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O. Summary 

When multiple regression equations are to be estimated for m groups 

which are supposed to be comparable though not identical, both the 

pooled estimates and m separate least squares estimates per group may 

be sub-optimal. Lindley, Novick, Jackson and others have advocated a 

Bayesian estimation procedure in which the estimates would be weighted 

averages of the separate estimates per group on one hand and some pooled 

estimate on the other hand, with weights determined essentially by the 

data. This extension of the Kelley formula for regression to the mean 

has proven its value in several cross-validation studies (Novick, Jackson, 

Thayer & Cole, 1972; Lissitz and Schoenfeldt, 1974; Shigemasu, 1976; 

Jansen, 1977). The modal posterior values for intercepts,slopes and 

residual variances, however, are not easy to obtain. The procedure 

outlined by Novick c.s. still poses some numerical and methodological 

problems. The present pap6r presents a modified algorithm removing most 

of the deficiencies. It remains true, however, that m-group regression 

is an example of a Bayesian model in which it is somewhat * difficult 

to specify a vague prior that would let the data and the collateral 

information speak for themselves. 

1. A simple example 

Roelofs and Koppelaar (1978) commented on the data reproduced 

(with their permission) in Figure 1. For six persons the relation 

is displayed between blood pressure (y) and muscle tension (x); the 

subjects have 18, 23, 24, 22, 24 and 17 measurements pairs respectively. 

For pedagogical reasons we have left out six outlying pairs for subject 

1, two for subject 4 and seven for subject 6 from the Roelofs-Koppelaar 

data. 
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Suppose it is desired to predict y at x=xq, say# for subject 

number 3. We would use a least squares regression line based on 

his 24 (y, x) pairs. Prediction will be inaccurate, because of 

low sample size and large residual variance. Can the data from 

the other five subjects be of any help in improving the prediction? 

Fig. 1. Relation between Blood Pressure (y) and Muscle 

Tension (x) for six subjects (numbered 1, 2..., 6) 

with 10, 23, 24, 22, 24 and 17 observations respect¬ 

ively. 
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If there were virtually no differences between subjects, the 

regression line obtained by pooling all 143 observations would 

certainly be an improvement. One glance at the graph suffices, 

however, to show that such a pooled estimate would perform 

poorly in our case. Although the intercepts are certainly 

different, it looks as if the slopes of the six regression 

lines within subjects have a lot in common. If y^ denotes 

the j-th observation of y for the i-th patient, we might 

fit a model 
v =01 + 8 x. . (i=l, 2,.. . , 6; j=l, 2,... n.) 
i j i ID 

with a common slope 6. And even if a common slope is too strong an 

assumption, we might use a slope between the individual slope 

and the common slope 3 when predicting a next y for the 

third subject. 

The major idea of Bayesian m-group regression is to 

provide a model in which valid decisions can be made about 

how much the collateral information contained in other similar 

groups of data can help in improving predictions. It is ap¬ 

plicable whenever the researcher considers a number of groups 

(say between 3 and 25) that he is considering as exchangeable: 

roughly stated this means that they may be different, but he 

does not know beforehand what the differences may be. If the 

amount of data within each group is moderate, the use of the 

information from the other groups may be beneficial. In our 

blood pressure example, and also in estimating true scores 

with the Kelley formula for regression to the mean, 

each "group" is an individual for which a number of measure¬ 

ments is available. In the remainder of this paper, and in 

many educational applications, each "group" is a school or 

school class and we have one observation per individual pupil. 

The mathematical model can be applied to both situations. 

Although detailed results would take too much space, let us 

report briefly on the blood pressure example here. A modest cross- 

validation study showed that on all relevant error measures the 

Bayesian estimates were indeed superior (though not much) to the LS 

estimates, and both performed far better than the totally pooled 

estimates. 
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2. Two versions of the formal model 

The main idea for incorporating collateral information 

is that a first stage of the model, explaining how the data 

are distributed given the regression parameters, is followed 

by a second stage, in which the (not directly observable) values 

of these parameters across groups are treated as a random sample 

from some distribution which is characterized by unknown hyper¬ 

parameters. It turns out to be necessary to specify some, rather 

vague, information on those hyperparameters in a third stage of 

the model. 

