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Abstract 

This paper reviews three traditional methods, namely the fixed effects model, the 

disaggregated data model, and the aggregated data model, for the analysis of experimental 

data where individuals are nested within clusters, and compares these methods with the 

multilevel (mixed effects) model. The comparison is made for continuous outcomes, and is 

based on the estimator of the treatment effect and its variance, since these usually are of main 

interest in experiments. When the results of the experiment have to be valid for a larger 

population of clusters, the clusters in the experiment have to represent a random sample from 

this population and the multilevel model is preferably used for the analysis of the data. The 

three traditional methods have the same treatment effect estimator as the multilevel model if 

cluster sizes do not vary and there are no covariates. The variance of this estimator, however, 

may be underestimated or overestimated by the fixed effects and disaggregated data models, 

resulting in an inflated type I or type II error rate for the test on treatment effect, respectively. 

The aggregated data model may be a good alternative to multilevel analysis if the cluster sizes 

do not vary and the model does not contain covariates. 
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1 Introduction 
Experiments are developed to compare different treatments in terms of outcome 

variables measuring the health or behaviour of individuals. In this paper we will focus on 

experiments where the data have a nested or hierarchical structure in which individuals are 

nested within clusters. For example, in the clinical trial analyzed by Hedeker, Gibbons, and 

Davis (1991) on the effect of different antipsychotics on the mental health, patients were 

nested within centers. In the trial by Bass, McWinney, and Dormer (1986) where a new 

approach for the detection and managing of hypertension was studied, patients were nested 

within family practices. In the study by Sommer et al. (1986) on the effect of vitamin A 

supplementation on childhood mortality in northern Sumatra, children were nested within 

villages, and in the smoking cessation intervention by Hedeker, McMahon, Jason, and Salina 

(1994) employees were nested within worksites. Outcomes of individuals within the same 

cluster are likely to be correlated, i.e. there will be intra-cluster correlation. 

The effect of an active treatment can be estimated with a regression model, in which 

the outcome variable is regressed on treatment condition and relevant covariates, or with an 

analysis of variance (ANOVA) model. In the literature, several types of regression models are 

being used for multilevel experimental data. Three traditional regression models are the fixed 

effects model, the disaggregated data model, and the aggregated data model. In the fixed 

effects model, clusters are treated as fixed and their differences are taken into account by 

dummy coding in the regression model. In the disaggregated data model individuals are the 

unit of analysis and their nesting within clusters, i.e. the dependency among the outcomes of 

individuals within a cluster, is ignored. The aggregated data model is based upon aggregation 

of data within the same treatment condition to the cluster level, and clusters are thus the unit 
of analysis. 

In the multilevel model (Goldstein, 1995; Hox, 1994; Kreft and De Leeuw, 1998; 

Snijders and Bosker, 1999) individuals are treated as the unit of analysis, but the dependency 

of outcomes of individuals nested within the same cluster is also taken into account. This 

model is also referred to as mixed effects regression, random coefficient model (Longford, 

1995) or hierarchical linear model (Bryk and Raudenbush, 1992), and assumes the clusters 

and individuals to represent random samples from corresponding populations. Under this 

assumption cluster and person effects must be treated as random effects in the regression 

model, while treatment condition and covariates may be included as fixed effects. 

Ideally, the aim of experiments in a hierarchically structured population should be to 

produce results which are not only valid for the clusters involved in the experiment, but also 

for a larger population of clusters. In that case the clusters involved in the experiment have to 

represent a random sample from a population of clusters, and multilevel analysis is the best 

method of analysis since it includes the clusters as random effects in the statistical model. 

There may be practical reasons for treating clusters as fixed, for instance when the number of 

clusters in the experiment is very small, for details see Senn (1998). In this paper, however, 

we will focus on the situation where the clusters involved in the experiment may be 

considered a random sample from a much larger population of clusters. 
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The multilevel model is more complex than the more traditional models, and 

consequently investigators may still want to use these traditional models, even if they want to 

generalize the results from their experiment to all clusters in the population. Therefore a 

comparison between the traditional models and the multilevel model for experiments in 

hierarchically structured populations is relevant. In this paper, the relationship between the 

four models will be given and it will be shown under which circumstances the traditional 

methods are acceptable, and when and how they may lead to poor results. This will be done 

both in terms of regression and ANOVA models. ANOVA is familiar to many researchers and 

works well when cluster sizes do not vary, but encounters more difficulties with varying 

cluster sizes. The comparison made in this paper is based on analytical expressions for the 

estimator of the treatment effect and its variance, since these are of main interest in 

experiments, and is done for models with continuous outcomes, two levels of nesting 

(individuals within clusters), and with randomization at either level. Clusters will be randomly 

allocated to the treatment conditions for randomization at the cluster level, and all individuals 

within each cluster receive the same treatment condition. For randomization at the individual 

level, half of the individuals within a cluster will be randomized to the treatment group while 

the others will be randomized to the control group. 

Part of the comparison has already been made by others, but has been published 

fragmentarily in various papers. In the present paper, these results will be presented 

systematically, and some gaps in knowledge will be filled up. From the literature it is known 
that: 

1. Multilevel analysis is equivalent to a mixed model ANOVA when cluster sizes do 

not vary (Raudenbush, 1993). 

2. The fixed effects model gives a smaller variance of the treatment effect estimator 

than the multilevel model (Senn, 1998; Gould, 1998; Jones, Teather, and Lewis, 1998) 

when randomization is done at the individual level and there is interaction between 

treatment and cluster. 

3. For individual level randomization and no interaction between treatment and 

cluster, the disaggregated data model overestimates the variance of the treatment effect 

(Parzen, Lipsitz, and Dear, 1998). A similar phenomenon has been shown to occur in 

longitudinal studies with repeated measurements nested within persons instead of 

individuals within clusters (Dunlop, 1994). 

4. The aggregated data model and the multilevel model lead to the same results if the 

design is balanced and randomization is done at the cluster level (Hopkins, 1982). 

