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Abstract 

Three types of clusters in graphs are discussed. The n-cliques of 

a graph are maximal subgraphs, all pairs of points of which have 

smaller distance than n in that graph. The n-clans, introduced as 

'sociometric cliques' by Alba, are n-cliques of diameter n. A third 

class of clusters, the n-clubs, are introduced as maximal subgraphs 

of diameter n. The interrelations of these classes of subgraphs 

are studied. 
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1. Introduction 

In this paper we shall introduce three different cluster concepts of 

graphs, cliques, clubs and clans, and investigate their inter¬ 

relationships. The graphs treated here will be simple graphs: finite, 

nonempty, and having no loops or multiple lines. We shall mainly 

follow the notation and concepts given by Hareryt1969), to which we 

may refer the reader for further reference. 

We shall suffice here with a cursory introduction of the concepts and 

notation used here. 

A graph G is a set of points together with a set of lines. To simplify 

notation here, we shall use the same symbol G to denote the set of 

points of G. Any line of G connects some pair of points u, v e G, 

which then are said to be adjacent to each other in G. We shall also 

consider subgraphs of G, indicated by their pointset. If H e G is a 

subset of G, the subgraph H of G consists of all points of H together 

with all lines of G, which connect points u, v e H in G. A patfc>, con¬ 

necting two points u, v of a subgraph H, in that same subgraph H, 

consists of points u, wJ, w2> ... v e H, such that u is adjacent 

to w^, is adjacent to Mi+1, consecutively and w1_1 is adjacent to v. 

The length 1 of a path is given by the number of its lines. A cycle of 

length 1 is a path of length 1, where u = v. A subgraph H is connected in 

G,. if each nair of points «, v t H is connected hy a natt in w. 

A complete graph is a graph of p points, where each pair of points 

is adjacent to each other. 

We shall also consider maximal subgraphs with respect to a given property. 

They are subgraphs of G satisfying that property, such that no larger 

subgraphs with that property exist in G, which contain them. A well 

known example is given by the cliques of a graph G: maximal complete 

subgraphs of G. 

The distance of a pair of points u, v in a certain subgraph H, denoted by 

dH (u, v) 

is given by the length of a shortest path connecting u and v in H. 
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If u, v are not connected in H, this distance is infinity. 

We shall frequently make use of the well-known relation that, if H 

is a subgraph of G, than for every pair of points u, v e H 

dG (u, v) < dH (u, v) (1) 

The distance between any two points in a subgraph of G cannot be larger 

than their distance in G itself. 

The diameter of a subgraph H is given by the largest distance between 

a pair of points in that subgraph. 

If we extend the pointset H c G with a point w c G - H or a subset 

S e. G - HI, we may consider the distances in the larger subgraphs 

corresponding to Hu { w} or HuS, denoting for simplicity distances as 

d^ w or d^ g. * The degree of a point u in G is the number of points 

(neighbors) adjacent to u in G. The set of those points is called the 

1- neighborhood of u in G, to be denoted by V^(u). We may restrict the 

set of neighbors to those in a subgraph H of G only, to be denoted as 

(u). Similar extensions may be made to n-neighborhoods of u: points 

at distance n of u. 

The conventional notation of set theory is used. In particular 

S c G will denote set inclusion, ScC proper inclusion and S = G 

identity of sets. 
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2. Cluster concepts 

In standard graph theory a familiar cluster concept is given by the 

cliques of a graph G. As mentioned above, they are given by the set of 

maximal complete subgraphs of G. Another cluster type definition of 

subgraphs of graphs are the "n-cliques", introduced by Luce (1950; 

see also Luce and Perry, 1949) as given by the following definition.* 

Definition 1. An n-clique L of a graph G is a maximal subgraph of G 

such that for all pairs of points u, v of L the distance in G 

• dQ (u, v) _< n. (2) 

The reader may note that, due to the maximality of L, for every point 

w s G - L, there is a point v e L for which 

dQ (w, v) > n (3) 

It is well-known, however, that in the subgraph, formed by the points 

of an n-clique L, the distances between points can be larger than n. 

This follows from the familiar property, referred to above in (1), that 

for any two points u, v of the subgraph L of G we must have 

dQ (u, v) _< dL (u, v). 

