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A STATISTICAL MODEL FOR THE ANALYSIS OF COVARIANCE 

WITH FALLIBLE COVARIATES 

by 

Dag Sorbom 

Abstract 

Analysis of covariance has been used extensively in experimental 

and quasi-experimental studies to remove preexisting differences among 

treatment groups in order to even out these differences and to arrive 

at a more powerful analysis. However, as has been recognized by several 

recent authors, when the measurement of the covariate involves error, 

the adjustments may introduce severe biases into the analysis. 

In this paper a general statistical model is described, which 

utilizes information from several covariates to make the proper adjust¬ 

ments. The model can handle any number of covariates, criterion 

variables, and any number of treatment groups simultaneously. By the 

use of the model and the estimation method described in the paper a 

wide variety of hypotheses concerning the parameters of the model can 

be tested by means of a large sample likelihood ratio test. 
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1. Introduction 

The use of analysis of covariance (ANCOVA) in the educational and 

psychological sciences has been questioned for several reasons (see e.g. 

Lord, I960, 1965, and 1967} Elashoff, 1969} Cronbach et al., 1976). 

In this paper a statistical model is presented which covers the following 

instances, when the usual ANCOVA fails to make the proper adjustments 

a. The covariate is not error-free and the reliability of the covariate 

is not exactly known for the application at hand. 

b. There exists a treatment-covariate interaction effect, i.e. the 

slopes in the regression of criterion variable on covariate are 

unequal in different treatment groups. 

c. The variances of the criterion variable given the covariate are 

unequal. 

d. The measure for the criterion variable is fallible. 

In this paper the estimation of the parameters of the model is 

described and a general method for testing hypotheses about the para¬ 

meters is given. A special case of the model is treated in SSrbom (1974) 

and this has been used in the field of measurement of change (Sorbom, 

1976). A similar approach has been given by Keesling and Wiley (1975), 

but their estimates are not fully efficient, since they use a two-stage 

estimation method, and with their model it is not possible to utilize 

prior information about similarities among groups to obtain comparable 

parameter estimates. 

It should be noted that nonrandom assignment of cases to treatment 

cannot be handled by the model. No doubt, this is one of the main 

deficiencies of ANCOVA, but as an often cited passage of Lord (1963) 

firmly expresses it: 

"If the individuals are not assigned to the treatment at random, 

then it is not helpful to demonstrate statistically that the 

groups after treatment show more difference than would be expected 

by random assignment - unless, of course, the experimenter has 
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special information showing that the non-random assignment was 

nevertheless random in effect. If, as often happens, randomized 

assignment is impossible then there is often no way to determine 

what is the appropriate adjustment to be made for initial differ¬ 

ences, and hence often no way to show convincingly by statistical 

manipulations that one treatment is better than another." 

The effects of using a covariate that does not account for all pre¬ 

existing differences among the treatment groups cannot be handled by the 

statistical model, either. 

The paper is concerned with a situation when there is data available 

from a number of groups of individuals.. The groups are supposed to be 

representative samples from some populations, and we are interested in 

estimating the parameters describing these populations, and in studying 

differences among these parameters across populations. 

The main objective of the paper is to discuss a statistical model, 

its identification and an estimation method which makes it possible to 

estimate the regression of true criterion score (or universe score, see 

Cronbach et al., 1972) on true covariate score for a number of treatment 

groups. Using this model it is possible to test the assumption of equal 

slopes in these regressions among the groups, as well as assumptions of 

equal error variances, equal true score variances, whether the measure¬ 

ments are parallel or tau-equivalent (Lord and Novick, 1968) and so on. 

The use of the model is illustrated by analysis of two small sets 

of data. Also, a strategy for modifying the model when it does not fit 

data sufficiently well is given. 

2. Analysis of covariance, a brief introduction 

This section gives a very brief introduction to the general aspects 

of ANCOVA and introduces the notation to be used in the sections to 

follow. The main reason for the use of AUCOVA is that one is interested 
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in studying the effect of a number of treatments. To this end, a number 

of cases, N^g\ are randomly assigned to the g:th treatment group. The 

( tr ) 

main focus is on the expected values of a criterion variable, Se 

(f) 
assume that there exists a covariate, , a variable which to some 

extent accounts for preexisting differences among the groups. Thus, it 

is desirable to eliminate the effect of the covariate, which, in addition, 

will result in a more powerful analysis (see e.g. Bock, 1975)• This is 

done by considering the linear regressions 

(0 = <*(g) + Y(s) 5(g) + c(g) 