5. The disaggregated data model underestimates the variance of the treatment effect 

(Hedeker et al, 1994; Longford, 1995) when randomization is done at the cluster 

level, especially when the number of individuals within clusters and/or the intra¬ 

cluster correlation is large (Barcikowski, 1981). Underestimation by the disaggregated 

data model may also occur in longitudinal studies (Dunlop, 1994). 

6. For observational studies with unbalanced designs and covariates, it has been shown 

that the disaggregated data model underestimates variances of regression coefficients 
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(Bryk and Raudenbush, 1992), and that the disaggregated and aggregated data model 

should not be used for the analysis of multilevel data (Aitkin and Longford, 1986). 

Again, we want to stress that in this paper multilevel models and more traditional 

models for experimental data with persons within clusters are presented. Multilevel models 

may also be used for observational or longitudinal studies. Tutorials on multilevel models for 

observational studies (Sullivan, Dukes, and Losina, 1999) and longitudinal studies (Burton, 

Gurrin, and Sly, 1998) have recently appeared. 

The remainder of this paper is as follows: in Section 2 an example data set of an 

experiment in a hierarchically structured population and two different designs for such 

experiments are given. In Section 3, the multilevel regression model is related to the mixed 

effects ANOVA model. The fixed effects model, the disaggregated data model and the 

aggregated data model are presented in Section 4 and related to their corresponding ANOVA 

models. In Section 5, the four models are used to analyze generated data sets and it is shown 

that these models lead to different results. This difference in results will be explained using 

analytical expressions in Section 6. In Sections 3 to 6 we assume balanced designs and no 

covariates, but in Section 7 these assumptions will be relaxed. In Section 8 some conclusions 

will be presented. The notation of Goldstein (1995) will be used throughout this paper. 

2 Designs and example data set 

In principle, randomization and implementation of the two treatments may be done at 

either level of the hierarchy. So two different designs may be distinguished: Design 1, where 

randomization is done at the individual level, and Design 2, where randomization is done at 

the cluster level. The latter is often referred to as cluster randomization. For non-varying 

cluster sizes we have a sample of «2 clusters and n, individuals per cluster. In Design 1, -n^ 

individuals per cluster are randomized to the control group and the others are randomized to 

the treatment group; assume n, to be even. In Design 2, -n2 clusters are allocated to each 

treatment; assume n2 to be even, and all individuals within the same cluster receive the same 

treatment. A graphical representation of these two designs is given in Figure 1 for four 

clusters. Data on both treatment conditions are available in each cluster for Design 1 and so 

the interaction between cluster and treatment condition can be estimated. This is not possible 

in Design 2, where data on only one treatment condition are available per cluster, i.e. the data 

on the other treatment condition are missing by design. So, individual level randomization is 

to be preferred to cluster level randomization if treatment by cluster interaction is to be 

evaluated. Furthermore, randomization at the individual level results in more efficient 

estimates of the treatment effect (Moerbeek, Van Breukelen, and Berger, 2000). 

Randomization at this level was done in, for example, the trial analyzed by Hedeker et al. 

(1991). In some experiments, however, randomization at the individual level is not possible 

and Design 2 will be the only alternative. For example, in the trial by Bass et al. (1986) 

randomization was done at the family practice level since it was recognized that the 

intervention would not function effectively if some patients in a practice were randomized to 
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Design I: Individual Level Randomization 
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individual 1 

individual n, 

individual 1 

individual n, 

individual 1 

individual n, 

individual 1 

individual n, 

77Z 
V// 

y//„ 
V// 

'///, 
77Z 

'///, 

individual 1 

individual n, 

individual 1 

individual /i, 

individual 1 

individual n, 

individual 1 

individual n. 

Data available 

No data available 

Figure 1. Graphical representation of Design 1 and Design 2. 

the treatment group and others not. In the study by Sommer et al. (1986), randomization was 

done at the village level since it was thought to be not acceptable to treat some children in a 

given village and others not. In the study by Hedeker et al. (1994) randomization at the 

employee level would not have been possible because of treatment group contamination. 

The results in this paper will be illustrated using a subset of data from the Television 

School and Family Smoking Prevention and Cessation Project (TVSFP) (Flay et al., 1988, 

1995). This study was designed to test effects of a school-based social-resistance curriculum 

and a television-based program in terms of tobacco use prevention and cessation. Schools in 

Los Angeles and San Diego were randomized to one of five treatment conditions: (a) a social- 

resistance classroom curriculum, (b) a media (television) intervention, (c) a combination of 

these two, (d) a health-information-based attention-control curriculum, (e) a no-treatment 

control group. The dependent variable we used in the analyses is the post-intervention 

Tobacco and Health Knowledge Scale (THKS) score, which was the number of items that a 

student correctly answered in a seven item questionnaire to assess student tobacco and health 

knowledge. The data have a nested structure with pupils nested within classes within schools, 

and varying numbers of pupils per class and classes per school. In this paper we will restrict 

ourselves to two levels of nesting (pupils within classes) and two treatment conditions (media 

(television) intervention group and no-treatment control group), and only data from Los 

Angeles schools are considered. There were seventy classes and 837 pupils who met these 

conditions. 
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To illustrate the results in Sections 3 to 6 data sets with non-varying numbers of pupils 

per class were generated, using the parameter estimates from the analysis of the real data set 

as input values for the simulation. In Section 7, varying class-sizes and the use of covariates 

will be addressed and the real data will be analyzed. 

3 Multilevel regression model and mixed effects ANOVA model 

3.1 Design 1: Randomization at the pupil level 

3.1.1 Multilevel regression model 

In multilevel modelling, regression equations are formulated for each level of the 

multilevel data structure, and are then combined into a single equation model. For 

randomization at the pupil level, the THKS score denoted yi; and treatment condition denoted 

x:] of pupil i in class j are related by the pupil level model: 

>v=iVPt/V<v (i) 

where etj is a random error term at the pupil level. In this paper = -1 for the control group 

and xt] = +1 for the media group. So, (i0/ is the mean of within class j and P1( is half the 

difference in outcome between the two treatments within class j. The intercept and slope may 

vary across classes, randomly and/or as a function of class level covariates. This section will 

be restricted to models without any covariate, leaving the inclusion of covariates to Section 7. 

