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ABSTRACT 

A solution of the metric multidimensional unfolding 

problem is stated as a special case of the general 

multidimensional scaling method of de Leeuw and 

Heiser (1977) > which guarantees convergence to a local 

minimum of stress. Because the number of local minima 

is usually very large, considerable attention is paid 

to the algebraic solution of the unfolding problem 

which we use as an initial configuration. Here we dis¬ 

tinguish three approaches: no centering, single cen¬ 

tering and double centering, which differ in the way 

they treat the nonlinearity of the problem. The con¬ 

tributions of Ross and Cliff (196U) and Schonemann 

(1970) are discussed within this framework. The various 

approaches are evaluated in terms of the stress they 

produce in our iterative program, but the current state 

of affairs does not permit any definite conclusions. 
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1.0 Introduction 

In multidimensional unfolding problems ve consider a nonnegative datamatrix 

A of order n*m, whose elements are interpreted as measures of dissimilarity 

between the n (row)objec;fcs-R={rr ,r2 ,... ,rn) and m (column)objects 

C={ci,C2....>e }. Thus is the dissimilarity between objects r. and c.. 
— m ij x 
In a psychological context the row objects are often called subjects, the 

column objects stimuli, and the dissimilarities are derived from preference 

judgments. 

Multidimensional unfolding techniques represent both row and column objects 

as points X={xi,X2>...,x } and Y={yj,y2,... ,ym) in a metric space <fl,d> in 

such a way that the distances d(x^,yj) are approximately equal to the dissimi¬ 

larities 6... We sometimes write d., or d..(X,Y) for d(x.,y.). In this paper 
IJ IJ XJ J 

we study representations of ri,r2,...9r^ and ci,C2 , • • •»cm in the space of 
all p-tuples of real numbers, in which the metric is defined by the euclidean 

norm. Thus a representation of ri»r2 »•••!* is the nxp configuration matrix X, 

with elements x^a, a representation of ci,C2»•••is the mxp configuration 

matrix Y, with elements y. and the d..(X,Y) are euclidean distances, defined 
ja i j 

on the rows of X and Y by 

d..(X,Y) (D 

It is convenient to rephrase the multidimensional unfolding problem as a special 

kind of multidimensional scaling problem, where in general we represent N ob¬ 

jects 0={oi,o2,...,oN> as N points Z={zi,z2,... ,zN> in metric space such that 

the interpoint distances <*ik(Z) are approximately equal to the interobject 

dissimilarities, collected in the matrix evaluate the badness-of-fit 

of a particular configuration Z, we use the loss function 

ao(Z) = J l w (Y - d.k(Z))! 
i=1 k=1 

(2) 

where W={w.^} is a nonnegative square matrix of given weights and the summation 

is over i<k. We can base our unfolding technique on a general multidimensional 

scaling algorithm that minimizes (2) by considering: 

0 = { R U C }, 

Z = { X U Y } , 

(3a) 

(3b) 
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{ r n c } = i , 

{ XAI ) = i > 

and partitioning the matrices Z, W and 1’ as follows: 

(3c) 

(3d) 

(4a) 

(4b) 

(4c) 

Here the partitioning of W parallels that of T and N=n+m. Now the loss function 

(2) transforms into 

n n+m 

°o(Z) -II wik(Yik - «ik^))a. 
i=1 k=n+1 

(5) 

and our unfolding technique will minimize 

Oi(X,Y) = I I u. . (6. . - d .(X,Y))2. (6) 
i=1 J 

In principle, the generality of an unfolding technique is determined by the 

generality of the multidimensional scaling technique on which it is based. So, 

given an appropriate multidimensional scaling algorithm, we can do noneuclidian 

unfolding by generalizing definition (1) to general Minkovski metrics. Also, if 

only the rank order of the dissimilarities is given, we may use a nonmetric 

multidimensional scaling algorithm to do nonmetric unfolding. In some applica¬ 

tions, where we cannot assume comparability of intersubjective utilities, we 

need a row-conditional (non)metric algorithm to do the job. Apart from these 

generalizations, we may handle missing data by setting u^j=0 for all. pairs i,j 

for which no observation is available. 