(g) for each group g=1,2,...,G, where £v denotes the error of the 

v(g) regression. The main focus is now on the intercept, cr° . However, often 

the covariate §(®) cannot be measured without error, and then it is a 

wellknown fact (see e.g. Lord, 1960) that the errors can cause serious 

(s) ( r) 
bias in the estimates of a , Suppose that we have two variables, x^0/ 

,(*) y(g) and Xg15 , that give us information of gVB , and that these measure 

,(g) in the following sense 

,(«> 

(2) 
**1 + X1 

(s) Xg 1 - \i~2 + X2 

r(g) ^ .(g) 

?(g) + 

-(g) 
l1 

,(«) 
‘2 

where e)D/ and €o0/ represent measurement errors in x^ (g) and 

,(g) x'°', respectively. This will be referred to as the measurement model 

is an arbitrary location (cf. Keesling and V/iley, 1975)* In (2), 

(g) parameter describing the level of the observable variable x1B/, i=1,2. 

The inclusion of these parameters in the model implies that the other 

parameters are unaffected by adding or subtracting a constant to the 

observed variables. This feature of the model is important in several 

instances, since it is often not possible to determine a natural origin 

for the observed measures. Kach x^ is a parameter describing the scale 



-8- 

(fr) 
of the variable x'r1' as compared with the scale of other variables 

As) measuring the same . It is seen from (2) that the variance of 

and the two \-parameters are not identified, since we can multiply 

by a constant and divide the \:s by the same constant, without changing 

the observed measurements at all. Therefore, in the following, x.-j is 

fixed equal to 1. The parameters and ^ have no superscript, (g), 

because in general the same variables have been measured in the treatment 

groups in order to make it possible to draw inferences about differences 

in all parameter estimates for the groups. The error variables, 

on the other hand, are indexed, since it is often reasonable to assume 

that the measured variables have different reliabilities in different 

groups, and if this fact is not taken into account these reliability 

differences may cause false conclusions (cf. Campbell, 1965). 

If it is assumed that E(ej;^) 

(2) that 

for all groups it follows from 

(5) 

whe re 

E(x^) As) 

As) = E(5^). 

From (J) it can be seen that all p,- and 9-parameters cannot be identi¬ 

fied simultaneously. We can add a constant a^ to p,^ and compensate for 

this by subtracting &i/\i from for g»1,2,..,G. By this operation 

the observable variables have not been changed. Thus, in the following 

.0) we have fixed to be equal to zero. When estimates have been ob¬ 

tained we are free to do any rescaling, e.g. such that I 9^ - 0, 

As) g=i 
where Nvo' is the sample size of group g. For simplicity we can assume 

that the criterion variable, has been measured without error by a 

variable y'e/. As noted by Lord (i960) this does not introduce any 

severe restrictions into the model, since an error in the y-variable can 

be regarded as being absorbed by the error in equation variable, 
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in (1). Thus, if it is assumed that E(r^g^) = 0 for all groups it 

follows from (1) 

(4) E(y(g)) = E(nj + Ti^g^) = n3 + 0^ . 

In (4) we can add a constant to and compensate for this by subtract- 

(g) ing the same constant from a 

r(g) 

for all groups. This does not alter 

(g) the observable variables yVB , so for the same reason as for the x 

variables we have to fix at least one In the following is 

set to zero. 

If it is assumed that the error variables and are 

r ( g) uncorrelated and each is uncorrelated with §VB/, the variance-covariance 

.( 
"1 ’ X2 

(5) 

(g) (?) (P■) 
matrix for the observable variables, x, x;,B/, and y'0/, is given by 

,(g) - 

%(g) + °!(g) 
1 

2 2 2 
X2°?(g) + °e(g) 

. (g) 2 
X2^ °g(g) 

(g)2 2 2 
y °5(g) + °,(g) 

We have three observable variables, which means that for each group 

there are 9 observable parameters, 6 variances and covariances and 3 means, 

as long as we restrict our interest to first and second order moments. 

gression functions, an<^ °^(g)’ ^ Parame'*-ers ^or the error 

variances, 2(G-1) parameters for '’and , since and 

^ are restricted to be equal to zero, 3 ^-parameters and 1 ^-para¬ 

meter. Thus there are at least 9G- - 7G - 2 = 2(G - 1) overidentifying 

restrictions on the model. This means that the estimation of the para¬ 

meters cannot be done unequivocally by identifying with the sample 

variance-covariance matrix and the population means with the sample means. 
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The estimation problem is treated for the general model in section 4. 