Thus, P0j = (30 + u0j, and = Pi + uy, where P0 is the overall mean, p, is half the overall 

treatment effect, and u0J and Uy are random error terms representing the deviation of class j 

from the overall mean and overall treatment effect, respectively. Substituting Pq, and py into 

model (1) yields the single equation model: 

Ti, = Po+PiVlV'WV (2) 

The random effects u^, uy, and are assumed to be independently and normally distributed 

with zero mean and variances a^, and , respectively. To compare to ANOVA and for 

simplicity, a zero correlation between the random intercept and random slope is assumed in 

this paper (i.e. = 0). But even when * 0 this independence restriction does not affect 

estimation and testing of the parameters if there are -nx pupils per treatment per class and if 

in the multilevel model in (2) is centered around zero (Raudenbush, 1993). The inclusion of 

random effects at each level of the multilevel data structure leads to the decomposition of the 

variance of a pupils THKS score ytJ into variance and covariance components, and correlated 

THKS scores of two pupils i and V within the same class: 
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VarO^o^+o^+a*, for each i,j if 

a^o ‘aui+ae since *^ = -1 or +1 

CovO^.) = a^o +X^for each i*i', if aMl -0 

= 0^+0?, if xl/=xl,j and o.^, =0 
“uO 

-a2u0~ah if xv*xt>j 31111 a-f" =0- 

uu01 

au01 1 

(3) 

So, the Ordinary Least Squares (OLS) estimator of pi; which assumes independent THKS 

scores, should not be used, except if both aa0 and oul are equal to zero. The Generalized 

Least Squares (GLS) estimator of p, can be used if the variance and covariance components 

are known. In most cases, however, the variance components are unknown and Maximum 

Likelihood (ML, Hartley and Rao, 1967) or Restricted Maximum Likelihood (REML, 

Patterson and Thompson, 1971) estimation is required. See Searle, Casella and McCulloch 

(1992) for a description of these methods. It can be shown that in case of normally distributed 

outcomes ML and REML estimation correspond to Goldsteins Iterative Generalized Least 

Squares (IGLS, Goldstein, 1986) or Restricted Iterative Generalized Least Squares (RIGLS, 

Goldstein, 1989), respectively. Finally, the null hypothesis of no treatment effect may be 

tested using the test statistic F = t2 = Pj/VartP,), which, under the null hypothesis, has an F 

distribution with 1 and n2-l degrees of freedom (Bryk and Raudenbush, 1992) when RIGLS is 

used. For models with a fixed slope p, (i.e. without interaction between class and treatment, 
2 

oul = 0), this test statistic has an F distribution with 1 and nln2-n2-l degrees of freedom under 

the null hypothesis when RIGLS is used. The degrees of freedom are equal to those for the 

ANOVA models in the next section since RIGLS estimates are equal to REML estimates 

under the normal case (see Goldstein, 1989), and for balanced data the solutions of the REML 

equations are equal to ANOVA estimators, whether normality is assumed or not (see for more 

details Searle, Casella, and McCulloch, 1992, Sections 4.8 and 6.6f). Both IGLS and RIGLS 

are implemented in MLwiN (Goldstein et al, 1998), a computer program for multilevel 

analysis, which we used for the analysis of the data sets in this paper. Multilevel analysis may 

also be done using the programs HLM (Bryk, Raudenbush, and Congdon, 1996), MIXREG 

(Hedeker and Gibbons, 1996), STATA (Stata Corporation, 2001), or the SAS (SAS Institute, 
1996) module PROC MIXED. 

3.1.2 Mixed effects ANOVA model 

The multilevel model in (2) can also be expressed as a mixed effects ANOVA model. 

We have a factorial design where classes and treatment conditions are crossed for Design 1. 

There are two treatments, n2 classes, and 3.«, pupils per treatment in each class. The ANOVA 

model for pupil i within class j and treatment t is given by 
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^,=^+vv(tt“Vv (4) 

where (i is the grand mean, a, is the fixed effect associated with the f-th treatment, u( is the 

random effect associated with the /-th class, (an),, is the random interaction effect, and eiy, is 

the random error term at the pupil level. If / = 2 for the treatment group and t = 1 for the 

control group, the correspondence between the parameters in the mixed effects ANOVA 

model (4) and the parameters in the multilevel regression model (2) is given by 

H = Po> "Of 

(.au)j2 ~(au)ji ^ 

If ijt If (5) 

In principle there are two possibilities for the mixed effects ANOVA model: one without 

restrictions on the interaction terms, and one where S, (an),, = 0 for all j (Searle et al., 1992, 

section 4.3). This paper assumes the latter because this also applies to the multilevel model 

(since S, x^Uy = 0 for all j since there are only two treatment conditions which are coded -1 

and +1, and there are -n. pupils per treatment per class). As in the multilevel model in (2), 

the random terms n, (aw),,, and em are independently and normally distributed with zero mean 
y J 2 1 2 7 and variances a^, aul, and oe, respectively. Note that the classical mixed effects ANOVA 

model assumes that the class effect and the treatment-by-class interaction are independent, 

which is not necessarily the case for multilevel models, where ou01 may be unequal to zero. 

The variance components in ANOVA models are estimated by equating the Mean Squares 

(MS) to their expected values. In the lower half of Table 1, the expected Mean Squares 

E(MS'mixed) for the mixed effects factorial ANOVA model are given. The null hypothesis of no 

treatment effect can be tested using the test statistic F = MSirMmmt / MS’inu.raction, which has an F 

distribution with 1 and n2-l degrees of freedom under the null hypothesis. With no interaction 

between class and treatment (i.e. a^, = 0), the Sum of Squares ,S'SlnlCTaclKm is pooled with SSmo„ 

and the test statistic becomes F = / MSenm, which has an F distribution with 1 and 

ntn2-n2-\ degrees of freedom under the null hypothesis. As will be shown in the following 

example, the mixed effects ANOVA model gives the same results as the multilevel regression 

model. 