The condition (2) therefore does not imply that for each u, v e L 

d. (u, v) < n. 
L — » 

Although the cluster concepts, to be introduced in this paper, suggest 

more appropriate names, we shall resist the temptation to do so and 

accept this part of the nomenclature as established. 
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Consequently, the diameter of L may be larger than n. 

In a recent article Alba (1973) has illustrated this phenomenon with 

the example, given here in Figure 1. 

Figure 1: Graph G 

If we restrict our attention to 2-cliques L (n = 2) 

and designate 2-claques by their pointsets, it can be seen that 

L = {1, 2, 3, 4, 5} is a 2-clique. However, its diameter is 3, jL.e. 

*he largest distance in L is 3, in the case of the pair of points 

4 and 5. 

In fact, an n-61ique can be disconnected (diameter infinity), as we 

shall illustrate further in this paper. 

The concept of n-clique therefore does not embody the idea of connected¬ 

ness as an essential feature of a cluster of points in a graph. 

Yet in many, if not most, problems in social network analysis, leading 

to a graphtheoretic formulation, this idea of interconnectedness is a 

basic feature of the 'tightness' of sets of points, underlying the 
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definition of a cluster. Putting up a similar argument for the connected¬ 

ness of clusters as subgraphs, as well as for their tightness as 

measured by their diameter, Alba introduced "sociometric cliques", as 

a more satisfactory subclass of n-cliques. They are n-cliques with 

diameter n and consequently connected. As the sociometric context is 

not essential, we suggest as a more appropriate name 'n-clan'. 

Definition 2. An n-clan M of a graph G is an n-elique of G such that 

for all pairs of points u, v of M the distance in M 

dH (u, v) _< n. (4) 

Consequently, for an n-clan H of G the following relations hold: 

(1) for all points u, v e M: 

dH (u', v) _< n ; (5) 

(2) for all points w e G - M there is a u E M for which: 

dG Ou,. w) > n. (6 ) 

The relations (5) and (6) imply that M is an n-cliq.ue, as from (1) 

and (5) we have 

dG ^u» v) - dM v) - n’ (7) 

whereas (6) ensures the maximality of M as an n-clique. 

Instead of the restriction of cliques to clans we might as well have 

looked immediately at clusters corresponding to subgraphs of diameter 

n. These we shall call "n-clubs". 

Definition 3. An n-club N of a graph G is a maximal subgraph of G of 

diameter n. 
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For all points u, v of an n-club N we have for the subgraph N of G 

djj (u, v) _< n. (8) 

Figure 2: N of diameter 2 

The maximality of N as an n-club of G implies that for all points 

w e G - N, there is a point u e N such that 

dN,w (U» W) ” "• 

This condition, however, is not sufficient for the maximality of N, 

as illustrated by the graph of Figure 2. The points on the cycle 

C^: {1, 2, 3, 4} form a subgraph of diameter 2. Neither point 5 nor 

point 6 can be added without enlarging the diameter of the resulting 

subgraph to 3. Yet N as a whole is a graph of diameter 2 which contains 

the C4. 
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3. Interrelationship of cliques, clubs and clans 

By definition n-clans are n-cliques of diameter n. But how are they 

related to n-clubs? According to Alba (1973) all n-clubs are n-clans, 

as formulated in his theorem 2.1, which, in our terminology states 

that a subgraph of G is an n-clan if and only if (iff) it is an n-club. 

This theorem is incorrect, as the "if'-part is deficient. 

This can be shown with the following proposition. 

Proposition 1. Every n-club N of a graph G is contained in.some 

n-clique I. of G. 

Proof: An n-club N of G'satisfies (8) and, as a subgraph also (1). 

Therefore, we have for all points u, v e N 

dQ (u, v) _< dN (u, v) _< n 

Hence N is contained in some n-clique L of G. However, N can be properlj 

contained in such an n-clique L. For instance, there may be a point 

w of L, not in N, such that for all points u e N we have 

dG (u, w) < n, 

whereas there is a point v e N such that 

For instance, in the example provided by Alba (1973), as given in 

Figure 1 here, the set {1, 2, 3, 4} is obviously a 2-club, which is 

not a 2-clique arid therefore not a 2-c.lan, as it is properly contained 

in the 2-clique {1, 2, 3, 4, 5). 