The model is identified, which can be shown as follows. Let the 

■'ij ’ ■1->J= 1 • v can be obtained elements of be denoted by cr(?^, i,1,2,3. 

as OjfV02?^ and °2_(g) as °jfVv(g) - a3^°2?)/032)' For X2 there 
^ ( s') / ( s') 

are G possible ways! \2 = OjfV0*? » e*1»2,...,G. This means that there 

o(g) 
are G - 1 overidentifying restrictions on The parameters o , 

,(*) 
and a. 

,(*) 
be obtained from o!j^, and r respect¬ 

ively. The means p,^, ^2 and can 

E(x21^) and E(y^1^) respectively and 9^ 

be obtained from 2(x^1^), 

and E(y^g^) respectively for g=2,3,...,G. Now all parameters have been 

identified and still we have not used E(x^), gs=2,3,.,. ,G. Thus, in 

total there are 2(G-1) overidentifying restrictions in the model. 

There are several possible ways of calculating estimates of the parameters 

using the observed variances, covariances, and means. In the next section 

the maximum likelihood method is suggested. With this method all sample 

information is used, and if the distributional assumptions are met, the 

estimates are guaranteed to be the most efficient in large samples. 

The direct use of the observed variances and covariances is hazardous 

(cf. e.g. Lord, 1960; Cochran, 1968; Joreskog and Sorbom, 1974). Suppose 

we are using y and x^. Then y is estimated by 

V-] - cov(xi» y)/var(x1) , 

and afrom E(xjj®^) 

but 

where 

3(y1 ) = V Px x 1 xlXl 

P Y X 
T1 

2II 2 2 , V(°? + • 
so that y is biased downwards. This in turn implies that the esti¬ 

mated treatment effect, S’ , is biased, since 

a = y - y.|X . 
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A3 noted by several authors (see e.g. Smith, 1957; Lord, 1960) 

Porter, 1971} Bergman, 1972) this bias can have detrimental effects on 

the conclusions made from an analysis of covariance. Depending on the 

actual values of x in the treatment groups, the bias can lead to a 

rejection of the hypothesis of no treatment effect when there is no such 

effect. Also, it can happen that the analysis fails to detect an exist¬ 

ing effect because of this bias. 

If, for example, we are studying two groups with the same criterion- 

covariate slope, y , the effect of the treatment in group 2 as compared 

with the effect of the treatment in group 1 would have been computed as 

Z<2> -^1> = y(2) -y(1) -y(S(2) -*(1)) . 

Thus, by (3) and (4) 

2> - 3<’>) . „(2> - ♦ v<9<2) - 8(1)> - V - .<’>> 

-<,‘2)-.<').v<8<2>-8(,))<i-(„). 

This means that as long as x is not measured without error, i.e. pxx ^ 1, 

we obtain a bias in the estimated effect, and this bias can be positive 

or negative depending on the difference in level of the covariate among 

the groups. An obvious way to eliminate the bias is to include an 

estimate of the reliability of x, rxx, in the analysis. That is, instead 

of 'y we use y7rxx (see e.g. Cochran, 1968). In this case the bias 

equals y(g^2^ - 9^1 ^)(7 - p /rxx)« and- the bias is removed whenever 

r is an exact estimate of p . However, it is quite seldom that esti- 
XX Kxx 

mates of pxx are available, especially when the reliabilities vary 

among the treatment groups (cf. Campbell, 1963)* 
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3. The general model 

In this section we consider a generalization of the model in the previous 

section. The model is similar to that in Keesling and Wiley (1975) and 

to the LISREL model (joreskog and van Thillo, 1973; Joreskog and Sorbom, 

1976a, 1976b). However, the model to be presented makes it possible to 

undertake a simultaneous analysis of several groups and to take account 

of the means of unobserved variables in the model. This is an important 

feature if we are interested in the effect of treatments. Information 

about the parameters of the model is contained in the sample variance- 

covariance matrix as well as in the means of the observed variables, and 

these two sources of information are not independent. This implies that 

in order to obtain estimates which are fully efficient one must find them 

in one step. 