In this paper we only treat the simplest case: metric euclidean unweighted 

unfolding. There are at least two reasons for this. In the first place, the 

impressive succes of the nonmetric approach in multidimensional scaling problem 

depends critically on the great number of ordinal restrictions that are imposed 
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0n the distances; for each of the sli(N-l) dissimilarities, we have in principle 

iH(n-l) order restrictions of the form Tik>YJm- In an unfolding problem with 

the same number of parameters (say (n+m)p), the number of restrictions imposed 

by the data (J(n*m)(nxm-1)) decreases rapidly and moreover depends on the ratio 

n/m; if only row-conditional comparisons are allowed, this again reduces the 

number of restrictions to nxjm(m-l). This effect is illustrated in table 1. 

UNF UfTF UHF UNF ROW ROW ROW ROW 
MDS 10o 1.50 2.33 U.00 1.00 1.50 2.33 ^.00 

10 

20 

N 30 

1*0 

50 

Table 1. Number of restrictions imposed by ordinal data._For the 

unfolding cases (IMF) and the row-conditional unfolding cases 

(ROW). N=n+ra and 1* different ratio's n/m are tabulated. 

990 300 

17955 >*950 

91*395 25200 

307810 79800 

7!*9700 195000 

276 

1*560 

23220 

73536 

179700 

210 120 50 36 21 8 

31*86 2016 1*50 336 210 96 

17766 10296 1575 1188 756 360 

56280 3261*0 3800 2880 181+8 896 

137550 79800 7500 5700 3675 1800 

So, for the not quite uncommon row-conditional 1*0x10 unfolding problem, the num¬ 

ber of restrictions (1800) is more than 1*00 times less than that number for the 

equal parameter multidimensional scaling case (71*9700). If ties in the data are 

treated by the so called primary approach (if 6ij={kl> then dij need not to 136 

equal to d^), or if missing data are present, the situation deteriorates even 

more. As a result of all this, the configuration of points is less well "tightened" 

by the data compared with the complete multidimensional scaling case and problems 

arise in the form of "degenerate" solutions, "spurious" dimensions and local 

minima. 

The second reason for restricting ourselves to the simplest case is that, even in 

the metric approach, the local minimum problem is very serious; i.e., if we do 

not start an iterative technique in the neighbourhood of the global minimum, we 

are almost sure that we get caught in a local one. Therefore, we will concentrate 

in section 2 on the algebraic analysis of the unfolding problem, based on the 

properties of the squared euclidean distances. We then use in section 3 the con¬ 

figurations X,Y which are solutions of the algebraic problem as a start for an 

iterative technique which minimizes (6). 
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1.1 Other work 

The one-dimensional unfolding model was proposed by Coombs (1950,1964) as a 

consequence of his theory of preferential choice; in his terminology, the 

one-dimensional configuration Y is called the J-scale and each row of A an 

X—scale, which may be thought of as the J—scale folded at the ideal point x. 

with only the rank order of the stimuli given in order of increasing distance 

from the ideal point. The extension to-multidimensional unfolding was made 

possible by the work of Bennett and Hays (1960,1961; also see Coombs 1964). 

These older approaches are non-metric, not only in the sense that rankorders 

within rows of A are used, but they also end up with a representation consis¬ 

ting of p partial orders of projections on the axes of euclidean p-space. 

The trick of specializing an iterative multidimensional scaling program such 

that it becomes an unfolding technique was developed by several people in the 

late sixties (cf. Kruskal and Carroll, 1969), but the problem of finding a good 

initial configuration for this special purpose seems to be a bit neglected. The 

algebraic approach goes back to Coombs and Kao (i960), who conjectured a con¬ 

nection with principal component analysis, Ross and Cliff (1964), who proved 

some theorems about this conjecture and Schonemann (1970), who proposed a method 

for recovering X and Y from the double centered squared distances (cf.Gold 1973). 

2.0 The algebraic approach 

In this section we study the algebraic properties of the unfolding problem. We 

will distinguish three cases: no centering, single centering and double centering. 

These cases differ in the way they use information from the data. We will also 

present three algorithms, the last of which is very closely related to the one 

proposed by Schonemann (1970). 

2.1 Wo centering 

We suppose that the n*m matrix ^={d?j (X,Y)} is given. According to the eucli¬ 

dean assumption, 

I^IX.Y) = ? ( 
J 0=1 

(8) 

The problem is, how to reconstruct X and Y from D^. Ross and Cliff (1964) al- 
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ready observed, that (8) can be rewritten in matrix notation as 

= (9) 

with e a vector with all elements equal to unity (the number of elements of e 

follows from the context), with Z=-2Y, with a vector a defined by 

a. = ) xt 
1 ia a=J 

and a vector 8 defined by 

(10a) 

e dob) 
J a=1 Ja 

An immediate consequence is the following theorem (also due to Ross and Cliff, 

and conjectured in a somewhat imprecise form by Coombs and Kao 19^0): 

(2\ 
Theorem 1. A necessary condition for the solvability of (8) is rank(D P + 2. 

