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Abstract 

We show how the external analysis of preferences can be done in a multilevel framework. 

Multilevel analysis accommodates for individual differences in preference formation, by 

postulating gradual variations in subjects' regression weights according to a normal 

distribution. The multilevel approach is compared to two other approaches that allow for 

subject heterogeneity in analyzing preferences. The first is mixture regression analysis, which 

departs from segments in which subjects have the same regression weights, which are distinct 

from the weights characterizing the other segments. The second approach is ordinary least 

squares regression analysis carried out for each subject separately. The multilevel approach is 

illustrated for data on 847 Dutch consumers regarding their preferences for 7 different meat 

products. To evaluate the adequacy of the multilevel approach for this data set, this technique 

is compared to the other approaches on its predictive power with respect to subjects’ 

preferences. 
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1. Introduction 

Preference analysis aims to explain preferences that consumers may have for different 

products in the market place, that patients may have for different treatments for a disease, that 

citizens may have for different political candidates in an election, or, in general, that subjects 

may have for a set of options they can choose from. Preferences are considered to influence 

actual behavior to a large extent. Establishing the relation between attributes or features of 

choice options and preferences for these options, has therefore been an important area of 

investigation, also from a methodological point of view (Green, Carmone & Smith, 1989; 

Hair, Anderson, Tatham & Black, 1998; Lilien & Rangaswamy, 1998). This approach to 

analyzing preferences is known as the external analysis of preferences (Green et ah, 1989; 

Schiffman, Reynolds & Young, 1981). 

In many empirical studies preferences are expressed on a rating scale. In this paper we will 

focus on the analysis of such preference ratings. Preference is commonly explained by 

applying some kind of regression to these preference ratings, where the predictor variables 

contain information on the objects for which the preferences are expressed. For this reason we 

will also refer to external preference analysis as preference regression. The information on 

objects may relate to the perception by subjects of the choice options along different 

dimensions (e.g. the left-right dimension and the degree of integrity in case politicians are the 

choice options). These dimensions may be derived from a previous analysis. For instance, one 

may perform multidimensional scaling for dissimilarity judgements obtained for the same 

objects, or perform factor analysis or correspondence analysis for attribute judgements 

gathered for the objects under study (Candel & Maris, 1997; Hauser & Koppelman, 1979; 

Steenkamp, Van Trijp & Ten Berge, 1994). The dimensions or factors resulting from these 

analyses are assumed to reflect subjects’ dimensions along which the objects are cognitively 

organized. These variables are considered to be useful in explaining subjects’ preferences for 

the objects under study. 

Information on the objects may also be provided by researchers, in that physical parameters 

of the objects are used as predictor variables. An example is a specification of the nutrients 

that food products are made up from (that is, the amount of each of relevant substances). Also 

attributes that explicitly have been presented to the respondents, may be used as predictor 

variables. The latter is typical for conjoint analysis. Profiles are constructed on the basis of a 

set of attributes. For example, a television set may be constructed from such attributes as 
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price, brand name, size of screen, and colour reproduction. For the profiles based on these 

attributes, respondents have to express a preference, which is explained from the utilities 

attached to the attributes of these profiles. The preference for a television set is thus explained 

from the utility of its price, the utility of its brand name, the utility of the size of the screen 

and possibly the utility of other aspects. Commonly the preference for a profile is modeled as 

the sum of the utilities for each of the attribute levels. Estimates of these utilities may be 

obtained through regression analysis (Hair et al., 1998; Vriens, 1995). 

Two straightforward methods have been used for analyzing the relation between preference 

and information on the objects’ attributes: (1) regression analysis performed across subjects 

and objects, or (2) regression analysis performed across objects for each subject separately. 

The first method neglects differences between subjects in preference formation. It is assumed 

that one subject is a replication of another subject. However, the relation between preference 

and object information often varies strongly between different subjects. For example, some 

people weigh quality heavily in choosing among food products, whereas others do not attach 

that much importance to this attribute (and possibly consider price a much more important 

aspect). Neglecting this heterogeneity of subjects may lead to regression weights that are 

misleading for an individual case, and therefore of little practical use. From a statistical point 

of view, generally this aggregate regression analysis will lead to underestimation of the 

standard errors of the (average) regression coefficients (Bryk & Raudenbush, 1992; Goldstein, 

1995). This in turn implies that in general the probability of type I errors will become too 

large. 

The second approach does take care of individual differences by performing a regression 

for each individual. This disaggregate regression analysis, employed by programs such as 

PREFMAP (Green et al., 1989; Schiffrnan et al., 1981), may involve some practical problems. 