Two such models are summarized below. The old one (to the 

left) is discussed in more detail by Novick c.s. (1972), Jones 

& Novick (1972) and related papers. The new one (to the right) 

was built when convergence problems and robustness problems 

arose, as explained in sections 3, 4; see also Molenaar (1978) 

and Molenaar and Lewis (1979). In both models the data for 

the n^ individuals of the i-th group (i=l, 2, ..., m) consist 

of a criterion score y. . and scores on i predictors x, . . 
13 *13 

(k = 1, 2, ..., 1; j = 1, 2, ..., nj . In each (Z + 1) * n^^ 

matrix of predictor scores we include a row of ones for 

the intercept. For the new model the index set {0, 1, 

is partitioned into two disjoint subsets p (parameters common 

to all groujjs) and G (parameters different across groups) . 

Ol.D MODEL 

iFirst stage: 

Y • •A , 2 6, . x ; <f>. ) lj—’ k-o ki ki3 l 

«V fiU' 

<P . — X A ( v, vo A) 

NEW MODEL 

y.. A l 6.x .+ £ $ .x . 
yi3 - * f€p f fiD g£G gi 913 

6^^- uniform (- 

6 . £ ^(M , V ) ; 
gi — g g 

log4>~ uniform (- ®) ? 
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Third stage: 

OLD MODEL NEW MODEL 

2 
y, v and log a uniform (-00,00)? y 

H Wishart (v’,Z, it + 1) ; Y 

Z diagorwl matrix. 

User should supply (see below): 

v' (sma11) 

diagonal elements of Z 

small k (to prevent- divergence) 

uniform 
9 

v' (small) 

xg (g = 0, 

(-00 / 00) ; 

V'T ) . 
g 

l, ... a) 

Lack of space forces us to just add that many, hopefully obvious, 

independence assumptions must be added; they are detailed in the 

sources already quoted. These sources also tell how integration 

over the hyperparameters leads to a posterior density for the re¬ 

gression parameters given the data. Up to an additive constant, 

its logarithm is, for the old model (Lindley, 1970, formula 11); 

log p = 

- HHn + U log * - *5 I <yij - l 6hixhij>2/fi (1> 
i 13 h 

-S(V + . - 1) log | VV + 1 (Bhi - Bh-)(Bki - Bfc_) | 

-1 1 
-^(m + 1) log log {rj(© + *)). 

jj(<, 0 and n denote the harmonic and geometric mean of the set 

respectively, denotes the mean across i of B^ and |a^|, say, 

denotes the determinant of an (£ + 1) x (1 + 1) matrix A with 

elements a^. For l predictors and m groups, (1) is a function of 

(Jt + 2)m parameters. Its maximization leads to the desired posterior 

mod;il estimates, but it poses some problems. 
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3. Problems; of the old model 

The computer programs made available by Novick c.s. seek the 

maximum of (1) by the following iterative procedure. An initial 

set of estimates should be computed first; one might take the 

least squares estimates per group, the least squares estimates 

for the pooled sample or the so-called model II estimates, see 

below. Equating the derivatives of (1) with respect to 3^ to 

zero, for fixed i, leads to a set of equations which are linear 

in 3*. if one temporarily considers 3, (h = 0, 1, ... £) , 4». 
hi h. l 

and the determinant as fixed. They are successively solved 

for each i; after updating means and determinant this is re¬ 

peated twice. Next the updated values for all 3^ are used 

to obl^ain new <Jk by equating the derivative of (1) with res¬ 

pect to c|>^ to zero; such equations are linear in provided 

that n, 9 and all 3^ are temporarily considered as fixed. 

This whole process is called one iteration cycle, and such 

cycles should be repeated until the increase per cycle of 

the function (1) has become negligible. 