Example: Analyses of data set for Design 1 

In this paper we will restrict ourselves to those Los Angeles schools which were 

randomized to either the media or no-treatment intervention group. Analysis of the data with 
A A 2'~' 2 

two levels of nesting (pupils within classes) gave P0=2.34, p, = 0.12, a«o+<I»i =016> 
Sj = 1.72. Note that the variance components cannot be estimated separately as there was 

only one treatment condition per class, see Section 3.2. For illustrative purposes we generated 

data for n2 = 70 classes with «, = 12 pupils each, using the estimated regression coefficients 

and variance components from the real data set (with =0.1 and oul = 0.06). These data 

were analyzed using the multilevel model and with REML estimation and using ANOVA 

estimation. The results of the analyses are presented in Table 1, showing that both approaches 
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give the same estimated regression coefficients and variance components, and both do not 

reject the null hypothesis of no treatment effect at the five percent level. 

3.2 Design 2: Randomization at the class level 

3.2.1 Multilevel regression model 

The multilevel regression model for Design 2 is given by 

>V = Po+PiWV (6) 

where the random interaction term xt] uy in (2) is omitted since all pupils within the same class 

receive the same treatment. As a result and o^j cannot be estimated separately. Instead, 

their sum is estimated which will be coded as 0^ = 0^, + a^, in this paper. Furthermore Xj 

may be replaced by Xj since treatment condition does not vary within classes, and again 

treatment condition is coded as Xj = +\ for the treatment group and Xj = -l for the control 

Table 1 Results for Data Set for Design 1 

Results based on the multilevel model 

Parameter 

Fixed effects'. 

Intercept, po 

Treatment effect, p. 

Random effects'. 
2 

Random intercept, au0 
2 

Random slope, oBl 

Random error term, 

Estimate Standard Error 

2.304 0.058 

0.097 0.050 

0.096 

0.039 

1.634 

F’ = /2 p 

3.776 0.056 

Results based on the mixed effects ANOVA model 

Source df SS MS = SSI df E(MSmixJ F 

Treatment 1 

Class n 

Intera 

Error 

Total 

= 1 

= 69 

= 69 

nln2-2n2 = 700 

ntn2-l =839 

7.947 

192.148 

145.224 

1144.088 

1489.407 

7.947 

2.785 

2.105 

1.634 

1 2 
7nin2ao. 3.776 0.056 

0^ ^^12=0.096, e;, (MS, -MS' 1/12 = 0.039, cC MS -1.634 interaction error-' ’ e error 

(i =y = 2.304, (a2 -a,)/2 = (y 2 -y ,)/2 =0.097 

Mote. It is assumed that (au);, = 0. Without this restriction n, has to be replaced by ^nl in 

the E(MS) for treatment and interaction (Searle et al., 1992, p. 123-126). 
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group. The null hypothesis of no treatment effect is tested by the test statistic F = t2 = 

Pi/Var^j) which, under the null hypothesis, has an F distribution with 1 and n2-2 degrees of 

freedom (Bryk and Raudenbush, 1992) when RIGLS is used. The degrees of freedom are 

equal to those for the ANOVA model in the next section (see Section 2.3.1.1 for the 

explanation). Note that the degrees of freedom depend on the level of randomization and the 

presence of treatment by class interaction. 

3.2.2 Mixed effects ANOVA model 

For randomization at the class level, we have a mixed effects nested ANOVA model in 

which classes are nested within treatments: 

>V, = M+a,+VV (7) 

where p is the grand mean, a, is the fixed effect associated with the f-th treatment, and Uj, and 

etj are the random terms at the class and pupil level which are assumed to be independently 

and normally distributed with zero mean and variances and a2e, respectively. There are 

-n2 classes per treatment and n, pupils per class. If r = 2 for the treatment group and t = 1 for 

the control group, the correspondence between the mixed effects ANOVA model in (7) and 

the multilevel regression model in (6) is given by 

F= Po> 2 uj‘ ur eiS< ~ V W 

The expected Mean Squares for the ANOVA model in (7), E(MS'ml„d), are given in the 

lower half of Table 2. The test statistic for the null hypothesis of no treatment effect is given 

by F = / M5class which, under the null hypothesis, has an F distribution with 1 and 

n2-2 degrees of freedom. 

Example: Analyses of data set for Design 2 

A data set was also generated for randomization at the class level with n, = 12 and 

n2 = 70, using the estimated parameter values from the analysis of the real data as input for the 

generation process. The data were analyzed using the multilevel model with REML 

estimation and using ANOVA estimation. Again both methods produce the same estimated 

parameter values and test statistic and both reject the null hypothesis of no treatment effect at 

the five percent level, see Table 2 for the numerical results. Note that Design 1 shows a non¬ 

significant effect, while Design 2 shows a significant effect, which is a consequence of the 

fact that the generated effect for Design 2 is larger than the generated effect for Design 1. 
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Table 2 Results for Data Set for Design 2 

Results based on the multilevel model 

Parameter Estimate Standard Error F = t1 p 

Fixed effects'. 

Intercept, P0 2.256 

Treatment effect, (3, 0.166 

Random effects'. 

Random intercept, 0.212 

Random error term, c? 1.905 

0.073 

0.073 5.221 0.025 

Results based on the mixed effects ANOVA model 

Source df 

Treatment 1 

Classes within n2-l 

SS MS = SS/df E(MSmiKJ 

= 1 23.231 23.231 a2e+nA+\n2al 

= 68 302.599 4.450 

treatments 

Error 'h'h-'b =770 1466.541 1.905 o] 

Total «,n2-l =839 1792.371 

=_(A«c,«s MS^/n . 0.212, 6^ = MStlrm -1.905. 

p -y =2.256, (ob-a,)^ =0 2~y ,)/2 =0.166 

F 

5.221 

P__ 

0.025 

4 Traditional models 

Three more traditional regression models for the analysis of multilevel experimental 

data are the fixed effects model, the disaggregated data model and the aggregated data model. 