In order to obtain precise estimates of the regression weights, many options have to be 

evaluated by respondents. Furthermore, reducing the number of options may have a 

detrimental effect upon the power of statistical tests. As an answer to this problem, mixture 

regression analysis (MRA) (Wedel, 1997; Wedel & DeSarbo, 1994) has been developed. This 

approach assumes that there are distinct classes of subjects, each of which are characterized 

by different values for the regression weights. Mixture regression analysis aims to find these 

homogeneous classes. Within these classes, which involve observations on multiple subjects, 

the regression weights are estimated. 
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A fourth approach that seems not yet to have been explored in this context, is random 

effects analysis or multilevel analysis (MLA) (Bryk & Raudenbush, 1992; Diggle, Liang & 

Zeger, 1995; Goldstein, 1995; Snijders & Bosker, 1999). This approach also respects 

differences between subjects, but assumes that the regression coefficients vary gradually 

according to a normal distribution. Multilevel modeling may be appropriate when there are no 

distinctive segments within the population of subjects investigated, or when -as will be 

explained in the sequel- there are distinct segments that can be captured by covariates that are 

measured on the subjects. 

In this paper we want to show how the multilevel approach can be used in analyzing 

preferences. Furthermore, we will compare this approach to both mixture regression analysis 

and the disaggregate regression analysis. The multilevel approach will be illustrated for 

empirical data on consumers’ preferences for meat products. To support the validity of the 

multilevel model, comparisons with alternative analysis techniques are made concerning the 

predictive power towards consumers’ preferences. 

2. Multilevel Analysis 

In the case of an external analysis of preferences one has information on at least two kinds of 

entities: subjects (i = 1,...^ and choice alternatives or objects (/' = More precisely, 

the data provide information on subject’s i preference for object j at moment In 

addition, we have object scores on a number of variables (r = Xijr These could be 

observations on a number of variables, but also scores derived from applying a technique such 

as principal components analysis to observations on these variables. The score of object j on 

variable r, XiJn may vary from one subject to the other. 

We first present a general expression from which the multilevel model, which relates YJtJ 

to the object information, will be developed: 

(1) T„(0 = P + U + EU) . \1/ ijK ij/ ' O ij ijk if 

As can be seen, the preference for object j is build up from the mean preference, /?<,, a joint 

effect of person i and object j on preference, Uip and a residual term, E/tJ, representing the 

deviation at moment tir Both U,j and E/t^ can be modeled further. 
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The joint effect of person i and object j, U,r may be decomposed into a person effect, IT,,,, 

expressing that some subjects have a higher preference for the objects under consideration 

than others. In addition to this effect, we assume each object to have a specific effect upon 

preference through it’s score on a number of variables, Xijr. It is assumed that the higher the 

score of an object on a particular variable becomes, the higher (or lower) the subject’s 

preference will be. The strength of the relation between the score on variable r and preference 

is represented by a weight ftr. There is, however, also some individual variation allowed for, in 

that the Pr coefficients are augmented by a subject dependent deviation lf„. The above leads to 

the following model for U,j. 

R 

(2) U = U‘ + (P + U') . ij Oi p-' ijrKrr ri/ 

This expression shows that next to a main effect of the subject, there also is an 

interaction between subjects and objects. The effect of objects may differ across subjects, due 

to the object scores, XiJr, differing across subjects or due to the regression weights, [/*„-, being 

subject dependent. Substituting Equation 2 into Equation 1, shows that the model can be 

written as a multilevel model with varying coefficients for the intercept as well as varying 

regression coefficients for the predictor variables: 

R 

(3) T (f ) = (P„ + U’) + TX (li +t/’)+ E (t) . yv y/ vrQ o,/ yrvrr ri' ijy ijJ 

In Equation 3 only and Xijr are known quantities. The remaining quantities are 

parameters, that need to be estimated from the data. Among the parameters, we have Pr ‘s 

representing effects of the object variables, and the l/,,‘’s representing individual deviations in 

these effects. In multilevel analysis these deviations can be modeled further as consisting of 

nonsystematic and systematic parts. Usually, the nonsystematic parts are assumed to be 

multivariate normally distributed. The systematic part can be modeled as a linear combination 

of subject dependent covariates. Let Zh denote the score of subject i on covariate k = 1,..., K. 

