similarity analysis). 

The following question was asked: 

"Here is a list with pairs of political parties. Please, 

indicate for each pair of parties which of the two you 

prefer". 

("Hier ziet U een lijst met telkens twee politieke par- 

tijen. Wilt U voor elke twee partijen aangeven aan 

welke partij U de voorkeur geeft? Omcirkelt U maar 

telkens de partij die U beter vindt dan de andere.") 

Due to time limitations we were unable to ask pairwise 

preferences between all Dutch political parties. The following 

six parties were chosen: the socialist party (PvdA), 

* The survey was the 14th. wave of the longitudinal project 

of the "Werkgroep Kwartaalonderzoek". The survey was con¬ 

ducted from 14 till 30 March 1977 by N.V. v./h. Nederlandse 

Stichting voor Statistiek. We thank Otto Schmidt for his 

suggestions with respect to the formulation of the question 

and Wim van Hoboken for the randomizing of the pairwise 

preferences. 
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the communist party (CPN), the Christian Democratic party 

(CDA), the liberal party (WD), the radical party (PPR) and 

a more orthodox protestant party (SGP). The PvdA, CDA and 

WD are the three largest political parties. The other parties 

were chosen to incorporate both the left-right split between 

the parties and the religious - non religious split. In 

earlier research quite often three dimensions have been 

distinguished: left-right, religious-non religious and 

large-small parties. All dimensions are well represented 

in our choice of the six parties: the six parties cover 

the whole continuum from left to right (in order: CPN,PPR, 

PvdA, CDA, WD and SGP); three parties have religious back¬ 

grounds (CDA, PPR, SGP) ,three donot(CPN, PvdA, WD) ; and 

three parties are large (PvdA, CDA, WD) and three small 

(CPN, PPR, SGP). 

For each pair of parties presented, subjects could give 

the following responses to the question of preference: 

o first party is preferred over second party 

o second party is preferred over first party 

o no difference in preference 

o don't know; no response 

5. The results 

To determine a coefficient of homogeneity for our six 

political parties we have worked with those 309 respondents 

who gave a completely transitive response. The matrix with 

difficulties of prefernece of right party to left party can 

be found in table 4. 
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Difficulties of preference of right party above left 

parLy (IrueLiuns ut respondents preteriing column 

party above row party) for 309 respondents with a 

completely transitive rank order. 

CPN 

PPR 

PvdA 

CDA 

WD 

SGP 

CPN PPR PvdA 

.91 .95 

.78 

CDA WD SGP 

.89 .78 .62 

.68 .55 .30 

.53 .39 .21 

.31 .07 

.30 

We shall discuss the values for the coefficient of homogeneity 

first for triples of political parties, then for four tuples, 

five tuples and for all six parties. Of all twenty triples out 

of the six political parties, sixteen had a negative coefficient 

of homogeneity The only four triples with a positive 

were: 
CPN-PPR-WD H = .08 

CPN-PPR-SGP H = .14 

PPR-CDA-WD H = .10 

PvdA-CDA-WD H = .21 

The best scales are found with either the three largest or the 

three smallest parties. Also, replacing PvdA by PPR (the largest 

party by the largest remaining party), or replacing SGP by WD 

(the smallest by the smallest remaining party) gives a positive 

HABC' Therefore,only triples of parties that are homogeneous 

with respect to size can be reasonably represented along 

J-scales that may be interpreted as left-right scales. 
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All four tuples with some violation in the monotony of 

the matrix of difficulties have negative HABCD's- On the 

other hand, not all four tuples with a perfect monotone 

pattern in the matrix of difficulties had positive HA_CD 

coefficients. These four tuples with a perfect monotone 

pattern were: 
CPN-PPR-CDA-WD H = .16 

CPN-PPR-CDA-SGP H = .11 

CPN-PPR-WD-SGP H =-.10 

CPN-PvdA-CDA-WD H = .24 

CPN-PvdA-CDA-SGP H = .17 

PPR-PvdA-CDA-WD H = .11 

PPR—PvdA—CDA-SGP H =-.02 

Note that the coefficient of homogeneity may increase when a fourth stimulus 

is taken into account, because now not only triples, but also 

midpoints from disjoint pairs of stimuli add to the cumulative struc¬ 

ture. The cumulativity of midpoints from disjoint pairs of sti¬ 

muli may be better than that of midpoints from stimuli in triples. 

