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A PROCEDURE AND PASCAL PROGRAM FOR CLIQUE DETECTION. 

F.V.Wilmink 

Summary. 

Several algorithms for clique-detection have been 

proposed. Among these, the algorithms of Needham, 

Moody and Hollis (Jardine and Sibson, 1*971) and 

of Peay (197*0 are rather well-known for their ef¬ 

ficiency. In this article, it is shown that both 

procedures can be derived from the same basic con¬ 

sideration. A new algorithm is presented, which is 

also based on this consideration, and which is 

shown to be more efficient than the mentioned pro¬ 

cedures. This algoritnm has been programmed in 

PASCAL; as an example, it used 4*1 seconds computation 

time to detect OdO cliques from a set of 114 elements. 

Finally, a somewhat different approach is suggested 

to the detection of structure in a set of elements 

over wtiicii a symmetric relation is defined. 
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Introduction . 

Given a set £ ol n elements, a clique (maximal 

complete subgraph, ML-set) is defined as a sub¬ 

set of E with the property than between each pair 

oi elements of tiiis subset there exists some speci¬ 

fied relationship; moreover, it is not contained 

in another subset of E having the same property. 

Algorithms for the detection of cliques ("clique- 

detection procedures") have been proposed by 

Harary and Ross (1957); Needham, Moody and Hollis 

(appendix 5 of: Jardine and Sibson, 19 71) ; Rattin- 

ger (1973); and Reay (by70; 1974) x). The last 

three algorithms have been programmed in FORTRAN IV 

(the Needham - Moody - Hollis - algorithm by Shafto, 

1974). The method of Harary and Ross is very cumber¬ 

some and does not lend itself to the solution of 

large problems. Rattingers method, like that of 

Harary and Ross, is recursive; in both methods, the 

concept of clique is restricted to subsets contain¬ 

ing at least three elements. For a problem with 

n ~ 00 Rattingers method needed six minutes com¬ 

putation time (Rattinger, p. 10). Its capacity is 

limited, however, because it requires computation 

of a square (nxn)-matrix. 

x \ . 
) As starting material for further statistical 

analyses, cliques are computed in a program written 
by Alba (197^). How this is done is not known to 
this author; Peay (1974, p. bo) calls Alba's method 
"quite lengthy and complex". 
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Tii e otiier two mentioned algorithms do not require com¬ 

putation of such a matrix; nevertheless, Shafto's 

program is limited to sets with n <60, whereas Peay 

(1974, p. 03) says that when n ^ 35 , the problem 

should be broken down into subproblems. No infor¬ 

mation is given about tneir computational efficiency. 

In tiie next section, we shall show tiiat the methods 

of Needham, Moody and hollis and of Peay are based 

on the same principle. Further, we shall present a 

new clique-detection procedure, also based on this 

principle, which we developed unaware of the Needham- 

Moody-liollis and Peay algorithms, and which is much more 

efficient then these. Lastly, we shall make a remark 

about the usefulness of clique-detection, and suggest 

a somewhat different approach to the problem of 

cliques. 

2. The new algorithm for clique-detection. 

Notation. 

Logically, one should make a distinction between a 

set, like j1»3*4}, and a symbolic representation of 

the membership of some elements of E of this set, like 

(10110U). (lOllOO) is a binary bector, indicating that 

of six elements in total, elements 1,3 and 4 belong 

to the set {1 *.3*4] , whereas \1,J,4j is the set itself. 

Indeed, Jardine and Sibson make this distinction, we 

feel, however, that this distinction, though correct, 

is rather contusing, so we shall have (101100) to be 

a binary vector, indicating the set |1,3»4j. 

Further, we shall speak of "verbs" instead of "elements", 

and ol "synonymous with" instead of "having some speci- 
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tied relation with". This is only to simplify pro¬ 

positions. "Synonimity" is assumed to be a symmetric 

relationship. 

A symmetric (nxn)-matrix S represents the synonimi- 

ties between the verbs of K; if s^ = 1,, then verbs 

i and j are synonyms, if s_ = 0, they are not. 

he shall indicate the Needham-'ioody-Hollis algorithm 

by "method 1", the algorithm of Peay, specifically 

his "downward procedure", by "method 2". 

