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Abstract 

An important problem in education is determining cutting scores on 

educational tests consisting of items that can be answered right or 

wrong. Students with the number of items answered correctly that is 

equal to or greater than the cutting score pass the test. The others 

must study the subject again and take a new test later. This problem 

is comparable to determining the cuttinq score on a selection test 

in applied psychology, for instance accepting people for a job, 

psychotherapy, treatment, and so on. An extra requirement that cutting 

scores for these procedures should meet, is that they should be fair with 

respect to the various categories represented among the applicants. A 

decision theoretic approach with a linear loss function, which results 

in a simple procedure for determining optimal score.4-*, is discussed. 
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1.1. Suppose that an educational or psychological test consists of n 

dichotomously scored (0-1) items and that the random variable X 

represents the unweighted sum of item scores of a randomly selec¬ 

ted person i. Suppose, too that X is used to measure or predict 

the score of person i on a continuous random variable Z. Finally, 

suppose that X can be used for this purpose, since E(z|x), the 
expectation of Z given X, is monotonically related to X. 

1.2. A problem often encountered in educational and psychological testing 

is the dichotomous decision, which can be represented as follows: 

Variable Z 

Not suitable Suitable 

<z < d> (Z >, d) 
d 

Accepted 

(X >, c) 

Testscore X c 

Not-accepted 

(X < c) 

The variable Z is dichotomized into the categories "suitable" (Z > d) 

and "not-suitable" (Z < d), and a cutting score c defines the decisions 

"accepted"(X i. c) and "not-accepted" (X < c). Examples are pass-fail 

decisions in educational testing and acceptance-rejectance decisions 

for job applicants or for psychotherapeutic treatments. The problem 

is to determine c so that the decisions are optimal in one sense or 

another. 

1.3. Ideally, all suitable persons are accepted and all not-suitable persons 

not accepted, but because of measurement or prediction errors this 

state is rare. In order to weight the consequences of these errors 

a loss function should be specified. Here we consider the following 

linear loss function that we have introduced elsewhere (van der Linden 

& Mellenbergh, 1977): 
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L(Z) 

bQ(Z - d) + aQ for X < c 

bj(d - Z) + aj for X * c 

(1) 

with (t>Q + bj) >0. Both parts of Formula 1 contain two different terms 

and, hence, two different kinds of parameters. The terms bQ(Z - d) and 

bj(d - Z) represent the amounts of loss dependent upon the difference 

between the person's score on Z and the cutting score d; the parameters 

b0 and b, are therewith constants of proportionality. The terms aQ and 

a^ represent the amounts of loss independent of Z and are constant 

for each decision (see: Figure 1). 

1.4. An optimization criterion known from statistical decision theory 

is the Bayes risk, shortly called the risk. Defining the joint 

density of X and Z as k(X,Z), the risk is the expected loss with 

respect to k(X,Z): 

c—1 d c-1 1 
R = Z 1 L(Z)k(X,Z)dZ + Z / L(Z)k(X,Z)dZ + 

x=0 0 x=0 d 

n d n 1 

Z / L(Z)k(X,Z)dZ + Z / L(Z)k(X,Z)dZ. 

x=c 0 x=c d 

(2) 

Considering R as an function of c, an optimal cutting score c' is that 

value of c for which R(c) is minimal. 

1.5. Substituting Formula 1 into 2 gives 

c-1 1 
R(c) = Z / ■ { bn(Z - d) + aQ } k(X,Z)dZ + 

x=0 0 

n 1 
I f [ bx(d - Z) + at } k(X,Z)dz. 

x=c 0 

(3) 

Using 

k (X, Z) = p(z|x)h(X) = 1, 

1 
/ p (Z | X)dZ = 1, 

0 

(5) 



-5U- 

Figure 1 

An Example of the Linear Loss Function, V* V bo + V 
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f Zp(z|x)dZ = E(z|x), (6) 