Adding still more stimuli can only lower the coefficient of homo¬ 

geneity for the best fitting k-tuple, however. The best fitting 

four tuples are those without PPR and the worst fitting four 

tuples are those that include both PPR and SGP. The coefficient 

of the four tuple of the four smallest parties is negative. 

Also, the four tuple CPN-PvdA-CDA-SGP has a higher coefficient 

of homogeneity that the four tuple of the four largest parties 

PPR-PvdA-CDA-WD. This casts doubt upon the explanation given 

for triples, that homogeneity with respect to size is a pre¬ 

requisite for a J-scale from left to right. The coefficients 

of scalability for all five tuples are: 

PPR-PvdA-CDA-WD-SGP II = .01 

CPN-PvdA-CDA-WD-SGP H = .01 

CPN-PPR-CDA-WD-SGP H =-.03 

CPN-PPR-PvdA-WD-SGP H = .03 

CPN—PPR-PvdA-CDA-SGP H = .09 

CPN-PPR—PvdA-CDA-WD H = .13 
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The coefficient of scalability for all six stimuli together 

is: H = .07. 

For the best fitting k-tuple, the coefficient of homogeneity 

changes in the following way: 

PvdA-CDA-WD H = .21 

CPN-l’vUA-CDA-WD u ^ .24 

CPN-PPR-PvdA-CDA-WD H = .13 

CPN-PPR-PvdA-CDA-WD-SGP H = .07 

As this is our first experience with this coefficient of 

homogeneity we are somewhat hesitant to prescribe lower 

boundaries for it. In our opinion these results indicate 

the existence of a weak stochastic J-scale of four political 

parties: CPN, PvdA, CDA, WD. The two other parties, PPR and 

SGP, diminish the goodness of fit to such an extent, that we 

reject them as part of the scale. We interpret the resulting 

scale as an unidimensional J-scale of parties according to a 

left-right dimension. To interpret preference for PPR or SGP, 

apparently a second dimension, religious-non religious, is 

needed. To interpret the position of CDA, the largest religious 

party , however, such a second dimension is superfluous. CDA 

is best interpreted as holding a middle position on the 

left-right scale between PvdA and WD. The only metric 

implication, resulting from this scale of four stimuli, indi¬ 

cates that the difference in scale values between CPN and 

PvdA is larger than the difference in scale values between 

CDA and WD. 

6. Conclusions 

The approach we have taken to interpret preferences differs 

from the existing models of multidimensional analysis of pre¬ 

ference in a different approach of parsimony. Whereas in the 

ordinary multidimensional analysis of preference parsimony 

is sought by finding the smallest space that represents all 

stimuli, in our approach, parsimony is sought by finding 

the maximal subset of stimuli that can be represented in 

one dimension. We may find that not all stimuli can be repre- 
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ssntsd along ons dimension, and that for a representation 

of all stimuli more dimensions are needed. But we do not 

specify any specific relations between these dimensions, 

like orthogonality. This condition is problematic in multi¬ 

dimensional scaling: According to Bronner & de Hoog (1978, 

o.c.Ch. 11), for a large minority of subjects the left-right 

dimension is not independent from the largo-small, or power- 

fnot powerfull dimension. Moreover, in our approach a 

subject who has to indicate his preference within a pair of 

parts need not to take those dimensions into account on which 

the pair of parties is homogeneous. For instance: if PvdA 

and WD are compared, the size of the party or the non¬ 

religiosity of the party need not to be taken into account 

although in multidimensional analysis of preferences these 

two parties are represented with different values for these 

two dimensions. When the party system is truely multidimensional 

that is, when for a comparison of all pairs of parties all 

dimensions are needed,then we should be able to find more than 

one subset of parties that can be represented along one dimen¬ 

sion. In such a case, our approach, which we would denote 

'multiple scaling' rather than 'multidimensional scaling' 

can serve as a first indication of the dimensionality of all 

stimuli. A similar approach is being developed presently for 

the analysis of similarity data (for an application to poli¬ 

tical issues, see Lipschits a.o.,1979). 
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