The necessary condition in theorem 1 is interesting, but hopelessly inadequate 

for most practical purposes. It does not use any of the special properties of (9)> 

only the number of rows and columns in the decomposition. The condition is neces¬ 

sary and sufficient for to be representable as a vector or inner product 

model in p+2 dimensions. Thus if the unfolding model is true, applying principal 

component analysis is uneconomical, in the sense that it gives two extra arti¬ 

ficial" dimensions. 

(2) 
We now suppose nJm^p+2 and rank(Dv ')=P+2. Suppose 

(2) 
Dv ' = GH’ (11) 

(?) is a full-rank decomposition of D 

the direction of the two "artificial" 

well known that decomposition (11) is 

i.e., we can always find 

The whole problem then amounts to finding 

dimensions in the column space of G. It is 

unique up to a nonsingular transformation; 

G* = GU , 
* -1 

H = IIU 1 , 

(12a) 

(12b) 

(12c) 
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where U is an arbitrary nons'ingulai (p+2)x(p+2) matrix. It follows that what we 

are looking for is a nonsingular T such that 

(13a) 

and 

HS = (13b) 

with 

S = (T-1)’ (13c) 

We proceed the analysis asymmetrically, because we will try to reconstruct T 

from (13a). and then define a solution for S to be the inverse of the solution 

for T. We partition T as follows: 

with t^ and tg vectors of length p+2 and (p+2)xp. Rewriting (13a), we get 

Gt1 = e , (15a) 

Gt2 = a , (15b) 

gt3 = X , (15c) 

and from definition (10a) it follows that 

a = diag(XX’) , (16) 

where diag(A) denotes the vector of diagonal elements of A. Combining (15b) and 

(15c) we must have 

Ctg = diag(GT3T^G>). (17) 

We can summarize the development as follows: 

(?) 
Theorem 2. Suppose rank(D )=p+2. Then (8) is solvable for X ngd Y if arid only 
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if (15a) and (17) are solvable for tj,tg,T3. 

It is clear that (15a) determines t^ uniquely: 

t1 = G+e , (18) 

where G+ is the left inverse of G. We now analyse (17) in detail. We can 

rewrite it as 

Gt = diag(GMG') ~ (19) 

M = T (20) 

Thus (20) requires that M is symmetric, positive semidefinite, with rank(M)$p. 

Equation (19) is a linear homogeneous system in M and tg. We investigate its 

solution space. First define the nxg(p+2)(p+3) "columnwise direct product" 

(GxG) by: 

(21a) 

(21b) 

Here we write (kl) for 1+Jk(k-1) with kjl, which makes (kl) run from 1 to 

i(p+2)(p+3). We also define the 5(p+2)(p+3)-element vector m by 

(GXG)i(kl) = 2gik®il 

L(kl) 
2 

gik 

(k>l) 

(k=l) 

m(kl) = (M)kl • (21c 

So m is M, strung out as a vector. In definitions (21) we have made use of 

the symmetry of M to avoid unnecessary linear dependencies in the columns of 

(GxG). We may now rewrite (19) as 

Gt2 = (GxG)m . (22) 

So one of our "artificial" dimensions is contained in the column space of (G*G). 

Moreover, it turns out that all columns of G are contained in (G*G). To show 

this, we define the \ (p+2)(p+3)x(p+2) matrix ¥ by 

. 1/ r.lu . jcku\ 
*(kl)u = s(Tk6 +T16 5 (23) 

where is the k'th element of the solution of (18) and 6 
lu 

is Kronecker's 6. 



Then 

{(G*Gmiu = I l gikeil(Tk«lu + txO + l I gikgil-2(\<5l'u + VKU) 
ku. jc-Iu fku. 

" £ gikgilTk6 U + ? gikgilTl6 
k 1 k 1 

ku 

= ft Zn6lu + ll gik6ku = hiu * hiu = giu 
1 k 

where we have used (15a). Thus 

(2k) 

(GxG)f = G 

and (22) transforms into 

(25) 

(GxG)n2 = (GxG)m . (26) 

Now suppose E contains a basis for the null space of (GxG), i.e. the subspace 

{x|(GxG)x=0}. That the rank of (GxG) is at least one less than its number of 

columns can be easily demonstrated. Suppose p=1; we write x for X and x for a. 