„(«) Let denote a vector of p criterion variables for the g:th 

As) treatment group, and x ti> a vector af q covariates. These covariates 

may be considered as a set of variables containing information of any 

kind of preexisting differences among the groups. It is supposed that 

the and x^ ^-variables are measuring the unobservable 

(g) ~ ^ 
r -variables according to the following measurement model: and 5' 

(6) 
Z(s)-HJ,*4z>)-4e) 

i<S> ’ to, * 4, 1<8) ♦ &‘) 

Our main interest is focused on the parameters of the structural equa¬ 

tions for the groups, that is 

(7) T(&) = „(e) + j-(s) Ae) + As) 

Differences of the a-vectors are associated with the usual ANCOVA 

treatment effects. 



-13- 

Suppose we have v(g) 
observations of the q-dimensional vector 

and the p-dimensional vector for g=1,2,... ,G, where G is 

the number of groups. If it is assumed that the expected means of the 

4a error terms and in (6) are equal to zero it follows that 
Xj 

Ete(s)) - Jt +A.v£t 
(g) 

(8) Z 

E(~s)) = %+%4' 

(g) 

., '9 

respectively. If there are no restrictions on in (7), this 

vector is obtained as 

,(g) 

(e) 
where £_v6' and denote the expectations of and 

(9) - 4S> - r 4e) 

All the (g) (r) 
- and -vectors cannot be identified, since analogous 

to the case considered in Section 2,we can add a vector a to 

<«> ’ and a vector a. to q 

"I H. 
in (8) for g=1,2,.,.,G and compensate for 

this by subtracting and A^^a. from and ^ respectively. 

In the following these indeterminacies are circumvented by letting 

£ and 9_^1 ^ = 0. Afterwards, when estimates of the parameters a(1 } 

are obtained, we are free to make any translation of the above type. 

For example, it can be done in such a way that 

Z m o 

(10) 
G tr 
Z 

e-1 " 

To simplify notation let 

(a 0 
..(g) 

Us) 
, \ I. -(s'* - 
(g) ’ ~ 
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\ 
.(g) 

i Je)\ 
Je) 

Then (6) can be written as 

(11) 

and (8) as 

= d + A u>(g) + s(g) 9 

(12) fi(z^) = d + A s}B^ 

Je) (g) If it is assumed that is uncorrelated with and has expecta¬ 

tion 0 , then it follows that the variance-covariance matrix for z^g^ 

equals 

(13) = £[z_(g) - S(z^g^)] [z^ - E(z(g))]' = 

= E(z^ - £ - A 9,^g^)(^g^ - h - A s}S^) 

E[A,(u>(g) - !(S)) + &(g)] [A(u,(g) - A(g)) + e(g)]' 

a ro/ a' Je) ,, + y(g) 

where $^g^ and Y^g^ are the variance-covariance matrices for ci/g^ 

Js) Je) and z/°' respectively. In each group the model for z'6' is similar to 

a restricted factor analysis model (cf. Lawley and Maxwell, 1971). How¬ 

ever, it should be noted that there is no assumption of diagonality for 

(g) 
the -matrices. This means that the model allows for covariances 

among the ^-variables in (11), and this feature of the model can be 

of importance for some special data designs; see Section 5 for an example. 

If it is further assumed that ■ (g) 

Je) and 

structure 

(H) 

where 

Je) 

Je) 

in (7) is uncorrelated with 

(g) and has expectation 0 it follows that $ 

r(g) j(g) pt(g) + 0(g) 

(g) 

has the 

* *55 ^ 

x(g) rl(g) 
hi 

j(g) 

(g) Js) 
-Hu “55 

a(s) is the variance-covariance matrix for the errors -(g) 
in (7). 
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4* Estimation of the model 

As noted above the model is similar to a factor analysis model for 

several groups, where the means of the factors are taken into account. 

This model has been treated in Sorbom (1974), and the only difference 

here is that the variance-covariance matrix for the factors has the 

structure (14). The estimation of the parameters of the model can be 

treated in the same fashion as in Sorbom (1974), where the modified 

Fletcher and Powell (1965) procedure as modified by Gruvaeus and Joreskog 

(1970) was used. 

(g) 
Let z. denote the iith observation in the g;th group. Assuming 

(g) 
that z has a multinormal distribution and that the observations are 

obtained independently, it follows that minus the natural logarithm of 

the likelihood function for the g:th group is given by 

(1 5) f(g) = (N^eV2) [los|£^S^| + tr(z'1 ^ T^g))] , 

where |.J denotes the determinant and tr(.) the trace of a matrix. 