These models are presented in this section, together with their equivalent ANOVA models. 

4.1 Fixed effects regression model and fixed effects ANOVA model 

In contrast to the multilevel regression model, the fixed effects regression model 

includes class and interaction effects as fixed effects. For randomization at the pupil level 

(Design 1) we have 

Tlj-l 

P^VE (9) 
*1 hi 

where y:j is the THKS score, Xj denotes treatment condition, and e^ is the random error term at 

the pupil level with zero mean and variance o^. The classes may be represented by «2-l 

dummy variables dh and the n2-th class is the reference class. The dummy variables are coded 

such that dhJ = +1 if A =j, dhj = -1 if A = n2, and dhj = 0 otherwise, so that they are centered and 

dhj is orthogonal to and d^. The fixed effects ANOVA model is given by (4), where u. is 
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now regarded a fixed effect. The corresponding expected mean squares are equal to those for 

the mixed effects ANOVA model in Table 1 except that E(AfStreatmcm) = The test 

statistic for the null hypothesis of no treatment effect is calculated as F = 

fi|/Var(p1)= Af6'1[eamicnt / MScnot and has 1 and nln2-2n1 degrees of freedom under the null 

hypothesis. The terms may be deleted from model (9) if there is no interaction between 

treatment and class, and the S.S,interaaion is pooled with the SSmm. Then, the null hypothesis is 
*2 * 

tested using the statistic F = (^/Vai^fSj) = AftttcaInle„1 / MSemr which has an F distribution with 1 

and ndegrees of freedom under the null hypothesis. 

There are one reference class and -n^-X centered dummy variables for each treatment 

condition and no interaction terms in the fixed effect regression model in (9) for 

randomization at the class level. The fixed effects ANOVA model is given by (7), with ujt 

being a fixed effect. The corresponding expected mean squares are equal to those for the 

mixed effects ANOVA model in Table 2 except that = o^+i-H1«2aa- The test 

statistic for the null hypothesis is calculated as F = pj/VarfPj) = AFveamcnt / MScmt, which has 

1 and degrees of freedom under the null hypothesis. 

4.2 Disaggregated data model and one-way ANOVA model 

The disaggregated data model differs from the multilevel model in (2) in that it 

contains only one random error term: 

->V = IVPiW (10) 

where and are the THKS score and treatment condition, respectively, and r) is a random 

error term with zero mean and variance . Note that r„ = u0J + uy x„+ if the mixed effect 

model is correct but the disaggregated data model is assumed. In that case the variance of a 
2 2 2 2 

pupil’s THKS score is equal to Var(ytf) = or = + aul + ae, according to (3). However, the 

disaggregated data model assumes that the r^'s are independent, that is: Cov(y,j, y,y) = 0, for 

i * i\ and so the disaggregated data model ignores dependence of TE1KS scores of pupils 

within the same class and the OLS estimator can be used in this case. Like in the multilevel 

modelling approach, the test statistic for the test of no treatment effect is given by F = t2 = 
A 2 a 
pj/Vai^Pj), which follows an F distribution with 1 and nln2-2 degrees of freedom under the 

null hypothesis of no treatment effect. 

The ANOVA model corresponding to the disaggregated data model in (10) is given by 

(ii) 

where yu is the THKS score for the i-th pupil within the Mh treatment, p is the grand mean, a, 

is the fixed effect for the r-th treatment. The random error term at the pupil level rtl has 

variance a,2. There are -nfo pupils per treatment. The null hypothesis of no treatment effect 

is now tested using the test statistic F = MStreatnient / MScrT0T, which has an F distribution with 1 

and n1«2-2 degrees of freedom under the null hypothesis. Note that the disaggregated data 

model in (10) and the one-way ANOVA model in (11) both apply to Design 1 and Design 2 

since they ignore class effects altogether. 
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4.3 Aggregated data model 
The aggregated data model describes the data after aggregation (averaging) within the 

same treatment to the class level. This means that each cell in Figure 1 collapses to one 

average observation. Thus, if randomization is done at the pupil level, we have two correlated 

mean THKS scores per class, one for each treatment condition. Based upon (2) the regression 

models for the mean outcomes in the control and treatment group, denoted by x;c and y jt, are 

given by 

>>=IVIVvv> (n) 
y.jt= Po+Pl *u0j+ulj+ejr 

respectively. The treatment effect per class can be estimated by 

Pir- (13) 

2 2 
which has variance aul + ae/n,. For equal class sizes the overall treatment effect is then 

estimated as the mean of the \\y, which has variance (n, o^1 + o^)/nln2. To test the null 

hypothesis of no treatment effect the paired samples /-test with «2-l degrees of freedom under 

the null hypothesis can be used. 

If randomization is done at the class level, there is one mean THKS score per class, y „ 

which is related to treatment condition x,, by 

(14) 

where is the class mean of the random effect at the pupil level. The mean THKS scores per 

class are assumed to be independently distributed with variance 

2 

Var(y/)=Var(«/+e/) = a^+—, (15) 
"i 

and the OLS estimator can be used for the aggregated data model. The null hypothesis of no 

treatment effect can be tested with the independent samples t-test with «2-2 degrees of 

freedom under the null hypothesis. 

5 Analyses of artificial data sets 
The two data sets from Section 3 were analyzed with the multilevel model, the fixed 

effects model, the disaggregated data model, and the aggregated data model. REML 

estimation (using the computer program MLwiN, Goldstein el al, 1998) was used for the 

multilevel model, and OLS estimation (using SPSS, SPSS Inc, 1998) for all other models. 