Then if a transformation exist such that (13a) is true, there must be an accom¬ 

panying transformation of the columns of (GxG) into 

(2T) 

where the powers are understood to be columnwise direct products again. Clearly 

(27) contains one linear dependency. Unfortunately however, we have not been 

able to derive any general results on the dimensionality of E. We therefore take 

it to be, say, q<l(p+2)(p+3) and all solutions of (22) are given by 

m = ftg + E8 (2®) 

with both tg and 0 (a vector of length 1) completely arbitrary. From m of the 

form (28) we can recover tg by 

tg = G+(GxG)m . (29) 

We now need some identification constraints. Suppose we have chosen our full 
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rank decomposition (11) such that G'G=I. We may require without loss of gene¬ 

rality that the row points are centered which is true i.f.f. 

e'GT3 = 0 (30a) 

i.f.f. 

t}T3 = 0 (30b) 

i.f.f 

t’Mt} =0 ' (30c) 

Here we have used (15c),(18),(20) and the positive semi-definiteness of M. Now 

define the (p+2)x(p+2) matrix P as 

VI 
P = (I - ----) 

Vi 

Then the row points are centered i.f.f. 

(31) 

PMP = M (32) 

To use this condition, we rewrite (28) in matrix form: 

m = t,t- ♦ t2t; ♦ 
q 

I 9 e “ V V 
(33) 

where the correspond with the vectors in the null space basis. Substituting 

(32) in (33) we get: 

q 
M = I 0 Pe P . (3k) 

u V V 
V 

We summarize the developments in a new theorem: 

(?) (2) 
Theorem 3. Suppose rank(Dv ')=p+2, and suppose D =GH' is a full rank decompo- 

sition of Dv ' such that G'G=I. Then (17) is solvable for tg and T^ if and only 

if we can find an M in the subspace defined by (3*0 which is positive semi- 

definite of rank p. 

So according to theorem 3» we end up with a nonlinear problem and its conditions 

for so.lvabi.lity and uniqueness are complicated (if we merely assume that M must 

be positive semi-definite, and forget about its rank, then useful results can be 

obtained). 
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We propose an algorithm that minimizes the loss function 

tr(M - T3T-)2 (35) 

trM2 

over the (p+2)xp matrices T3 and over all M of the form (3*0- The algorithm is 

an alternating least squares method also used in INDISCAL (de Leeuw, Takane and 

Young 1977). We alternate computing a new optimal 0 for fixed T3 (a simple 

linear regression problem), and computing a new optimal T3 for fixed M (a trun¬ 

cated eigenvalue problem), until convergence has been reached. Of course, when 

we choose q.= 1 only one iteration is needed. 

Now suppose t1 is the solution of (18), t? is a solution of (29) and T3 a solution 

of (35). Then the general solution for T is of the form 

T. 

1 

0 

0 

0 0 

5 o , 
o £5k 

(36) 

with 5>0 an arbitrary constant and K an arbitrary pxp rotation matrix. Define 

S = (T-^)' and partition S as 

(37) 

We now must have 

Gt 1 = e 

5Gt2 = a 

5^gt3k = x 

(38a) 

(38b) 

(38c) 

as well as 

Hs 1 =6 

r1H§2 = e 

£-5HS3K = Z 

(39a) 

(39b) 

(39c) 

As can be seen, we 
need not to bother about the rotation, as it transforms >. 
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and Y in the same way, and we can use (39b) to determine ?. We finally find 

the solution for X and Y: 

(UOa) 

(l*Ob) 

If (8) is not exactly solvable, we use least squares procedures for all sub¬ 

problems. There is one additional problem, however. Equation (22) will no longer 

have perfect solutions in general, because (25) is not necessarily true anymore. 

Consequently we may need a least squares technique.(some canonical correlation 

method) to find a "best" solution, but if a good fit is possible there will be 

a. number of canonical correlations very close to unity. It seems better to work 

with (28) and to define E as an approximate null space basis of (GxG). The 

problem then becomes when a small eigenvalue is considered to be equal to zero. 

Again the fact that we do not have information on the rank of (G*G) in the per- 

feet case proves to be a nuisance. 