T^S^ in (15) is the matrix 

(g) 

(16) T^ = l/N^ 2 (z(g) - u - A 0^)(z(g) 
i=1 Jt - A£(g))' 

The maximum likelihood (ML) estimates of the parameters of the model are 

defined as those values of the parameters that make the function 

(17) F = E f(g) 

g*1 

attain its minimum. With the Fletcher and Powell procedure, the minimum 

of (17) is obtained by an iterative algorithm which make use of the first 

derivatives. These derivatives are given in Joreskog (1971a) and Sorbom 

(1974) except for the parameters in |^g\ £^g) and 6^ in (14). 

It can be shown in a similar manner as in Joreskog (1975) that these are 

given by 



-16- 

(i/N<«V/« 4f - I,(g) 4 a^} Ay r(s) + a- Q<g) Ayr(g) + 

+ £,(g) a; 4l} ax + & e£f} ax 
(18) 

(i/w(s))6F/« £(«) - A;(n^} Ay r(g) + a,) £f) 
(1/N^)5F/a 6^ = A' A ~ ~y iiyy _y 

As) where jq'e' denotes the matrix 

a 
(<r) 

i <&> 4? 
4’ 

-'(,)(I<*) - ,(ri,r->‘s) £ ;)£' 

As in Sorbom (1974) the parameters of the model are divided into 

three categories 

(i) fixed parameters, i.e. parameters specified to have a given value $ 

(ii) free parameters, i.e. parameters the value of which are unknown 

and are to be estimated from dataj 

(iii) constrained parameters, i.e. parameters specified to be equal to 

one or more other parameters. 

By this division of the parameters it is possible to specify a wide 

variety of different models and to take into account prior information 

about the data. 

The value of F in (17) at the minimum can be used in hypothesis 

testing. For example, in the case discussed in Section 2, the equality 

of the slopes in the regressions of criterion variable on true covariate, 

that is the y in (1), can be tested in the following manner: first 

estimate the model with no restrictions on the y^g^-parameters. This 

gives a value of F equal to Fq, say. Then we can estimate the model with 

the restriction y^ ^ = y^^ = ••• = which gives rise to another 
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value of F, F1, say. This value is greater than FQ and we can examine 

the difference F^-Fq to see whether the hypothesis of equal yts is 

acceptable. In fact, the difference is the likelihood ratio test sta- 

2 
tistic, and for large samples F^-Fq is approximately distributed as ^ 

with G-1 degrees of freedom. 

5. An example 

To illustrate the use of the model and a procedure for model modifi¬ 

cation, a small subset of data from a study conducted by Sten Olsson 

(1975) is analysed in this section. The example is chosen mainly for the 

purpose of clarifying the use of the model and to illustrate how the para¬ 

meters of the model can be interpreted in a real situation. In fact, the 

data consist of the smallest possible set for an analysis of the kind 

proposed, and, no doubt, the degrees of freedom for the models analysed 

are too 3mall to make any wider conclusions. Rather, the analysis re¬ 

ported should be regarded as pure illustrations, which for the sake of 

clarity have been chosen to be as simple as possible. 

The main data in the Sten Olsson (1973) study consist of eight tests 

from the DBA-test battery (Hamqvist, 1962). These tests were adminis¬ 

tered to about 400 11-year old pupils at two occasions, approximately one 

month apart. During this timeperiod four groups of about 100 pupils each 

were given different degree of training in two of the verbal tests, 

Synonyms (S) and Opposites (0). The children were in principle randomly 

assigned to the treatment groups. In the example data from two of the 

groups, Experiment group 1 (E) and Control group (C), were chosen. The 

members of the E-group were given tests similar to the S- and 0-tests 

three times between the two administrations. These training tests con¬ 

tained all the items in the original test plus a number of similar items. 

The pupils were given the correct answers of the items after each train¬ 

ing session. For group C, there was no such training. 
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TABLE 1. Sample variance-covariance matrices and sample 

means for the data U3ed In the example. 

Control Group (N=105) 

Test S Means 

4C) 57.626 18.381 

24.933 34.680 20.229 

26.639 24.236 32.013 20.400 

Y^C) 23.649 27.760 23.565 33.443 21.343 

Experiment Group (N=106) 

Test S Mean3 

50.084 20.556 

42.373 49.872 21.241 

y^e) 40.760 36.094 51.237 25.667 

*0^ 37.343 40.396 39.890 53.641 25.870 
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The sample variance-covariance matrices and the sample means for 

the two groups are given in Table 1. 