The algorithm is based on the consideration that 

two verbs i and j cannot be members of the same 

clique if they are not synonymous with each otiier. 

(This consideration also forms the basis for methods 

1 and 2, as will become apparent). Hence, given some 

(sub)set A, which includes verbs i and j, we have to 

construct two subsets Ai and A^, with A. = A - Jij, 

and A = A - {jj, by which A is replaced, (thus, A. 

contains all verbs of A except verb i, and A. 

contains all verbs of A except verb j). This is the 

core step in method 2. 

This basic consideration has two important implications. 

First, all the information necessary to detect the 

cliques in E is contained in the zero entries of- S. 

To use this information most efficiently, our first 

step*)is to permutate rows and columns of S so tiiat 

in the resulting matrix T rowtotals increase from 

the first to the n'th row.(This step does not limitate 

the maximum size of n, as is explained in the next 

section). Second, because S, and tnereforeT, is sym¬ 

metric, all essential information is contained in 

the above-diagonal part of T, so we only have to 

consider entries t of T with J>i. (This implica- 
X ^ 

) following a S-ggestion of drs F.B.Brokken 
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tion also follows from the second of two theorems we 

shall present below). This also means $hat we do not 

have to consider the n'th row of T. 

Before we continue the description of the algorithm, 

we introduce another motional convention. If A is 

some subset of E (A may be identical to E), A , 
a , b, . . . , g 

will denote the subset A - {a,b,...,gj. This means that 

A ^ contains all verbs of A except the verbs a, 
a,b.. 

b,...,g, as far as these verbs are contained in A. So 

if \ a , b , . . . , gjfl A = 0, then A = A, 

As long as we have not used information from T, we may 

assume that all verbs are synonymous. That is, there is 

only one clique: E.(Method 1 and method 2 (at the lowest 

criterion level) have the same start). However, inspec¬ 

tion of the first row of T may reveal that, for 

instance, t^ ^ = U. This means that we have to replace 

E by E and E . Suppose, further, that t - = 0. It is 
• J ' *5 

clear that this new information has no implication for 

E ; however, E is replaced by E and E „, so that 
* J JJ15 

now three subsets have been formed: E , E and E . 
i J» •1 J»5 

Going on the same way, working through the above-diagonal 

part of T, we would end up with a number of subsets of E, 

which would indeed meet the requirements, posed by the 

zero entries in T. After checking eacli subset on con¬ 

tainment in other subsets, we would have all the cliques 

in E (called the clique-set of E). 

Obviously, the procedure described above is not efficient. 

The efficiency comes from two theorems. Formal proves 

are given in Wilrnink (1.97b), and will be sent on request. 

The first theorem states that if in row i of T entries 

k^ ,,. . . ,k^ are zero (k ^ > i, m-1 ^ n-k1) , the effect of 
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replacing a subset A by the subsets A and AR k k 
1 * 2' " ’1 m 

is the same as first replacing A by A. and A ; then 
l 

A, by A. . and A j then A ' by A and 
k, kf1 k1’k2 1 ’Si V^’1 

A ; etcetera.lt is not difficult to verify that 

k1 ,k2,k3 
the subsets resulting from the latter procedure are all 

contained in A. or in A . . and that A and 
1 kl’k2. m 

A are endresults of that procedure. 

k1 ,k2.kni 

This first theorem allows us to inspect complete rows 

of T instead of single elements. As the reader may al¬ 

ready have noted, we now are very close to metlxod 1: 

deleting element i from a subset - as we do - is of 

course the same as logically intersect that subset (re¬ 

presented by a binary vector) with a binary vector hav- 

ving 1's in all places except the i'th place - as is 

done in method h; similarly, deleting from a subset those 

elements of a row of T, for which the entry is zero - as 

we do — is tile same as logically intersect that subset 

(represented by a binary vector) with that row of T 

(which is a binary vector, too) - as is done in method 1, 

That we only look at the above-diagonal part of T does 

not affect the truth of these statements, because every 

entrv t with i<i has already been treated as entry 
1 j 

tJ±, with i > j , as is easy to verify. 

it lias now been siiown that method 1 and method 2 can 

both be derived from the same basic consideration; we 

tiave formulated this consideration at the beginning of 

this section. Apart from the formation of T from S, 
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which greatly increases the efficien y of the algorithm 

our gain over 1'eay's method is the usage of complete 

rows of T instead of single entries. The gain of our 

method over the Needham-Moody-Hollis algorithm stems 

from our second theorem. 