Let U0i and Uri denote the random (nonsystematic) parts of the regression coefficients. We can 

refine the parameters and £/*„ from Equation 3 as: 

^ K 

K = E P„A, + , and f/t = E P A + [/. . 
0 k^l °* k‘ 0l n k=\ kl n 

(4) 
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In random effects modeling, commonly the random parts U0l and Un are assumed to be 

multivariate normally distributed. Modeling the regression weights in terms of subject 

dependent covariates is important as often one is interested in explaining individual 

differences in preference formation. An illustrative example is the market researcher who 

wants to know which type of household, as characterized by a number of variables like 

income, number of children or family life cycle, strongly weighs health in preferences as 

regards different meal types. 

The model formulated in Equation 3 also applies to object variables of a nonmetric scale 

level. In this case one can translate the object information into dummy variables, which then 

take the place of Xijr. This usually will be the case for the analysis of data resulting from 

conjoint analysis. In a conjoint analysis the object profiles often are constructed from nominal 

or ordinal variables (Hair et al., 1998). Multilevel analysis allows for individual differences in 

that the weights of the dummy variables, which represent the utilities of the attributes, are 

randomly distributed according to a normal distribution. 

To elaborate upon in Equation 3, this parameter represents the deviation of the 

observed preference score from the predicted preference score on moment t,r Commonly, 

Ej/tij) is considered to be distributed independently across time, according to a normal 

distribution with constant variance. When preference measurements are taken closely together 

in time, dependencies in this residual term may occur. In a preference task, psychological 

processes may be involved that fluctuate but also cohere across time. This may cause a 

dependency between the preference scores of one subject, which may weaken as their 

separation in time increases. Well-known options to model such dependencies, are the first- 

order autoregressive process and the first-order moving average process. The first-order 

autoregressive process, AR(1) for short, assumes that the value of still depends by a 

factor (ft on the value at k periods before ty. According to this process, the (auto)correlation of 

Ej(t,j) for two moments that are k periods apart is equal Xo <ft Ai (p ranges from -1 to 1, this 

implies a gradual extinction of the dependency between residual terms across time. The first- 

order moving average process, abbreviated as MA(1), assumes that the value of E^t,) depends 

to some extent on its value at the period before tip but only on this value. The value of E^t^ is 

a weighted average of its value at the period before r,y and its increment at time t,j. In the case 

of MA(1) the (auto)correlation for two values that are separated by at least 2 periods equals 0. 

Both AR(1) and MA(1) assume that the correlation between the residual terms depends only 



on the time span, and also that the residual scores have a constant mean and variance across 

time. These properties define these processes as stationary processes. Some multilevel 

programs (e.g. Hedeker & Gibbons, 1996) allow for testing such autocorrelated errors. 

The residual term, Ej(t,j), also may capture trend effects of time. This would imply that 

subjects either begin to like the objects more as they progress in judging these objects (linear 

trend), or maybe there is an optimum position in the middle of the task at which the 

preference is highest (curvilinear trend). Note that such trends may be important for aptitude 

or intelligence tests. For these tasks there may be an increase in the test score as a result of 

learning over time, or a curvilinear relation between time and the test score due to the test 

person becoming tired or satiated. In the context of preferences we consider such trends less 

likely. Modeling the residual term further as a function of time by a polynomial (cf. Snijders, 

1996; Van der Leeden, 1998) thus will not be necessary. When different object orders are 

used, according to a latin square design for example (Maxwell & Delaney, 1990), the 

empirical significance of these trend effects can be investigated. 

Equation 3 implies that the more of a particular attribute an object has, the higher (or 

lower) the preference for this object becomes. The random effects model in Equation 3 

generalizes the vector model of preference formation (Green et al., 1989), in that the strength 

of the relation between preference and the score on the object variable may vary from one 

subject to the other. The model resembles the Wandering Vector Model (Carroll, 1980; 

DeSoete & Carroll, 1983). Similar to the Wandering Vector Model, the model in Equation 3 

assumes (at least in the absence of systematic variation in the regression weights) that the 

regression weights of the object scores are normally distributed. Unlike the Wandering Vector 

Model the model in Equation 3 also allows for stochastic variation in the intercept. This 

allows for differences between subjects in their preferences for the object set as a whole, 

which cannot be captured by the object scores XiJr. 

The multilevel model in Equation 3 can be easily extended by relating preference to the 

object information according to a polynomial of degree n. A model of degree 2 has some 

special interest. In this case the multilevel model can be expressed as: 

(5) Y{t) 
u v (P„ + to + (P + W) + Ex2(y + V) vr0 Or ijrKrr rr f ijrK * r ri' 

E it.) 
tr r 

This can be considered a stochastic extension of the ideal point model (Green et al., 1989). In 
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the ideal point model, for each variable there is an optimum position, called the ideal point. 