2.2 Single centering 

In this section we will freely use some of the same symbols as in the preceeding 

one, but with a different meaning. Again we suppose without loss of generality 

that the row points are centered. We now remove the column means of D : 

d<2> 
• J 

-I .2 

ia -i.i I. 
i=1 a=1 

f 
xiayja 

(lt1a) 

(tlb) 

and in matrix notation (U1a) becomes 

D<2> = (U2) 

where a is now defined as 

c2 - 1 j l 
n n r\ . u 

X 
2 

ia a. 
(1*3) 



-38- 

This gives us another result proved by Ross and Cliff (1964). 

Theorem It. A necessary condition for the solvability of (41a), and thus of 

(8), is rank(D^2^)£p+1. 

In the rest of this section we ignore (41b), and we try to find X and Y from 

(1*2). Again we suppose that. rank(Dv ')=P+1 , and again 

= OH’ . (44) 

•(2) 
is a full rank decomposition of D . Row we get 

T = (45) 

with tj of length p+1 and Tg (p+l)xp. Furthermore 

Gt ^ = (G*G)m , (46) 

where the new (G*G) is a columncentered version of the old one: 

(t*G)i(ki) = 2gikgii - 5 j, 2gikgil (k > 15 

(GxGli(kD = 4-1J, 4 (k =15 

(47a) 

(47b) 

and m is M=TgT^, strung out as a vector. This time, however, it is not possible 

to find an explicit representation like (28) for the solutions of (46). We may 

derive from (46), supposing G'G=I again, 

Gt1 = GG'(GxG)m 

and consequently 

(48) 

(I - GG')(GxG)m = 0 . (49) 

So if E contains a basis for the null space of (l-GG')(GxG), then 

m = E6 (50) 

or, in matrix form 
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M = l 0vev • 
(51) 

V 

The nonlinear problem now is to find 0 such that M given by (51) is positive 

semi-definite of rank p. Again there is no information about the dimensionality 

of the null space E; in situations with non-exact fit we have to compute an 

approximate null space. 

It is clear that single centering makes the unfolding problem more simple, in the 

sense that less arbitrary decisions have to be made, it is much clearer how to 

proceed. On the other hand, we use far less information from the data (by igno¬ 

ring (U1b)). We do not give an explicit algorithm, because after M, and t^ 

are computed it is fairly obvious what to do. It is also clear that another 

single centering analysis can be done by removing row means instead of column 

means. But this amounts to the same thing, due to the symmetry of (8) in X and Y. 

2,3, Double centering 

We now describe an approach which is evidently inspired by the Torgerson-Gower 

approach to metric multidimensional scaling. We first define the centering 

operator 

(52) 

with e a vector with all elements equal to one (the number of elements of e 

follows from the context). Furthermore, we form the nxm matrix C by double 

(53) 

According to (9), the matrix expression for D IS 

(5fc) 

Substituting (5!+) in (53) we get 

C = (X - ey1)(Y - ev')’ , 
(55) 

obtain another Boss-Cliff theorem. 



Theorem 5. A necessary condition for the solvability of (55). and thus of (8), 

is rank(C)<p. 

Here we have something quite different from the previous sections, because 

there is no partitioning, and there are no internal constraints. As a conse- 
(2) 

quence we have to use the removed row- and column means of D later on to 

determine X and Y and cannot simply ignore them, as we ignored (U.lb). Suppose 

again that rank(C)=p and suppose C=GH' is a full rank decomposition. It follows 

that 

GT = X - ey' 

HS = Y - e\>' 

TS'= I 

and obviously 

X = GT + ey' 

Y = HS + eV' 

We now derive some intermediate expressions. 

XX' = GMG' + (y'y)ee' + GTye' + ey'T'G' 

YY' = HM-1H' + (v'v)ee' + HSVe' + eV'S'H' 

XY' = GH' + (y'v)ee' + GTVe' + ey'S'H' 

where M=TT'. Furthermore 

ae' = (GxG)me' + (y'y)ee' + 2GTye’ 

eg' = en'(HxH)'+ (v'v)ee' + 2eV'S'H' 

(56a) 

(56b) 

(56c) 

(57a) 

(57bl 

(58a). 