Proposition 2. Every n-clan M of G is an n-club of G. 

Proof: Let M be an n-clan of G. It therefore satisfies (5), (6) and (7). 

Now assume H to be contained in a larger -subgraph of diameter n formed 
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by Hti S, where 

of G. However, 

ScG-H: Sisa subset of points in the other points 

then we must have, for all u,veM,s,weS: 

dG *u» i d(( s (u, i n» 

dG ( s. w) 1 dH S ( s* w) - 

and, obviously, 

dG <u> v> I dH,s (u* v) i dM (U* V) - "• 

This violates (6) and contradicts the maximality of M as an n-clique of G 

Mu S is contained in some n-clique L of G. 

Consequently, there can be no such set S in G and M is a maximal subset 

of G with diameter n. That is, M is also an n-club of G. 

In our example of Figure 1, the only 2-clique, which is also a 2-clan and 

hence a 2-club is formed by the set of points {2, 3, 4, 5, 6}. 

An obvious corollary of proposition 2 is: 

Corollary 1. If an n-club N of G is contained in an n-clan H, than M = M. 

Our results can be summarily illustrated with the aid of Figure 1, where 
of 

we restrict ourselves to distance 2 diameter 2, (n = 2). 

a) 2-cllques of G. 

al. U, 2, 3, 4, 5}; 

a2. {2, 3, 4, 5, 6}. 

b) 2-clubs of G. 

bl. {1, 2, 3, 4} 

b2. U, 2, 3, 5) 

b3. (2, 3, 4, 5, 6}. 

c) 2-clans of G. 

cl. {2, 3, 4, 5, 6}. 
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The 2-clubs bl and b2 are not 2-clans. They are properly contained in 

the 2-clique a.l., which is not a 2-clan, as it has diameter 3. The 2-cliqu« 

a.2 is a 2-clan (cl) and hence also a 2-club (b3). 

4. The systems of cliques, clubs and clans of a graph 

From the foregoing discussion it will be clear that for any graph G we can 

distinguish: 

- the system of n-cliques of G: the class (G) = £^, the elements of whic) 

are indicated by the pointsets L of the different n-cliques L of G; 

- the system of n-clubs of G: the class ^^Tg) =-/^7 containing the point- 

sets N of the different n-clubs N of G; 

- the system of n-clans of G: the class-v^(G) containing the point- 

sets M of the different n-clans of G. 

In this paragraph we shall consider more closely the possible interrelation¬ 

ships of these classses i .^nd-^fof a graph G. 

Consider the symmetric difference of in andv-'^’f 

f 4^/s (i - (i 
n n n n n n 

containing only those n-cliques or n-clubs which are not common to both. 

Define _ ^ 

-K = (in 

which contains only n-clubs which are not n-clans, and 

l = i O (f 

the subclass of n-cliques, which are not n-clans. 

The foregoing results of propositions 1 and 2 can be collected in the 

following lemma. 

Lemma 1. for each n-club N there is an n-clique L e in such that 

H c I; (a) N is an n-clan (N iff for every v e G - N there is a 

u e N such that 

dg (u, v) >_n; 

(b) N is not an n-clan (N iff there is a v e G - N. such that for 
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all U E N 

dQ (u, v) n. 

According to lemma 1 every n-club N e-^^is either equal to an n-clique 

Lei , (N = L), and then an n-clan (N or N is properly contained 

in some n-clique L e £^) » (N cz L). The concept of n-clique (L e defines 

a clasi of clusters or subgraphs based on "close" reachability of points9 

through paths including points in G external to L. 

On the other hand n-clubs (J4 e./^) are based on the condition of "close" 

reachability of points, involving internal points of N only. Obviously, 

this latter, more stringent, condition leads to "smaller" clusters: 

n-clubs cannot be larger than n-cliques, as they are included in them. 

In fact, as we can see from the examples mentioned in this paper, an 

n-clique L can contain more than one n"dub N and, conversely, an n -club 

can be contained in more than one n-clique L. 