The tests S and 0 are both assumed to measure verbal ability, so 

let us assume that the common part of these tests is a factor which we 

can call verbal ability (VA). Intuitively the model shown in the path 

diagram in Figure 1 should be adopted first. In the figure observed 

variables are enclosed in squares and unobserved variables in circles. 

An arrow between variables indicates a possible direct causal influence. 

Thus, for example, the score of the S-test for an individual is supposed 

to be composed of the individual’s verbal ability and an error term, e. 

The error should here be interpreted in a rather broad sense. It is that 

part of the test score that remains after the influence of the verbal 

ability has been removed. Thus, apart from what is usually meant by 

measurement errors, the e-variable also contains influence from other 

abilities and traits of the individual which are not involved in other 

tests measuring the same ability. 

In accordance with the general model in (6) we can explicitly write 

the model for the test scores in the g:th group as 

x(e) =. u + 
XS H + s + *1 

x(s) „ u + i («) 
0 **2 *25 *2 

=. u, + n<6) + ,(*) 
ys 3 ^3 

(g) 

J 

r(g) . .(e) 
“4 + V + *4 ’ 

(19) 
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FIGURE 1. The initial model for the two groups in the example. 
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where xi'' ^ and yif ^ denote teat scores for the Synonyms test at the 

first and second occasion, respectively, and *g1'^ and y denote 

the corresponding scores for the Opposites test. and are are 

the verbal abilities at the first and second occasion, respectively. 

The superscript, g, has the value E for the Experiment group and C for 

the Control group. The structural equation to be studied is given by 

T,(g) . „(«) + Y(«) g(«) + C(«) (20) 

When the model in Figure 1 is estimated by the method outlined in 

Section 4, this results in an overall chi-square measure of fit equal to 

55.1 with 6 degrees of freedom. The differences between the observed 

variance-covariance matrices and the observed means and the estimated 

E-matrices in (13) and estimated expected values in (12) are rather large. 

Thus, it seems that the model cannot be used to describe the data suffi¬ 

ciently well. The model has to be modified in some way. In Sorbom (1975) 

a procedure is described which uses the derivatives of the fixed para¬ 

meters of the function F in (17) to indicate in what respect the model 

has been specified wrongly. A study of these derivatives suggests that 

there exists a covariance for the error of the 0-test between the two 

occasions in the E-group. A covariance of this kind can be interpreted 

in several ways. For example, the 0-test may contain a measure of some 

ability not contained in the S-test, and as the same, tests were used at 

the two occasions, it seems natural that there is some remaining corre¬ 

lation between the test scores for the 0-test after the influence of the 

true scores has been removed (cf. Sorbom, 1975)« Thus, when this covari¬ 

ance between the errors has been taken into consideration by the model 

we assume that the verbal ability factor should have been more "pure". 

The model with the covariance included yields a chi-square with 5 degrees 

of freedom equal to 17.2. The decrease in chi-square for this model as 

compared with the initial model equals 17•9 (=35«1—17»2). Thus, the 



-22- 

hypothesis of zero covariance between the errors for the O-test in the 

E-group is rejected by a chi-square with 1 degree of freedon equal to 

17.9. Still, the overall fit of the model is not acceptable in a strict 

interpretation of the chi-square measure, and an inspection of the above- 

mentioned derivatives for the model shows that there might be a covariance 

of the O-test errors also in the C-group. Allowing also this covariance 

to be a free parameter we obtain a model with an overall fit measure equal 

to 2.8. As for the E-group we can conclude that there is a covariance for 

errors in the C-group. This time we can reject the hypothesis of no co- 

variance by virtue of a chi-square with 1 degree of freedom equal to 14.4 

(=17*2-2.8). The overall fit of the model is now very good, the probabil¬ 

ity level for a chi-square equal to 2.8 with 4 degrees of freedom is ap¬ 

proximately 0.59, and the sample variance-covariance matrix and the sample 

means are reproduced by the model parameter estimates to at least two 

significant digits. 

To make inferences about differences among the groups in the develop¬ 

ment of verbal ability as measured by the two tests, we can use the model 

with o free for the two groups. Our main interest is to compare 
e2e4 

the estimated structural equations (20). An inspection of these reveals 

that the ^-parameter, i.e. the slope in the regression of true criterion 

score on true oovariate score, are almost equal, O.947 for the C-group 

and 0.854 for the E-group. The hypothesis that these slopes are equal 

can be tested by estimating the model once more but with the restriction 

V ' = y y added. This results in a model with an overall chi-square 

measure equal to 4.0 with 5 degrees of freedom. Thus, the hypothesis of 

equal slopes cannot be rejected, since it leads to a chi-square with 1 

degree of freedom equal to 1.2, and this is not significant. The differ¬ 

ent models and their associated chi-square values are summarized in Table 

2. The maximum likelihood estimates of the parameters in the final model, 

with equal criterion-covariate slopes, are listed in Table 3. 