(58b) 

(58c) 

(56a) 

(58e) 

where (GxG) is defined as before (cf.21) and (Hxh) is defined analogously on 

the columns of H. Substituting (58c),(58d) and (58e) in (5U) we get 

D ^ = (GxG)me' + en'(HXH)' + 2GT(y - v)e' - 2e(y - v)'S'H' + 

+ (y - v)'(y - v)ee1 - 2GH' . (59) 

This is a matrix formulation of a result from Schonemann (19T0). Following him, 

we now define a matrix F as 
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F = + 2GH’ 

F must be of the form 

F = <J>e' + e*j*' + Xee' 

with 

(f> = (GxG)m + 2GT(y - v) 

1|) = (H><H)n - 2HS(y - v) 

X = (y - v)'(y - v) 

(60) 

(61) 

(62a) 

(62b) 

(62c) 

At this point there are probably several ways to proceed. Schonemann (1970) 

subtracts the last row of F from the other ones to get rid of the terms with 

*J) and X- We follow this asymmetric approach (solving for m and (y-v) and defining 

a solution for S as the inverse of a solution for T), but prefer the somewhat 

less arbitrary procedure of centering F: 

JF = J(GxG)me' + 2 JGT(y - v)e' . (63) 

To simplify things a bit, we define the matrix K as 

k = £j(gxg) : jg^ 

of order nx^p(p+3) and the vector of parameters £ as 

5 = 
2T(y-v)_ 

so that (63) transforms into 

JF = K£e' 

(6U) 

(65) 

(66) 

Consequently, in the perfect case we can use any column of JF, say f■, to 

solve the nonhomogeneous system of equations fj=K£. In the fallible case, we 

may simply average the f^ and solve the resulting linear regression problem. 

Having obtained a solution £), we may transform it back to M, T, S and (y—v), 

and again assuming without loss of generality that one of the coniiguration 

matrices is centered, we may solve for X and Y from (5f)* 
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3.0 The iterative approach 

In this section we briefly review the SMACOF-3 program, designed to minimize 

(6). It is based on the general multidimensional scaling technique discussed 

in de Leeuw (1977) and de Leeuw and Heiser (1977), for which convergence to 

a local minimum of (2) is assured. We will try out all three cases from section 

2 as a starting configuration for the iterative technique, first on a set of 

dissimilarities of which we are sure the model holds and then in a real data 

situation. 

3.1 SMACOF-3 

The general iterative algorithm is as follows. Suppose is our current best 

solution (we write y for iterations). The basic iteration is 

Z ^ = V B(Z )Z . 
y+1 y P 

Here the matrix B(Z^) is defined by 

-w. y. 
b..(Z ) = 
lk U d..(Z ) lk y 

b.. (z ) = y 
11 P *«ix<V 

b., (Z ) = 0 
lk y 

if i J k 

if d.k(zv) = 0 

Furthermore, V is the Moore-Penrose inverse of V, which is defined by 

v., = - w., if i # k 
lk lk 

N 

hi' j. hi 

(67) 

(68a) 

(68b) 

(68c) 

(69a) 

(69b) 

In our unfolding case we apply the partitionings defined in (4) and get 

zy = (70) 

w = (71) 
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4> A 
(72) 

ml -ee' 

-ee' nl 

(73) 

V+ = 

* 

-(I—§-) 
m n+m 

1 ee1 
nTn+m 

i(i-ss-) n m 

B = 
p : a 

a1: q 

- 6.^ 

a. . = 0 
1J if dij(W = 0 

?4 4 = l 
il 

11 lSj du(vV 

p. . = 0 
*10 

n 6 . 
v lj 

q. • - — l - 
■3J 1=4 d_ .(X.Y) 

lj P U 

q.. . = 0 
1J 

if i f j 

if i / j 

With these specifications, our updates are (omitting V ): 

ij >) 
I xia - .4, 7" 

^il' 

8ij\ Jv) 

ia 

(w+1) 
Ja 

(j, f) ■»'” - ! - '5 
\V) _ y 
in . ^ 

j=i a,. 

I 
i=i a. 

ij 

, ij V(v) y ^ - ) —— x. 
Ja i=i djj ia 

(7>*) 

(75) 

(76a) 

(76b) 

(7?a) 

(77b) 

(77c) 

(77d) 

(78a) 

(78b) 
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The effect of premultiplying by V is, in words, to divide the updates (78a) 

by m, then center the updates (78b) and divide by n and finally readjust both 

of them such that they are jointly centered. We go on with these iterations 

until the improvement of stress (6) is no longer appreciable. 

