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The robustness of a general method for the analysis of covariance 
structures against small sample sizes and departures from multi¬ 
variate normality.* 

A. Boomsma R.U. Groningen 

Introduction 

Some aspects of a study on the robustness of LISREL (Joreskog, 

1970, 1976; Joreskog & Sorbcm, 1978) against snail sample sizes 

and departures frctn nultivariate normality are discussed. We will 

confine ourselves to a general discussion of the background of 

our study and to an exposition of results on robustness against 

snail samples studied for one particular model. It should be 

stressed beforehand that at this stage of investigation our con¬ 

clusions will not be very general, but at least we can give seme 

first impressions. 

The general model considers a data matrix Z (n x k) of n 

observations on k randan variables. It is assumed that the 

rows of Z are independently distributed, each having a multi¬ 

variate normal Nj, distribution with the same covariance matrix 

E (k x k), which has the following form 

. (1) 

It can be seen that the elements of £ are functions of the 

elements of eight matrices. For a specified model the researcher 

wants estimates of the unknown coefficients of these eight 

matrices. The vector of all independent constrained and free 

parameters will be denoted by w , which is of order s. 

Assuming that the distribution of Z is multivariate normal 

it is possible to get maximum likelihood estimates of the elements 

of u. That is what the LISREL-program does for us, if we have a 

data matrix Z or the corresponding sample covariance matrix S 

(k x k) and a specified model. It can be shown (cf.Cramer, 1946) 

that asymptotically, for large samples, the joint maximum 

likelihood estimators have nice distributional properties: 

consistency, efficiency, multivariate normality. Also once 
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maximum likelihood estimates have been obtained, in large samples 

the goodness of fit of the specified model may be tested by the 

likelihood ratio technique. Under sampling and distributional con¬ 

ditions previously described, it can be shown that asymptotically, 

in large samples, minus two times the particular likelihood ratio 
2 

has a X distribution with a specified number of degrees of freedom. 

In large samples the goodness of fit of different models for the same 

data can be compared in an analogous vray. 

It will be clear that even if the multivariate normality as¬ 

sumption should hold, it remains of scientific interest to study 

how robust parameter estimates and the statistic for goodness of 

fit are against the use of small to moderate sample sizes . 

Robustness against small sample size 

As a start an example was taken vhich has been discussed at 

several places in the literature (e.g. Joreskog, 1976; Joreskog & 

Sorbom, 1978). The example is a longitudinal study on the stability 

of alienation. Our point of departure is a model analyzed by Joreskog 

(o.c., p.15 ff.), which proved to have a reasonable fit to the original 

data. To be certain that the model under investigation is the "true" 

model (fitting the data perfectly) we started from a slightly dif¬ 

ferent covariance matrix than the original one. This matrix will be 

considered to be the population covariance matrix, where to sample 

frcm in the sequel. 

So we have a population covariance matrix 

l = 

11.832 

6.946 

6.820 

4.790 

-3.913 

-20.424 

9.364 

5.085 

5.028 

-3.830 

-19.990 

12.534 

7.497 9.985 

-3.919 -3.613 

-20.455 -18.858 

9.610 

35.522 450.297 
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We have a specified model, v*iich is given in figure 1, and we know 

what the true parameter values, exposed in table 1, are. 

Figure 1. Model for the stability of alienation. 

Now one hundred samples were taken fran a multivariate normal 

ditribution with a covariance matrix given by (2). This was done for 

varying sample sizes, ranging frcm 25 to 400; this range seems real¬ 

istic enough to keep things near to everyday practice. After the 

sanpling was done, on each sample a LISREL-analysis was done for the 

model just specified. The end result is that we have for each of the 

17 parameters 100 estimated values, and this for varying sample size. 

The same holds for the corresponding standard errors and the goodness 

of fit statistic. 

We know that the sampling distribution of the estimates is normal 

and that the sampling distribution of the goodness of fit statistic 

is chi-square in very large samples. What are these distributions 

like for the sample sizes we consider? It will be clear that given 

a specified model same parameters are of greater interest than 
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other ones, but let us concentrate on an overall picture first. 

Parameter estimates 

In table 2 the difference between the mean value of the parameter 

estimates (each based on 100 observations) and the true parameter 

value is shown for five sample sizes. To keep things clear all values 

are rounded to one decimal place. 

Table 1. Difference between the mean value of parameter estimates 

and their corresponding true value, - uk ). 
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Xt can be seen that, roughly speaking, the mean of the estimated 

parameter values is closer to the true parameter value with in¬ 

creasing sample size. For a sample size n = 200 the mean parameter 

estimate is already close to the true value. There is only slight 

or no improvement if these results are cancared with those of n=400. 

(Though we do not present figures for sample sizes as large as 

800, one vrould find that there is hardly any improvement in the 

mean parameter estimates going from n = 200 to n = 800) . 

We thus looked at the empirical distribution of the parameter 

estimates and compared the mean of each of the estimates with the 

corresponding true value. The figures of table 1 show the amount 

of bias vhen the mean is used as an estimator for the location 

parameter It is well known that the mean is not a robust 

estimator (Andrews, et al., 1972). In the final publication of 

this research detailed attention will be given to so-called 

M-estimates (o.c., p.14). 