The second theorem states that, upon inspection of row 

i of T, with entries k^k.,.k[n being zero.fk^i, 

m-1 < n-k( ), a subset A only needs to be replaced by 

Ai and Ak ,k , ...,k verb i is contained in A and 

at least one of the verbs k^k.,.km is contained 

in A. It is easily seen that if one of these conditions 

is not satisfied, one of the two resulting subsets is 

identical to the original one, in which of course the 

other resulting subset is contained; so that replacement 

is unnecessary. The same is true, of course, ii both 

conditions are not satisfied. If m = 0, which means 

that the above-diagonal part of the i-th row does not 

contain zero entries, then this row contains no infor¬ 

mation, so no replacement has to take place. - In fact, 

this theorem also states that one only has to look at 

the above-diagonal part of T, as is easy to verify. 

If, when replacement of a subset A is necessary, always 

first A. and then Ak , ,k2 , . . . ,k,,, are inserted into the 

list of subsets on the positon"‘of A, then no subset 

can be contained in subsets with a previous position 

in the list (see also the example below). This consequence 

of the followed procedure reduces the number of checks 

on containment of subsets in other subsets considerably. 

We now have given a complete description of the algo¬ 

rithm. We want to make three futher notes. First, when 
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the number oi newly constructed subsets exceeds 

a fixed number DIFMAX (chosen by the user of the 

algorithm), the list of subsets is checked on the 

presence of subsets contained in other subsets; these 

are eliminated.- Second, when n> 59» only parts of 

two subsets can be compared (see next section). If 

these parts show no containment, then the rests of the 

two subsets need not be compaired, which increases the 

efficiency of the procedure.- Third, our method is 

suited to the construction of hierarchical clique 

structures in the same way Peay's method is, using the 

cliqueset at a certain level as point of departure 

for the analysis at the next level. Adaptation of 

the computerprogram, which is written to operate at 

the lowest criterion level only, to this possibility 

requires only slight modifications. 

Example. /1000101 
I ulOOl 10 
| 0011u11 

T = [0OIIOII 
\ 1100111 
\ O I 11111 
\11i 1111 

elements equal to 1. Hararyiand Ross ( 1957. P- 2°5) and 

Hattinger (1973.P- 5) use zero’s, "by convention", 

Jardine and Sibson (1971,P- 238) ’'s> also "by con¬ 

vention". Of course, the matter is trivial. 

We start with E: (1111111). 

According to row 1, we replace E by the subsets 

(0111111) and (1OOO1o1). 

According to row H, we replace (o111111) by (0011111) 

and ;010011o); (lOOOIOl) needs not to be replaced. 

According to row , we replace POO 11 1 1 1 ) by (0001111) 

\ 
; we have put the diagonal 

and (0011011); (O1OO110)needs not to be replaced, 
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nor does (lOOOIOl) . 

According to row 4. we replace (00011.11) by (OOO01 11 ) 

and (OuolOll); (OOIIOII) needs no replacement, nor do 

(OIOOIIO) or (10001U1). 

Because rows 5 and b do not contain zero entries, we 

are now ready with the replacement procedure, and we 

/OOOOI11 

have got the subsets 
OOOIO11 

OOI1011 
O1OO110 
1000101 

Note tbe ordering of 

the subsets. Subset 2 is contained in subset 3» so 

subset 3 is deleted from the list. The remaining sub¬ 

sets are the cliques in E. These are the salts » 

{3,4,0,7}, {2.5.6} and 

3. The computerprograini. 

The progxaai has been written in PASCAL (Jensen and 

kirth, t975H)- This language is already available at 

many computerinstallations. 

ke defined type "binaryvector" as: 

type binaryvector ~ array[t..a] of set of O..naxbit; 

(cf. Jensen and kirtb., p.53-54). 