3.2 Comparisons if the model holds 

We will study the behaviour of the three algorithms of section 2 in terms of 

the initial and final stress values they produce in the SMACOF-3 program. For 

this purpose we take the distances between 20 row- and 7 columnpoints, more or 

less randomly distributed in 2-space, and create three different levels of 

precision in the data: the distances themselves (PERFKCT), the distances rounded 

to one significant digit (ROUNDED) and the distances dichotomized below and 

above their mean (BINARY). The results are tabulated an table 2. 

No centering Single centering Double centering 

PERFECT 0.000007 0.000004 

ROUNDED 0.004023 0.001618 

BINARY 0.U61769 0.186396 

0.000010 0.000004 

0.003610 0.001623 

0.422152 0.208834 

0.000011 0.000006 

0.003118 0.001610 

Table 2. Initial and final values of stress under three levels 

of precision in the data. 

In the perfect case, there is nothing for SMAC0F to improve. In the rounded 

case, the initial values differ somewhat, but essentially they all converge to 

the same stress (and, at least to the naked eye, to the same (intended) confi¬ 

guration). In the binary case, the double centered algorithm breaks down because 

the second eigenvalue of M in (58) becomes negative. The other two reproduce 

the right configuration (with fairly large local distortions), but SMACOF can 

improve stress a lot (only small local distortions remain). 
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•^,3 Comparisons in a real data situation 

We now analyse a set of dissimilarities taken from Gold (1958). The data are 

reproduced in table 3- The 17 row objects represent several properties which 

are possibly related to social power in a group of middle class american 

children. Eight groups of children (labeled A - H) from about five to twelve 

years old judged all properties according to their importance in social rela¬ 

tions. 

I. Smart at school 

2. Good ideas how to 
have fun 

3. Good at making things 

4. Good at games with. 

running and throwing 

5. Knows how to fight 

6.Strong 

7. Acts friendly 

8. A good person to do 

things with 

9. Asks you to do things 

in a nice way 

10.Doesn't start fights 
and doesn't tease 

II. Knows how to act so 

people will like him 

12. Plays with you a lot 

13. Likes to do the same 
things you like to do 

14. Nice looking 

15. Has things you'd like 

to have 

16. Gives you things 

17. Does things for you 

13.5 

1 

13.5 

16.5 

12 

9.5 

2 

9-5 

5-5 

5-5 

15 

3 

5-5 

11 

16.5 

8 

5.5 

13 

17 

6.5 

3 

4 

13 

15.5 

1 

5 

11 

13 

17 

13 

12 

14 

11 

‘15 

8.5 

6.5 

10 

15-5 

8.5 

2 

7.5 

10 

7-5 

16 

15 

6 

15 

17 

15 

13 

3 

11 

4 

1 

2 

10 

5 

12 

7 

9 

8 

16 

6 

13 

17 

14 

12 

3 

9 

4 

7 

2 

8 

1 

15 

10 

11 

5 

17 

10 

12.5 

11 

15 

16 

5 

6 

2 

1 

8 

9 

7 

14 

12.5 

3 

4 

17 

9 

15 

13 

16 

14 

2 

6 

1 

4 

5 

11 

8 

10 

12 

7 

3 

16 

4 

14 

13 

12 

15 

2 

9 

5 

7 

3 

6 

1 

17 

10 

11 

8 

Table 3. Hanks of items by per cent of times they were 

rated "very important"; low value - most important. Taken 

from Gold (1958). 

The details of data collection and group composition do not bother us here, 

we will just present six solutions (three initial and three final ones, see 

figures 1 to 6), and discuss some striking features. 
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In the first place, neither the three initial nor the three final solutions 

resemble each other very much.(there is more similarity between each initial 

solution and its own final one). Furthermore, the final stresses roughly are 

the same, which illustrates again the local minimum problem. Of course, the 

six solutions are not completely different. The column points nearly always 

lie along a curved line in the order A - ( D E H ) - ( G F C ) - B except in 

the "no centering start” configuration, which is severely elongated with A 

out of its common position. Some of the row points are always close together 

(cf. 16,1T and 8 with 8 always in the direction of B), others are always far 

apart (cf. 2 rnf ), the first one being typical for roup A and the second one 

for B). Also, some points move a lot (cf.15), others hardly never (point 9 is 

always near the centroid). These observations are rather typical for real data 

situations. 

Although in this example the double centering approach does produce the lowest 

stress values, we think it is to early to give any definite recommendations 

regarding the quality of the different,approaches to metric multidimensional 

unfolding. 
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