-23- 

TABLri 2. Measures of overall fit for the models 

analysed in the example. 

Model chi-square d.f. 

Initial 

(£) 
o' ' 

e2e4 

free 

35.056 

17.187 

^E> and o<C> 
s2e4 

,(*) 
e2e4 

s2®4 
free 2.799 

and a(°) free, ,/E)«Y(C) }. 

s2e4 
989 

Probability 
level 

0.000 

0.004 

0.592 

0.551 
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The above results can be compared with a more traditional analysis 

of the data. First of all we want to see whether there is a difference 

among the groups at the post-test occasion. To do this we can conduct 

a usual t-test, that is using the test statistic 

(21) t = (y^ - + s^fyN^))1/2 , 
J J JJ 

— ( cr) 

where yVD/ denotes the sample mean for either the S- or O-test and 

(g) 
3yy the sample variance. Because the sample sizes are fairly large, 

t is in the following regarded as being normally distributed. For the 

data in Table 1 the test results in a t equal to -5.97 for the S-test 

and -5.01 for the 0-test. However, in the test we have overestimated the 

variances in the denominator of (21), since the test score variances also 

contains measurement errors. Thus, a better test should be to use the 

true post-test score differences. By use of the estimates in Table 3 we 

obtain a t-value equal to -5.306/(24.897/105 + 46.738/108)1/2 = -6.482. 

Thus, this test gives a stronger support for the rejection of the hypo¬ 

thesis of no group differences at the post-test occasion. 

However, as can be seen from Table 1, the level of the E-group test 

means were higher at the pre-test occasion, too. In fact, a t-test of 

the difference in mean values for the S-test among the groups results in 

a t-value equal to -2.51, which is significant at least at the 1 per cent 

level. For the 0-test the t-value is -1.19 and this is not significant. 

On the other hand, if we use the results from the maximum likelihood esti¬ 

mation in Table 3> to test for difference in true score mean at the pre¬ 

test occasion, we obtain a t-value equal to -3.59, which is highly signi¬ 

ficant. In this case we have gained in power for the same reason as in 

the analysis of the post-test occasion. 
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TABLE Maximum likelihood estimates of the parameters 

for the final model In the example. 

(Fixed parameters are denoted by an asterisk, *) 

Parameter Control Group Experiment Group 

\2 

X4 
2 o 
5 

v 

a 
*2*4 

a(5) 

E(-n) 

^2 

^3 

0.878 

0.907 

29.794 

0.895 

1.032 

9.584 

12.030 

5.836 

12.500 

6.391 

0.000* 

0.000* 

18.619 

19.910 

20.383 

21.203 

47.334 

8.823 

2.547 

12.359 

7.451 

17.209 

7.304 

1.875 

5.306 
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Thus, there could have been preexisting differences among the 

groups which might explain the outcome of the experiment. By the use 

of the analysis of covariance strategy we can even out these differences. 

Instead of testing for differences in post-test means we test for differ¬ 

ences in post-test means after elimination of the linear regression on 

pre-test scores by a t-test. For the data in the example this results 

in a t-value equal to -6.50 and -6.70 for the 3- and 0-test, respectively. 

Thus, we have gained in power as compared with the t-test without taking 

pre-test differences into account. A still more powerful comparison 

would be obtained if we use the true score estimates in Table 5 to perform 

an analysis of covariance. The value of the t statistic equals -11.67 in 

this case and, thus, there is a considerable gain in power as compared 

with the initial test for differences in the post-test means. 

6. Lord’ s numerical example 

In Lord (1960), a large sample test of treatment effects for the 

case of a fallible covariate is derived. In an example, it was shown 

that by accounting for the measurement errors in the covariate a signi¬ 

ficant treatment effect was demonstrated, whereas an ordinary analysis of 

covariance would not have detected such an effect. In this section the 

example will be re-analysed to illustrate the specification of the gen¬ 

eral model in that case, and how a test similar to Lord’s is derived. 