The results for Design 1 are given in the upper part of Table 3. This table shows that 

all models produce the same estimated treatment effect p[, but that its standard error is 
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Table 3 Results of Multilevel and Traditional Analyses of Data Sets 

Model 

MSEfp,)) 

fp, (dJ) 
/?-value 

,2 

P, (SEfp,)) 

p-value 

Multilevel 

0.096 

0.039 

1.634 

0.097 (0.050) 

1.943 (69) 

0.056 

Fixed effects Disaggregated data Aggregated data 

Design 1: Randomization pupil level 

1.634 

0.097 (0.044) 

2.205 (700) 

0.028 

1.768 

0.097 (0.046) 

2.120 (838) 

0.034 

0.175 

0.097 (0.050) 

1.943 (69) 

0.056 

Design 2: Randomization class level 

0.212 

1.905 

0.166(0.073) 

2.285 (68) 

0.025 

1.905 

0.166 (0.048) 

3.492 (770) 

0.001 

2.111 

0.166(0.050) 

3.317(838) 

0.001 

0.371 

0.166 (0.073) 

2.284 (68) 

0.025 

underestimated by the disaggregated data model and the fixed effects model. As a result, the 

test statistics for these two models are somewhat larger than those for the multilevel model 

and the aggregated data model, and p-values for the fixed effects model and the disaggregated 

data model are too small. For these two models the null hypothesis of no treatment effect is 

rejected at the 5% level, which was not the case for the multilevel model and aggregated data 

model. Thus, the use of the fixed effect model and disaggregated data model leads to too 

liberal statistical tests on the treatment effect. Note that for the aggregated data model 

cannot be disentangled from since there are only two mean TFIKS scores within each 

class. Note also, however, that the aggregated data model yields the same results as the 

multilevel analysis. 
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The results of the analysis for Design 2 are given in the lower part of Table 3, showing 

that, again, the multilevel model and aggregated data model produce the same estimated 

treatment effect and standard error, whereas the latter is too small for the fixed effects model 

and the disaggregated data model. All models reject the null hypothesis of no treatment effect 

at the five percent level, but this is not necessarily the case for other data sets. Note that oj 

cannot be disentangled from ojj for the aggregated data model since there is only one mean 

THKS score per class. 

6 Comparison of the four methods based on analytical expressions 

In this section the results in the previous section will be explained by means of 

analytical expressions. The four estimation methods will be compared with each other 

assuming non-varying class sizes and no covariates. When control and treatment groups are 

coded by Xfj = -1 and = +1, the estimator of the treatment effect p, is given by 

Ew 

"l"2 

y..ry..c 

2 ’ 
(16) 

for each of the four models and for both levels of randomization. The means y c and y , are the 

mean THKS scores in the control and treatment groups, respectively. 

Table 4. VarfPj) for the four Regression Models 

Model 
Level of randomization Multilevel Fixedeffects Disaggregated data Aggregated data 

Pupil (interaction 
treatment by class) 

*2 -2 
niO.., +o. 

"l"2 nln2 n.n. 

2 2 2 
CLn+O. +0. 

12 

2 2 

n\Gul+ae 

«1«2 

Pupil (no interaction 
treatment by class) n\n2 ”l"2 

,2 
a. 

"l«2 "l”2 

Class 
”l”2 "l"2 

-2 2 2 
0. 0+0. 

"l"2 ”l"2 

2 2 
n,a..+n. 

Note. Control and treatment group are denoted by xtj = -1 and xtJ = +1, respectively. 
For class level randomization = 0„o + 0uI • 
For the aggregated data model the variance components cannot be estimated separately. 
Furthermore, for randomization at the pupil level the aggregated data model always 
assumes treatment by class interaction. 



66 

In Table 4 the Vai^fi,) for the four models are given for both class and pupil level 

randomization. The second column gives the Vai^pj) that is obtained when the multilevel 

model is applied to the data. This model uses random effects to represent the classes in the 

study so that the results from the study may be generalized to the whole population from 

which the classes were sampled. The fixed effects model, on the other hand, uses fixed effects 

to represent the classes. The VarCp,) obtained with this model is given in the third column 

and does not depend on the level of randomization or on the presence or absence of treatment 

by class interaction. Since the Varfll,) obtained with the fixed effects model may be 

underestimated compared with that obtained with the multilevel model, the fixed effects 

model should not be used as an alternative to the multilevel model at least if we want to 

consider the clusters in our study as a random sample from some population to which we want 

to generalize our results. The amount of underestimation obtained with the fixed effects model 

can be quantified with the ratio of the Vai^) obtained with both models which depends on 

n, and the intra-class correlation coefficient pc, which measures the amount of variance 

between classes, i.e. P,.=o^/(a^+c^). For example, for cluster level randomization (Design 2) 

this variance ratio is equal to 

variance ration 
P ^multilevel 

^(P1)fixed effects 

(17) 

and increases with both pc and Even for small intra-class correlation coefficient the amount 

of underestimation may be unacceptable. For example, if pc = 0.1 and nl = 30 the variance 

ratio is approximately equal to 4. So, the confidence interval for p, in the fixed effects model 

will be about twice as small as that obtained under the multilevel model, and the null 

hypothesis of no treatment effect will be rejected too often, leading to an inflation of the type I 

error rate. Thus the fixed effects model may result in incorrect conclusions, which may also 

be the case for other values of pc and n, and for pupil level randomization (Design 1). 

Consequently it should not be used for the analysis of multilevel data when generalizations 

have to be made to an underlying population of classes. 

The fourth column in Table 4 gives the Var(p,) that is obtained when the nesting of 

pupils within classes is ignored, thus when the disaggregated data model is used. For class 

level randomization the Vai^Pj) is underestimated. The amount of underestimation is given 

by the variance ratio 

variance ratio 5 
VSr(Pl)mulacvcl 

*2 *2 
w,o.+0. 

Var(P |)disaggregated rfatn ^r 

1 = "ip*+(i -pc) = («r Wc+1 • (18) 

which increases with both pc and For example, if pc = 0.05 and n, = 30, this ratio is equal 

to 2.45, and thus the confidence interval for p, obtained with the disaggregated data model is 

v,2.45=1.6 times as small as that obtained with the multilevel model, and such a high value is 

not acceptable. For randomization at the pupil level and no treatment by class interaction the 
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Vai^pj) is slightly overestimated with the disaggregated data model. If treatment by class 

interaction is present the Vai^P,) is under- or overestimated by the disaggregated data model, 

depending on the values of the variance components and the class size. Thus, the 

disaggregated data model should not be used as an alternative to the multilevel model. 