The n-clans (M e-^) belong to both £n andt^T they are n-cliques as well 

as n-clubs. As n-cldbs they share the property of connectedness with sufficient 

ly narrow diameter. As n-cliques they have the advantage of 'size' : they are 

as "large" as n-cliques. 

We therefore can subsume the interrelationship of these classes in the 

following three, mutually exclusive subclasses: 

al- i the class of n-clans as the intersection of the class of 
n n n 
n-cliques and the class of n-clubs; 

b) £ : the subclass of n-cliques which are not n-clans; 
n 

the subclass of n-clubs, which are properly contained in n-cliques. 
1 n 

For n .= 1 we trivially have £ a11 systems reducing to the 

system of cliques of G: the class of maximal complete subgraphs of G. 

A similar trivial reduction can be seen for the case of N = G. 

Excluding these trivial cases, we may note that, except for the nullgraph, 

and L are never empty. 
r n n 
The following three cases deserve some interest: 
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I. < - * 

u-cA~- * 
hi. i = * 

there are no n-clans; 

all n-clubs are n-clans; 

all n-cliques are n-clans. 

Case I. 4.. In this case t^^and are disjoint classes. Every N 

condition (b) of lemma 1 holds for every N We shall illustrate 

case for n = 2, (distances and diameter 2). Extensions to general n, 

necessary, are left to the reader. 

We can define for all N e^( = ^in this case) and for every v e G 

(t 4) the set 

this 

if 

- N 

d 
N ={usN;d (u, v)>2} 
v N,v 

(9) 

Note that Nv is never empty, as G - N never is, under the present 

assumptions. 

Consequently, for every VfG - N and for all corresponding u c N we have 

(N) (N) 
\1 (u) n Vx (v) = * . (10) 

Their 1-neighborhoods in N are disjoint in G. Obviously, v e G - N and 

u e Ny cannot be adjacent in G either, nor in any subgraph of G. Given 

(10) such pair of points u, v can therefore have 

dQ (u, v) = 2 

if and only if 

G-N G-N 
V1 (u) fl Vx (v) t (ID 

that is when their 1-neighborhoods in G - N are not disjoint in G. 

These considerations establish the validity of the -following proposition. 

Proposition 3 4 iff for all N eiZ^T* there is a point v >_ L - N, 

that for all u e N„ 

such 
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(G-N) (G-N) 
vx (u) n v1 (v) t * 

Figure 3: A graph G without 2-clans 

6 

In this case, as *^2 = if, there are no 2-clans, all 2-clubs N are 

properly contained in larger 2-cliques L. 

This situation is illustrated with the graph G of Figure 3, which has no 

2-clans as can be deduced from the following enumeration of its classes 

^^and l . 
2 n 

< L 
2 

star: {2,c 3, 4, 6} 

C5 : uT'2,-3, 4, 5} 

star: {1, 2, 5, 7} 

C5 : {1, 2, 3, 6, 7} 

star: {1, 4, 5, 8} 

C5 : {3, 4, 5, 6, 0} 

star: {3, 6, 7, 8} 

C5 : U, 5, 6, 7, 8} 

c. 

CL 

C 

Ci- 

c 

o 

U, 2, 3, 4, 5, 6j 

If 

U, 2, 3, 5, 6, 7} 

{1, 3, 4, 5, 6, 8} 

II 

{1, 3, 5, 6, 7, 8} 
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In thin example all 2-cliques contain 2-clubs. More than one 2-club, 

a star and a cycle C5, is contained in each 2-clique. 

Case II All clubs are clans: we have ̂ : C. L . 
n — n 

This case is there¬ 

fore equivalent Xo^ -^6^ All N ec-^^satisfy condition (a) of lemma 1. 
n n n 1 

For the case of diameter 2 ( n = 2) one can see easily that: 

=*^^Tff for every N Et^^and for all v e G - N, there is a u e N 

satisfying (a) 1-neighborhoods in G - N disjoint: 

(G-N) (G-N) 
(12) 

or, equivalenirly, 

(b) 1-neighborhoods in G disjoint: 

vt (u) n vx (v) i * (13) 

Figure 4. A graph G, all 2-clubs are 2-clans 
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An example for n = 2 is given in Figure 4, where the sets {s , {u^} 

and {v^} indicate points of degree 2, each adjacent solely to the 

points 1, 3 or, respectively 1, 2 or 2, 3. All the 2-clubs are 2-clans 

and therefore 2-cliques. They are: 

{1, 3, s. }, {1, 2, }, (2, 3, vk) and 

{sif 1, U^}, {u.., 2, vk>, {si, 3, vk> 

There are two 2-cliques, which are not 2-clans: L e ij. 