The data for the example are given in Table 4. They have been taken 

from a study by Frederiksen and Schrader (1951)- The criterion variable, 

y, is Freshman average grade and there are two covariates, x^ and x^. 

x^ is not actually observed, since no duplicate covariate was available. 

It is computed to be a measure parallel to . There were two groups, There were two groups, 
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TABLE 4- Sample variance-covariance matrices and sample 

means for the data in Lord’s numerical example. 

Male Group (N=119) 

Variable S . Means 

x!j1 ^ 5.29000 4.07000 

4.25200 5.29000 4.07000 

1^ 1.12120 1.12120 0.56250 1.40000 

Female Group (N=93) 

Variable S Means 

x!j2) 3.88090 5.54000 

2.82290 3.83090 5.34000 

y(2) 0.55278 6.55278 0.37210 1.57000 
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Male ana Female, with 119 and 95 observations, respectively, and x2 was 

constructed in such a way that the reliability of x^ and x2 was 0.8 in 

the Male group and 0.72758 in the Female group. 

The model for the data is the same as that one discussed in Section 

V by 

in 

2, except that, because of the construction of the numerical data, 

2 2 
A1 - \2 - 1 in Equation (2) and ° (g) = ° (g) = 0 (g) » say> for S*1.2- 

S1 s2° 2 s 
It is then seen from (5) that we can estimate acc by s 

* x1x2 
2 2 2 

s/s , a by s -s , and a„ by s - s /s 
yx/ Xlx2 e y Vi Xlx2 C 7 3*/ *^2 

both groups to obtain estimates that perfectly fit the data. The esti¬ 

mates of y are quite similar in the two groups} it equals 

1.1212/4.2J2 = 0.2649 in the Male group and 0.55278/2.8229 = 0.1958 

in the Female group. To test whether the y:s are equal we estimate the 

model with the constraint ^ = v^2^ as outlined in Section 4. This 

gives as a result a model with a chi-square with 1 degree of freedom 

equal to 2.504, which means that we cannot reject the hypothesis at the 

10 per cent significance level. The maximum likelihood estimates of the 

parameters are listed in Table 5- The next step in the procedure is to 

test whether there is a difference among the groups in Freshman average 

grade when the differences in the covariate have been taken into account, 

that is to test whether a in Table 5 is equal to zero. This can be 

(2) 
done by estimating the model with the constraint cr ' = 0, or equiva¬ 

lently E(t^2^) = y E(§^2^) , added. By comparing the chi-square for 

this model with the chi-square for the previous one we obtain a chi-square 

test of the hypothesis with 1 degree of freedom. Instead of the function 

F in (17) we will minimize the function 

(22) H = F + t[E(ti(2)) - v E(S(2))] , 
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TABLti 5. Maximum likelihood, estimates of the parameters 

in the model for Lord’s numerical example. 

(Fixed parameters are denoted by an asterisk, *). 

Parameter Male Group Female Group 

x2 

4.318 

0.275 

1.041 

0.000* 

1.000* 

1.000* 

0.242 

4.070 

4.070 

1.400 

2.691 

0.259 

1.096 

-0.137 
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where j denotes a Lagrangian multiplier. The estimation of the model 

results in a chi-square with 2 degrees of freedom equal to 5*221. Thus, 

at the 10 per cent level we can reject the hypothesis of no effect by a 

chi-square with 1 degree of freedom equal to 5*221 - 2.304 = 2.917* 

This value of the test statistic should be compared with the corresponding 

t-value that is obtained from an ordinary analysis of covariance. As 

reported by Lord (1960) this equals -0.855» corresponding to a chi-square 

equal to 0.731* Lord's test gives a t-value equal to -1.69 (t2 » 2.856,). 

7• Summary and conclusion 

There is only a small gain in power by the method proposed as com¬ 

pared with Lord’s test for the data in the last example. However, the 

example illustrates in what ways the method is more general than the pro¬ 

cedure proposed by Lord and/or the usual analysis of covariance. 

To sum up 

1. There is no restriction on the number of treatment groups that can 

be involved. Nor is there any restriction on the number of covariates 

or the number of criterion variables. 

2. The fallible covariates can be parallel, tau-equivalent, or congeneric 

measures (see Joreskog, 19716), or can conform to a factor analysis 

model. 

3. The method can handle fallible criterion variables as well as 

fallible covariates. 

4. There are no requirements of equal variances for criterion variables 

for given covariates. 

5. There is a provision for a wide variety of different tests regarding 

the parameters of the model. 
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