The last column of Table 4 gives the Vaifpj) that is obtained with the aggregated data 

model. For pupil level randomization and no treatment by cluster interaction the results for the 

aggregated data model (i.e. the paired samples /-test) are inefficient. In fact the aggregated 

data model assumes interaction between treatment and class since it calculates the test statistic 

as F = t2 = MSireatmem / ^interaction’ thus the Vai^pj) inefficiently but unbiasedly estimated 
and the degrees of freedom for the denominator for the test statistic are too low. For class 

level randomization and for pupil level randomization with treatment by cluster interaction 

this model yields the sameVai^pj) as the multilevel model. However, we do not in general 

recommend the aggregated data model to be used as an alternative to the multilevel model 

since in general class sizes vary which makes the use of the aggregated data model 

complicated as we will see in the next section. 

The conclusions in this section are presented schematically in Table 5, which also 

gives references where some of the conclusions have also been presented. 

Table 5. Comparison of Traditional Models to Multilevel Model with Respect to Estimated Var( Pj) 
and Degrees of Freedom of the Denominator for the F Distribution of the Test Statistic under the Null 
_Hypothesis, Assuming Equal Class Sizes and Classes Represent a Random Sample_ 

Analysis model 
Level of randomization Fixed effects Disaggregated data Aggregated data 

Pupil (interaction Underestimated Var( pj), Underestimated or 
treatment by class) Senn (1998), Gould (1998), overestimated Var( pt), 

depending on values 
variance components. 

Jones et al. (1998) 

incorrect df: nxn2-2n2 incorrect df: n,n-,-2 

Correctly estimated Var( Pj). 
Equal to paired samples /-test 

on class by treatment means, 
correct df: 1 

Pupil (no interaction Correctly estimated 

treatment by class) Var( pt). 

correct df: 

Overestimated Var( Pt), 

Parzen et a/. (1998) 

incorrect df: n,n7-2 

Inefficiently estimated 
Var( Pj) because equal to 
paired samples /-test on class 
by treatment means which 

assumes interaction, 
unnecessarily low df: n2-\ 

Class Underestimated Var( pj). Underestimated Var(pj), 
Hedeker et al. (1994), 

Longford (1995), 
Barcikowski (1981) 

Correctly estimated Var( px), 
Hopkins (1982). Equal to 
independent samples /-test on 

class means. 

incorrect df: nxn2-n2 incorrect df: nxn2-2 correct df: n-,-2 
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7 Generalization to more complex models 

The results in the previous section are limited to equal class sizes and models with no 

covariates. Equal class sizes may not always be feasible in practice, and in some cases 

covariates have to be included into the model. In this section, these restrictions will be relaxed 

one at a time. 

7.1 Varying class sizes 

In this section we will assume varying class sizes 7ily, but 50:50 randomization to the 

treatment and control group. So, there are pupils per treatment in class j for 

randomization at the pupil level, and classes per treatment for randomization at the class 

level. The fixed effects model and the disaggregated data model differ from the multilevel 

model with respect to Vai^P,) but not necessarily with respect to (3, itself. The results for the 

aggregated data model correspond to those of the multilevel model if weighting of class j is 

done by the factor h>r = (aV/i,,+cQ'7C for Design 2, where C=£\ _ (cyn.,+0^) and 

= (ae In yi +aul) /C for Design 1 and assuming treatment by class interaction, where 

C=5^, . However data aggregation with these weights is hardly a simple 

alternative to multilevel analysis if the variance components are unknown and have to be 

estimated. When oe/nly is large compared with oB or aBl, these weights are almost equal to 

wn = n^'Einy and weighting is done according to the number of pupils per class. On the other 

hand if oe/My is small these weights are almost equal to wm = Vn2 which implies that no 

weighting is done. The treatment effect estimator with weighting by wR will be bounded by 

the estimated treatment effects with weighting by wu and wm. It can be shown (Bloch and 

Moses, 1988) that an unweighted analysis is at most 12.5% less efficient than weighting by 

the proper weights h>r if oB s oB((min «lj)'i-2(max n,,)1) within each treatment condition for 

class level randomization, or oBl a ((min «ij)1-2(max n,,)"1) overall for randomization at the 

pupil level. A sufficient but not necessary condition is (max ny)/(min «l7) < 2 overall for pupil 

level randomization, or within each treatment condition for class level randomization. On the 

other hand, the weights wIt are generally preferred when treating classes as fixed (Lin, 1999). 

Example: Analysis of TVSFP data 

To compare the traditional models with the multilevel model in the case of varying 

class sizes the TVSFP data, with restriction to the Los Angeles pupils in the media or no¬ 

treatment control group, were analyzed. In the analyses two levels of nesting are taken into 

account: pupils within classes. Class sizes ranged from 1 till 27 with a mean of 12 pupils per 

class. All pupils within a class received the same treatment condition and the interaction 

between treatment condition and class cannot be estimated. Treatment condition was used as 

the only explanatory variable to model the outcome THKS, leaving the inclusion of the pre¬ 

treatment THKS to Section 7.2. 

The results of the analyses are presented in the upper half of Table 6. Compared with 
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the multilevel model, the fixed effects model and the disaggregated data model both produce 

too large estimates of the treatment effect and too small standard errors. As a result test 

statistics are too large and p-values are too small, which was also true for non-varying class 

sizes (see Section 6). Furthermore the estimated treatment effect of the multilevel model is 

bounded by those of the aggregated data models with weighting according to cluster size and 

without weighting. The latter even produces an estimated treatment effect below zero which 

in this case is a result of not taking class sizes into account. Weighting according to class size 

results in a standard error which is smaller than that for the multilevel model due to the fact 

that this type of weighting ignores intra class correlation. The estimated treatment effect of the 

fixed effects model corresponds to that of the disaggregated data model and the aggregated 

data model with weighting according to class size since the dummy variables of the fixed 

effects model are coded such that they are orthogonal to treatment Xj. 