They are: U, 2, 3} and {s^ u^, vk) . Note that as subgraphs they are 

nullgraphs _i.e. totally disconnected. All their points are isolated. 

It should be noted, that these latter 2-cliques do not contain any 2-clubs, 

or, for that matter, any subgraph of G of diameter 2. This illustrates 

the more general situation where there can exist n-cliques L e fn, which 

contain no n-clubs N e*y^^but at most parts of N 

Case III, - j>. All n-cliques are n-clans. As immediately have 

s It is hard to characterize such graphs beyond the obvious 
n n n 
statement, that all n-cliques have diameter n. 

Figure 5: A graph G, all 2-cliques are 2-clans 

G : 

10 9 
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For n = 2 an example is given by Figure 5. 

In that graph all 2-clubs are 2-cliques and conversely. All three 

clustersystems coincide as fj 

The common elements of these systems are: 

- all the stars of degree 3: e.g. (1, 2, 3, 7} etc; 

- all the cycles C4 

- the two cycles 

: e^. {1, 2, 6, 7} etc; 

: {1, 2, 3, 4, 5} and {6,7, •10}. 

5. Conclusions and suggestions for further research 

We may conclude that the two classes of n-cliques fn and n-clubsi^of 

a graph G are classes of clusters which are in general but loosely inter¬ 

related and have a significance of their own. The latter, the n-clubs, 

are maximal subgraphs N of G with respect to internal reachability of 

points within distance n, i.e. independent of the connection of the points 

of N with other points in G : G - N. In that sense n-clubs are essentiall} 

local concepts: their reachability as diameter ri subgraphs is not effect®' 

by changes in the subgraph G - N and the connection of G - H with N. 

In short, N as a subgraph would have at most diameter ri in any other grapl 

The n-cliques L are global concepts in G in the sense that their reachali 

of points within distance n can involve points external to 1. Hence them 

reachability can be determined outside L in G - L: elimination of point 

from G - L, or lines in the subgraph C - L or connecting G - I and L -at 

effect the reachability of points in L. 

The n-clans M of G, when they exist, combine these local and global a.r 

as they are cliques as well as clubs. However, the class^jf of n-clar.t 

be empty for a graph G. 

Finally, n-clubs N are always contained in come n-clique h. In that sen ■ 

they are 'smaller' than n-cliques. Only n-clans, as n-clubs have t:h< 

of an n-clique. Moreover different n-clubs can be contained in the same 

n-clique and different n-cliques can contain the same n-clubs. 
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The interrelationship of the three classes £n»v^^and therefore can 

be manifold. One perspective.for further research is therefore to characterize 

graphs G according to the nature of that relationship. In the cases I* II 

and III, given in the last paragraph our characterization hardly proceeded 

beyond that provided by the definitions. 

Then the development of adequate (computer-) algorithms for the production 

of the systems of n-cliques L, n-clans M and n-clubs N of any graph G 

invites further research. The problem is satisfactorily solved for the 

detection of n-cliques. A well-known method is given by Auguston and 

Minker (1970). A reputedly faster algorithm than that referred to by them 

was recently published by Bron and Kerbosch (1973). 

Therefore, the problem of detecting the system of n-clans of a graph 

reduces to sorting out the n-cliques of diameter n from the n-cliques 

of that graph. (Alba, 1973). The development of an algorithm for the dectection 

of the system of n-clubs of a graph may well be more cumbersome. Our first 

pursory assessment of this problem suggests that it may be of the order of 

enumerating the subgraphs corresponding to all subsets of points within the 

n-cliques of a graph. 

Further research may also concern possible generalizations. One obvious 

generalization is that of (m, n)-clans (m > n) of a graph: n-cliques which 

are m-clubs. Another generalization extends these concepts to directed 

graphs, with the introduction of directed cliques, clubs and clans. 
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