Of course it is possible to present similar results for the 

standard errors as we did for the parameter estimates in table 1 

(in effect it vas found that for the standard errors M-estimates 

behave excellent compared to the mean of the 100 estimated standard 

errors). However, in practice it is a good statistical custom to 

calculate confidence intervals for seme model parameters. That is 

where the standard errors of the estimates [sedi^)] play their 

role. It is possible to count the number of times out of 100 

samples in which the true value is outside the 95% confidence* 

interval, 2±j + 1.96 sedbj). 

Certainly,it is not easy to summarize the results from table 

2, but for n = 200 the figures are what we should expect them to 

be. Approximately five times out of 100 the intervals do not cover 

the true parameter values. For smaller sample size the range of 

numbers is more unfavorable. 

Above(for every parameter uu 100 confidence intervals were 

considered. In theory = (2±j - u^l/se (2^), j = 1, 2, ..., 100 

has a standard normal distribution. A different way to look at the 

results is by calculating the 95% confidence interval for the mean 
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of q. ., based on 100 estimated values. Now the question is whether 
TO _ L 

this interval + 1.98 s (q^)/ 100^ , where q^ and s(qi;j) are 

the mean and the standard deviation of q^, respectively, covers the 

true parameter value of zero. 

■Cable 2. The number of times out of 100 the true value is outside 

the confidence interval +1.96 se (3>^j). 

sample size 
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The results given in table 3 look premising. For n = 200 and n = 400 

all but one interval covers the true parameter value. For a sample size 

sneller than 200 things look verse. 

liable 3. Does the confidence interval + 1.98 stq^J/lOO^ cover 

the true parameter value of zero? 1 = yes, -0 = true value 

to the right, +0 - true value to the left. 

sample size 
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In addition to these overall views we looked in more detail 

at results for specific model parameters; for example at the 

sanpling distribution of parameter -B which is one of the salient 

ones in the model, being indicative for stability of alienation 

over time. By graphical methods (Q0- and/or PP-plots, histograms 

and density functions) it is possible to see how close the 

sanpling distribution of q^ based on 100 observations comes to 

the theoretical distribution. By lack of space we cannot illus¬ 

trate the attractiveness of these methods: they add information 

otherwise undiscovered. 

Goodness of fit 

How well does the chi-square statistic for goodness of fit 

behave in small samples when the model is true? The results 

are summarized in table 4. 

Table 4. Distributional characteristics of the chi-square 

statistic with four degrees of freedom from 100 replications. 

n min. max. range med. mean | var. ske. kur. X4>9-49 

25 

50 

100 

200 

400 

.2 

.3 

.3 

.2 

.1 

10.6 

12.3 

19.0 

14.2 

10.5 

10.4 

12.0 

18.7 

14.0 

10.4 

2.9 

3.1 

3.6 

4.0 

3.5 

3.4 

3.8 

4.1 

4.6 

3.8 

5.0 

7.8 

8.0 

8.3 

5.8 

1.0 

1.1 

2.0 

.9 

.9 

3.5 

3.5 

L0.1 

3.5 

3.3 

# 2 

6 

3 

4 

3 

true 

value 

3.4 4.0 8.0 .7 3.0 

There is no clear trend in these figures, but for n = 200 the 

picture is rather satisfying. For n = 400 the variance is small. 

From the last column of table 4 it appears that for n = 50 the 

number of - values larger than 9.49, which is the 95-th 

quantile of the chi- square distribution with four degrees of 

freedom, is close to 5, the number we should expect-Corparing 

histograms of the sampling distributions with the theoretical 
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density function with four degrees of freedom did not give a definite 

answer to the question for which saimple size the goodness of fit 

statistic has a distribution which is reasonably close to the theoretical 

distribution. It might well be that the number of samples is just too 

snail; research has been started to see whether the picture improves 

by enlarging that number. 

Discussion 

We Could not present all interesting results fran this pilot-study; 

one thing not mentioned for example is the dependence between para¬ 

meter estimates. Nevertheless, suppose we were a Bayesian and suppose 

we had to formulate our expectation with respect to the robustness 

of LISREL-procedures for a variety of models against small sample 

size, what would our answer be, given that we had prior information 

from this particular model? 

Our formulation would be that we expect LISREL to be fairly robust 

for sample sizes as large as 200, expecting also little improvement 

if n was four times as large. It might seem questionable to use LISREL 

with samples smaller than 200, but more research need to be done here. 

Earlier it was mentioned that it would be worthwhile to investi¬ 

gate the robustness of LISREL against non-normality. If samples 

are taken frctn studies in the social sciences, the distributional 

properties of the variables social scientists use should strike us, 

unless we are ignorant .Non-normality and discreteness are the out¬ 

standing properties of many variables. 

What ought to be done is, first to take samples frctn non-normal 

distributions, for example by varying the skewness and study its 

effect on parameter estimates and the goodness of fit statistic. 

Secondly,it seems realistic to vary things on a discreteness 

dimension, for example by putting the sampled values in 3, 10 or 

20 classes (cf. Olsson, 1978). Although we cannot present any results 

yet, it is sure a challenge to study this topic in the hope that 

eventually we might be able to reassure users of the LISREL-program 

not to worry to much about non-normality and discreteness of obser¬ 

vations. But even if that appears bo be a false hope, we certainly 

want to know more than we have learned sofar. 
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