0 

where p{z|x) and h(X) are the probability density of Z given X, 

and the density of X, it follows that 

c-1 

R(c) = l D>0 { E(Z|X) - d } + aQ3h(x) - 

x=0 

T. Cbj { E (Z | X) - d } + a^hfx). (7) 

x=c 

This is equivalent to 

n 

R (c) = l [b { E (Z | X) - d } + aQ]h(x) - 

x=0 

n 

I JjbQ + bj) { E(Z|X) - d } + (a0 - ajQhfX). (8) 
x=c 

Remembering (b^ + bj) >0 and eliminating the constant term of 

Formula 8 , R(c) is minimal for the cutting score c' that maximizes: 

n 

R'(c) = I (jb0 + b^ { E (Z | X) - d } + (aQ - a^JhlX). (9) 

x=c 

Since h(X) ^0 and E(z|x) is assumed to be a monotonically increasing 

function, R'(c) is maximal for that value c - c' for which 

(bQ + b^ { E(Z|X) - d } + (aQ - a(10) 

is positive for the first time. Using this result, the optimal cutting 

score can be found if the regression function is specified. 

2.1. As a first application of the above result, let us consider the 

problem of pass-fail decisions in education. Suppose that a test is 

administered to students in order to examine whether they have mastered 

a certain subject matter; if not, they should relearn it. 
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For a specified student the mastery 

level T with respect to this subject matter can be defined as the 

expected proportion of items answered correctly 

T = E(X/n), 
(11) 

where the expectation is taken with respect to the propensity 

distribution of x/n for the specified student. 

Suppose that a student is considered to have mastered the subject matter 

if his mastery level T exceeds a critical value T; if not, he should 

relearn the material. Identifying Z with T and d with x, the above 

derived results apply and an optimal decision procedure can be 

designed. 

2.2. As Formula 11 is the definition of the true score from classical 

test theory, a possible regression function for Formula (10) is the 

linear regression function: 

E(T|x) = PXJ(, X/n + (1 - Pxx,) E (X/n), (12) 

where pxx, is the classical reliability coefficient (Lord & Novick, 

1968, p. 65). Substituting Formula 12 into 10, setting the result equal 

to 0, and solving for X yields 

The cutting score is an integer. For the first integer smaller than 

X' Formula 10 is negative and for the first integer larger than Xr 

the expression is positive. Therefore, the optimal cutting score is 

c' = entier (X') + 1 (14) 

2.3. The following feature of this optimal procedure for pass-fail decisions 

is of practical importance. When the restriction a^ = aj 

applies, all parameters of loss function Formula 1 disappear from 

Formula 10 and the optimal cutting score is that value of c for 

which {E(T|x) - d} is positive for the first time. Or, using the 



-St- 

linear regression function Formula 12, the optimal cutting score is 

the first integer value above 

X' - E(X) + {nd - E(X)} / Pxx, (15) 

In statistical terms this means that loss function Formula 1 is 

maximally robust under the restriction ag = aj. When for each decision 

the constant components of the loss are equal, the values of the 

parameters of this loss function need not even to be specified. 

3.1. A second application of this approach is in selecting applicants for 

positions, choosing students for advanced educational programs or 

for remedial teaching, and so on. An important issue in selection 

is the fair treatment of applicants from different subpopulations, 

especially of applicants from disadvantaged subpopulations. Several 

models for determining different cutting scores in subpopulations have 

been proposed but most of them are inconsistent (Petersen & Novick, 

1976). Novick and Petersen (1976) have argued correctly that accep¬ 

tance-rejection decisions in selection should be made for each indi¬ 

vidual separately and should be based on the risk: only individuals 

with the lowest risk should be accepted. Petersen (1976) has used 

a threshold loss function for this purpose; in this paper the linear 

loss function is used (Mellenbergh & van der Linden, 1978). 

3.2. In selection two situations are distinguished, quota-free and quota- 

restricted. In quota-free selection there is no restriction on accep¬ 

ted applicants: all applicants who satisfy the requirements are 

accepted. In quota-restricted selection, however, only a fixed number 

of applicants are accepted. 