Table 6. Results of multilevel and traditional analyses of TVSFP data 

Model 

Multilevel Fixed effects Disaggregated Aggregated data Aggregated 

data weighting by vvn data no 

Model without pre-test THKS 

o* 0.166 

1.718 1.708 

a2r - - 1.871 

P, (SECpj) )0.056 (0.070) 0.089 (0.045) 0.089 (0.047) 0.089 (0.067) 

t^df) 0.8011 (68) 1.964(767) 1.876(835) 1.331 (68) 

p-value 0.426 0.050 0.061 0.188 

weighting(wm) 

-0.041 (0.082) 

-0.498 (68) 

0.620 

Model with pre-test THKS 

0^ 0.107 

6* 1.573 
-2 
Cr 

P^SEOij^O.OSS (0.061) 

1.340(66) 

/>-value 0.168 

1.557 

1.674 

0.138(0.046) 0.106(0.045) 

2.966 (766) 2.369 (833) 

0.003 0.018 

0.106 (0.060) 

1.727 (67) 

0.082 

-0.018(0.079) 

-0.229 (67) 

0.819 
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7.2 Models with covariates 

A covariate c7 may be split into a component Cj which varies only between classes, 

and a component - c, which varies only within classes (Neuhaus and Kalbfleisch, 1998). 

These two components may then be added to the multilevel model (2), the fixed effects model 

(9), the disaggregated data model (10), and the aggregated data models (12) and (14). Then it 

can be shown that the Var(fi[) given in Table 6 have to be divided by (1-R2), where R2 is the 

squared multiple correlation between treatment condition and the other independent variables 

in the model, i.e. the two components of the covariate, and for the fixed effects model the 

dummy variables as well. 

For randomization at the class level (1-R2) is equal to (1 - r2 - ) for the multilevel 
P J 

model, the disaggregated data model, and the aggregated data model, and the comparison for 

these models made in the previous section will roughly hold. Since there is multicollinearity 

between treatment condition, the /!2-2 dummy variables, and the class component of the 

covariate Cj, the latter cannot be added to the fixed effects model. As the dummy variables 

(which have been centered) and the pupil component of the covariate ctJ - c; are orthogonal to 

the treatment effect, (1-R2) is equal to 1 for the fixed effects model. 

For randomization at the pupil level and assuming no treatment by class interaction, 

the (1-R2) equals (1 -r* c - ) for the multilevel model and the disaggregated data model, and 

the comparison for these two models as made in Section 5 will still hold. Since there is 

multicollinearity between the n2-l dummy variables, and the class component of the covariate 

Cj, the latter cannot be added to the fixed effects model. As the dummy variables are 

orthogonal to the treatment effect, (1-R2) is the same as for the multilevel model. The pupil 

level component c,; - Cj of the co variate is equal to zero in the aggregated data model, so the 

pupil level variance for the aggregated data model will be larger than for the other models, but 

also will the term (1-R2) be equal to zero for the aggregated data model. Assuming treatment 

by class interaction, however, the formula for the Var(jlj) in the presence of covariates will 

become more complex and are beyond the scope of this paper. 

Example: Analysis ofTVSFP data (continued) 

The pre-treatment THKS was split into a component which varies at the class level 

and one which varies at the pupil level, and both components were added to the model as 

covariates. As a result, the estimated variance components at both levels will decrease. The 

results of the analyses are given in the lower part of Table 6. Observed p-values were too low 

for the fixed effects model, the disaggregated data model and the aggregated data model with 

weighting according to class size, leading to an incorrect rejection of the null hypothesis. Note 

that the treatment effect estimate according to the fixed effects model differs from the 

estimate by the disaggregated data model although the dummy variables are orthogonal to the 

treatment factor. This is due to the fact that both dummy variables and treatment factor 

slightly correlate with the class level covariate. The estimated treatment effect of the 

disaggregated data model corresponds to that of the aggregated data model with weighting 

according to class size, whereas the estimated treatment effect for the multilevel model is 

bounded by those of the aggregated data model with and without weighting. 
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8 Discussion and conclusions 

In this study four regression models for the analysis of multilevel experimental data 

were compared: the multilevel model, the fixed effects model, the disaggregated data model, 

and the aggregated data model. To show the similarities with familiar ANOVA models, these 

models were also presented in terms of ANOVA notation. It was assumed that the conditions 

for random sampling of clusters from a larger population of clusters were satisfied, so that the 

experimental results were not only valid for the clusters involved in the study, but could also 

be generalized to the population of clusters. In that case the multilevel model should be used 

for the data analysis, but as this model is relatively new and rather complex, it was 

investigated whether the fixed effects model, the disaggregated data model, and the 

aggregated data model could be used as an alternative to the multilevel model. As criterion for 

the comparison the estimator of the treatment effect and its variance VarCpj) were used, 

since these are generally of main interest in such experimental evaluations of treatments. 

The results of the analyses of simulated and real data, and the analytical formulae for 

p, and Vai^pj) show that the use of the fixed effects model, and the disaggregated data 

model may result in incorrect estimates of the treatment effect and its standard error. 

Consequently these two models may yield conclusions on the treatment effect that differ from 

those obtained with the multilevel model. For varying cluster sizes data aggregation without 

weighting is less efficient than multilevel analysis. In order to calculate the correct weights for 

an aggregated data analysis the values of the variance components needs to be known. 

Furthermore, the use of the aggregated data model leads to a loss of information when the 

model contains covariates. Therefore, the multilevel model is the only model that may be used 

when the study results have to be generalized to the whole underlying population of clusters 

from which the clusters in the study are assumed to represent a random sample. The 

parameters in the multilevel model should be estimated using maximum likelihood or 

restricted maximum likelihood estimation, for instance with the computer programs 

mentioned in Section 3.1.1 which are especially designed for multilevel data. 
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