This algorithm has been used in several applications 

mentioned in section 0, but not without problems: 

(a) very slow convergence; 

(b) non-robustness against choice of prior values for v' and cj • 
hh 

(c) non-robustness against choice of initial estimates; 

(d) suboptimal determination of the mean value 3^ for regression 

parameters for which almost total regression takes place • 

4. Improvements and simplifications 

As described in Molenaar (1978), convergence can be speeded by 

the insertion of "leaps" after a user-specified number of iteration 

cycles. A "leap" is the prediction of an asymptotic value by fitting 

a geometric series to the two consecutive differences between the 

parameter values obtained at the last three cycles, (Aitken extrapo¬ 

lation), with a special provision for cases when this series would 
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lead to an obviously wrong result. Such leaps .were first calculated 

for each of the (S. + 2)m individual parameters. Later residual vari¬ 

ances, and variances across groups of the regression parameters, 

turned out to be very stable across cycles. As the same was true 

for the z-scores obtained by standardization across groups of the 

parameters of individual groups, leaps are now carried out for the 

means across groups of regression parameters only. They are very 

successful in reducing the number of cycles needed for convergence. 

The deficiencies (c) and (d) above are related to (b) in the 

following sense. It is obvious that the first line of (1) would 

be maximized by the least squares (LS) values. The second line is 

maximized by bringing, the determinant as close to zero as possible. 

When the user has supplied some small values for v'dhh, this is 

achieved by linear dependence among the m-vectors Bh (h = 0, 

Now as soon as the estimated values q£ 3^. some h lie veyy close to- 

gather (almost total regression), a change'in their deviations from 

the mean B. has almost no further influence on the residual sum of 

squares in ^he first line of (1), and thus it is used to make the 

determinant decrease. In other words, it pays to let the («• + 11- 

variate normal distribution of the Bh degenerate into a lower¬ 

dimensional one. Although the positive value of prevents 

complete degeneration, the algorithm based on the old model 

is deficient: because of the group-by-group calculation of new 

{$ } a change in ^s far more effect on the 108 Posterlor 

density than a change in'the mean Bh., and the optimal value for 

B ls never found for indices h with small variance across groups. 

As'the empirical results for some datasets did indeed show 

such undesirable behavior, the revised program uses a common value 

across groups for any regression parameter for which the prior 

variance, or the calculated variance across groups beyond cycle 

2, is less than some user-specified bound TAUMIN. This bound 

should be so small that the effect of further changes on the residual 

sum of squares, be it the observed one or in cross-validation, is 

almost negligible. 

Two further simplifications in the new model are (a) homo- 

scedasticy not only within but also across groups; (b) indepen¬ 

dence of the priors for all regression parameters. The log pos- 
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terior density, again found by integrating out the hyperparameter 

is up to an additive constant 

(2) 

3 )2} 
g- 

log p ({3 .i 3^}* (p) = - *2 (n + 2) log <p 
gi f 

1 2 
- -rr E E(y. . - E Pp .x . - E 3 . x .) 

2* i j i] f f flJ g gi glJ 

- S (m + v' - 1) E log {v1 t + E (3 . 
g gi 

g . i 
m 

Here n = E n. denotes the total sample size. 

i=l 1 

It is instructive to compare (2) to (1). The first terra is simpli 

fied because of 4>^ = <J>; moreover there is no final term involving 

geometric and harmonic means of 4>. - Denoting the middle term as 
1 1 

- — Q (3), it is clear that the modal estimate for <j> is 
2<t> 

$ = Q (3)/(n + 2), and 

log p ({3 .i 3«r)/ $) = ~ H (n + 2) log Q (3) 
gi t 

(3) 

S (ii + 2) log (n + 2) - S (n + 2) + 

2 
- S (hi + V - 1) E log (v't + E (3 . - 3 )/• 

g 9 i 31 y' 

This makes clear the compromise character of the modal estimates 

for 3. The first term above would be maximized by minimizing 

Q (0), that is by using the least squares estimates. The last 

term is maximized when 3 = 3 for each i, but when the va¬ 
gi g. 

riance is less than the bound TAUMIN, the index passes into the 

set F, and we would end using the pooled estimate. The point is 

further elaborated in section 5. 