In this definition, raaxbit is 1. less than the number 

of bits in one memoryword of the computer (implemen¬ 

tation-dependent; we take this number to be 59), and 

a is the number of parts that result from dividing a 

vector of length n into parts of 59 (a = n div (maxbit 

+1) + 1). Each part is stored in one memoryword, thus 

allowing a very efficient storage of information. More¬ 

over, on sets (as the parts are called) several opera¬ 

tions are possible, like checks on set-inclusion, and 

these operations are relatively last, compared to other 
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types of operations. 

We shall now give a stepwise description of the program. 

1. Permutationstep. This step is not included into the 

program because usually such routines do already exist. 

We note, nowever, that a matrix of practically any 

order n can be perrnutated by using an array p..n] 

of files, each file containing one row of tne matrix 

to be perrnutated. By using the type "binaryvector", 

matrices up to order n = 1700 can be perrnutated in 

a memory of 200,000^ words (about 60,000 decimal). 

2. Replacementstep■ Two files are used. After a row of 

T has been read, all subsets on one file are written 

to the other file, if necessary after replacement. 

Then the next row of T is read, and the subsets 

are copied back to the first file, if neces¬ 

sary after replacement. A new row of T is read , and 

the subsets are again written to the other file, if 

necessary after replacement; etcetera. We start with 

a vector ( 1 1 ... 1) of length n (representing E) on file 1. 

3. Eliminationstep. If, after completion of the writing 

of subsets from one file to the other, the total 

number of replacements since the last elimination- 

step (or tne start of the program) exceeds the 

value of UIFMAX as defined by the user, every vector 

(subset) which is contained in another vector (sub¬ 

set) is eliminated from the list of already formed 

vectors (subsets). Then the program returns to step Z. 

4. Ihe program terminates when the replacementstep tor 

the (n-lj-th row of T has been executed. If neces¬ 

sary, an eliminationstep is executed. The remaining 

vectors are copied to a file RES, after transforma¬ 

tion from "binaryvector"-form to a readable form. 

RES may be copied to OUTPUT and/or stored on disk, 

cape or cards. 
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5. Output. After every replacement- and eliminationstep 

the most recent number of vectors and the computation¬ 

time already used are recorded. At the end of the pro¬ 

gram. the number of detected cliques and the greatest 

number of vectors used are recorded. 

Example. 

In a set of 1,1* verbs (all synonyms of "to deceive" or of 

synonyms of "to deceive"), our program detected 660 

cliques. The greatest number of vectors during execution 

was 096, the computation time 42 seconds. The matrix S 

contained 10098 zero entries on a total of 1l42= 1299b 

entries. blFMAX was set equal to 100. Instead of two files, 

two arrays were used,, because n was small enough. 

4" Suggestion for a different approach. 

In our example we found 680 cliques. This cliqueset was 

not at all informative, because of enormous otoerlap. 

Maybe a hierarchical clique structure would have been 

more informative, but we only had our binary matrix S. 

Therefore, we constructed the (nxn)-matrix y, with q = 

the number of cliques of which verbs i and j both were 

members. It is interesting to note that y and S determine 

each other completely: because every S has its own, unique, 

cliqueset (as'W hard to prove), y is completely deter¬ 

mined by S; on the other hand, s. .= 0 if q. =o s =1 

otherwise, so S is. completely determined byV of course, 

the question arises whether there exists a relatively 

simple, direct function f such that y = f(s). if such a 

function exists, clique-detection would become super¬ 

fluous. Moreover, the ordinal data of y (which represent 

the same information as the binary data of SI), can be 

"worked up" to interval-level by some 
nonmetric multidi- 
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niensional scaling procedure. Following this approach, 

we were able to deline, in a 7-dimensional Euclidian 

space, a criterion distance d at which the dichotomized 

distance matrix resembled the original matrix S quite 

well (\vilmink, 1976) • 
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