3.3. In the selection situation the variable Z is interpreted as the score 

on an external criterion, for example succes on the job, in an edu¬ 

cational program, in psychotherapy, and the like. The variable X is the 

testscore used for predicting the criterion. In this situation different 
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loss functions are necessary, one for each subpopulatlon. The linear 

loss function for subpopulation i (i = 1, 2, ... , g) is : 

Lt(Z) - 

(Z - d) 
Oi 

(d - Z) + a 
li 

for X < c^ 

for X 5, 

(16) 

Using the index i at the appropriate positions in Formulas 3 through 

7,it follows from Formula 7 that the risk in subpopulation i is: 

ci-1 

VO> = x-o Cboi { Ei<Z|X> ' d } + aoiHhi(x) ' 

n 

Cbli * Ei<zlx> - <3 } + Sji (X) . (17) 

The selection process is viewed as a series of separate decisions, 

each of which involves one random applicant from the total popula¬ 

tion, and it is assumed that the overall risk of the selection process 

is the sum of the risks of the applicants. Thus, the overall risk 

of the selection process is: 

g 
Rg = 1 Pi ^i 

i=l 
(18) 

g 
where Pi , Z Pi = 1, is the proportion of applicants from subpo- 

i=l 

pulation i in the total population of applicants. 

3.4. since, in quota-free selection there is no restriction on applicants 

who can be accepted, Formula 18 is minimized 

if the risk of a random applicant is minimized. This is done by 

minimizing Formula 17 for every subpopulation separately. From 

Formula 10 follows that the optimal cutting score in subpopulation 

i is the value for which 

(b0i + bli> { Vzlx> - d I + <a0i - a0i> (19) 
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is positive for the first time. A special case of a monotonically 

increasing regression function is the regression line: 

El(zlx) = a± + B± x, (20) 

where ot^ and 8^ are the intercept and slope of the regression line 

in subpopulation i. Substituting Formula 20 into 19, setting the re¬ 

sult equal to 0, and solving for X yields: 

XI “ (d - “i> / Si + ««oT “li* ' ei tb0i + bli>- (21) 

The cutting score is an integer; for the first integer smaller than 

x!^ Formula 21 is negative, and for the first integer larger them X' 

the expression is positive. Therefore, the optimal cutting score 

in subpopulation i is: 

= antier (x^) + 1 (22) 

For the special case aQi = a^ (i = 1, 2, ... , g),it follows from 

Formula 21 that the optimal cutting score is the first integer larger 

than 

= (d - <*t) / Bi (23) 

In this case the constants of proportionality and b^ are im¬ 

material for determining the optimal cutting scores. 

These cutting scores are also derived in the so-called regres¬ 

sion model for culture-fair selection; Petersen and Novick (1976) 

ascertain that this is a consistent model in contrast with other 

models proposed for culture-fair selection. 

3.5. Since, in quota-restricted selection only a fixed proportion p af all 

applicants is accepted. Formula 18, is minimized under the 

restriction: 

g n 

1 p. I h (X) = p 

1=1 X=c. 1 
1 

(24) 
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Because the testscore is a discrete variable this condition cannot 

in general be exactly satisfied. Therefore, an upper bound (p ) and 

a lower bound (p^) are fixed: the proportion of accepted applicants 

from all applicants should be within these bounds. The restriction 

of Formula 24 becomes: 

g n 

p*< *pi E Vx) < Pu* <25> 
1=1 x=c^ 

For determing the optimal cutting scores the following procedure 

can be used: First, the total number s of sets of cutting scores 

meeting the restriction of Formula 25 are determined: A = 

{cir c2i' gi 
}, A 

{cls' c2s' .c }. Second, from gs 
empirical data the regression functions E1(z|x), and the probability 

densities hi(X) are estimated. Third, using Formula 18 the overall 

risk is computed for each set A^ : (j = 1, 2, ..., s). Fourth, 

the minimal value of the risks R is determined. If R. « min Cr ) 
Oj Dr j Oj 

then the set Ar contains the optimal cutting scores for the g sub¬ 

populations. 
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