The revised computer program maximizes (2) by iteration, 

amalogous to section 3, but each cycle now consists of an 

updating of <J», an updating of (0 |f£F}, an updating of 

(3 .|g€G) and a check whether any index from G should pass 
g ^ 

into P. It loads to faster convergence , less core requirements, 

robustnos:; to initial estimates specification and improved 

determination of (almost) totally regressed parameter values. 
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A preliminary FORTRAN version is available, but it can only 

be used when estimates for v' and are given. A complete 

and interactive program in BASIC is being made, for inclusion 

in the next version of the CADA package by Novick et al. 

5. Choice of the prior specification 

The Bayesian estimates can always be viewed as a compromise 

between least squares values and pooled values. Unless one of 

these extremes is compatible with both the data and the prior 

information, however, the simultaneous presence of an intercept 

and Z predictors poses an extra problem. Kelley could write 

= pX. + (1 - p)X., and the reliability p determines the 

extent to which regression to the mean occurs. In our regression 

model, however, this extent will typically differ from parameter 

to parameter. Not only do we have l + 1 different extents of 

regression, but also each extent, and the best value to regress 

to, are influenced by the decisions on the other extents. And 

finally, when the extent was a reliability it could be estimated 

by one of the standard psychometric methods, but slopes and 

intercepts are not observable quantities, and this is an extra 

obstacle in trying to split their variance into true variance 

and error variance. This has been tried, more or less, by 

Jackson, Novick and Thayer (1971): they identify the least 

squares estimates with observed scores and their sampling error 

with measurement error, and obtain "model II estimates" for the 

slopes, and an unbiased estimate of the variance across groups 

of the true slopes. The means of predictor and criterion are 

then used to get model II estimates of the intercepts, and the 

sura of squares of these estimates divided by m - 1 is used 

when a prior estimate of the variance across groups of the 

true intercepts is needed. 

In the new model too, the user has to provide prior 

estimates of the parameter variances across groups (now called 

t^) arid of the degrees of freedom determining how much devi- 
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ation of the actual variance from the estimate is supposed 

to be compatible with the model. Earlier publications on one 

hand suggest that this should be genuine prior information, 

independent of the data, and that it can be chosen in such a 

way (e.g. taking v' =1) that it has very little influence on 

the final Bayesian estimates. On the other hand model II esti¬ 

mates, obviously data-dependont, are nearly always used, and 

it is suggested that the data themselves will determine, almost 

independently of the prior knowledge, the amount of regression 

to the mean that is optimal. It is clear from (2), however, that 

the data only enter in the form of the sum of squared residuals, 

and that the least squares solution will inevitably come out 

when we let the data speak alone. In order to have any re¬ 

gression to the mean we must consider the second line. 

Let us start in (3) with the least squares values. What 

happens when we pull all 0^ inward a little, either to their 

own mean or to the pooled estimates? The sum of squared resid¬ 

uals Q (0) will certainly increase. The question is to what 
2 

extent this is compensated for by the decrease of E(6 -0 ) . 
gi g. 

The mediating role of v't now becomes clear: if it is small 
9 2 

compared to the value of £(0^-0^ ) being considered, this 

decrease will be influential, and if it is large the regression 

of the 0^ has almost no effect on the log posterior density. 

As the log of Q (0) is multiplied by ^ (n + 2), where n denotes 

total sample size, and the log in the last line of (3) only 

by h (m + v' - 1), the other determining factor is- how much 

larger the total sample size is than the number of groups (note 

that ra + v' - 1 will not differ much from m). 

The present authors doubt whether a simple and satisfactory 

procedure for specification of v' and exists for cases where 

the product for v'is small; this difficulty also applies to 

m-group proportions and model II analysis of variance and was 

anticipated in earlier writings by Lindley c.s. Molenaar and 

Lewis (1979) will contain a description of our partial solution 

adopted in the BASIC program. 
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