The more the object is removed from this ideal point the smaller the preference for this object 

becomes. It is also possible to have an anti-ideal, which is a point of minimal preference. The 

more an object is removed from this anti-ideal, the larger the preference becomes. For the 

model in Equation 5, the optimum position for subject; on variable r is given by: 

(Pr+tO 
(6) - , ■ 

2(y +r) v i r n/ 

The sign of the second derivative of the preference function in Equation 5, corresponding to 

the acceleration, indicates whether the optimum is an ideal or an anti-ideal. The score on 

variable r in Equation 6 is an ideal when (Yr+^rl) < 0, and is an anti-ideal when 

(y +K*) > 0. 

In multilevel modeling the nonsystematic parts of the regression weights in Equation 5 are 

assumed to be normally distributed. In case there is no systematic variation, this implies that 

If0i, If,, and V"n are normally distributed. Furthermore, whenever the regression coefficient 

for the linear term, (f„, is normally distributed, and there is no random variation in the 

regression coefficient for the quadratic term, that is, V"ri = 0, it follows from Equation 6 that 

the multilevel model specifies a normally distributed ideal point along each variable r. 

Several stochastic ideal point models have been proposed in the literature (e.g. DeSoete, 

Carroll & DeSarbo, 1986; Zinnes & MacKay, 1992) that resemble the model in Equation 5. 

These define preference as a decreasing function of the distance between ideal point and 

object, assuming a normally distributed ideal point. When translating these models to a model 

for preference ratings, starting from given object scores, we obtain a variant of the random 

effects model as presented in Equation 5. More precisely, it can be shown that a non-normally 

distributed intercept (If 0I) results, normally distributed regression coefficients for the linear 

terms (lf„) and nonrandom and identical regression parameters for the quadratic terms (yr = y 

and F",, = 0). The reader is referred to the appendix for details. Since in multilevel analysis, 

all random coefficients are assumed to be normally distributed, the model in Equation 5 

(assuming there are no systematic parts in the coefficients [/■(,* U"ri and fri ) can be 

considered only an approximation of a distance model with a normally distributed ideal. On 

the other hand, the multilevel model as presented in Equation 5, specifies a curvilinear 
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relation between object variables and preference, and this relation can vary randomly across 

subjects. As such this model may be tested for empirical significance. 

Multilevel modeling provides estimates of the variances and covariances of the random 

regression coefficients. The variances can be tested for statistical significance, which indicates 

whether intersubjective variation is present. In addition, it is possible to estimate for each 

subject the individual regression parameters through empirical Bayes estimation. For speical 

variants of the multilevel model, Bayes estimates have been shown to minimize the expected 

mean squared error (Bryk & Raudenbush, 1992; Snijders, 1999). Although biased, Bayes 

estimates are superior because of their low variance. Empirical Bayes estimates, as obtained in 

multilevel analysis, can be considered approximations of these Bayes estimates (Carlin & 

Louis, 2000). For large samples one may expect empirical Bayes estimates also to minimize 

the mean squared error, so that the resulting mean squared error will be lower than the mean 

squared error of ordinary least squares estimates, as obtained in separate preference regressions 

for each individual. This in turn, may lead one to expect that also better predictions concerning 

the dependent variable can be obtained through empirical Bayes estimates. Indeed Bryk and 

Raudenbush (1992) illustrate the better predictive performance of the empirical Bayes 

estimates in an empirical study on the growth of children’s vocabulary size. In the present 

application we examine whether multilevel analysis yields better predictions of subjects’ 

preferences than disaggregate regression analysis does. In the empirical part of the paper we 

will address this issue. 

In the next section, we consider an alternative approach to preference regression, known as 

mixture regression analysis. 

3. Mixture Regression Analysis 

An alternative approach to incorporating subject heterogeneity in preference regression has 

received a lot of attention in the domain of marketing. In this area many techniques have been 

developed to cluster relatively homogeneous entities such as customers or companies into 

segments. Identification of such segments is assumed to be useful in devising effective 

marketing strategies. In the domain of preference regression, a technique has been developed 

that clusters subjects into segments that have similar weights in the relation between object 

preference and the scores of these objects on a number of variables. This technique is known 
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as mixture regression analysis (Wedel & DeSarbo, 1994; Wedel & Kamakura, 1997), 

Formally, we can define mixture regression as follows. Let the homogeneous clusters or 

segments be denoted by s (=1,...,5), let the set of persons in cluster 5 be denoted by Gs, and let 

the prior probability of subject i belonging to segment 5, be denoted by tt. Furthermore, let the 

density of score Y/lJ for a subject belonging to segment 5 be denoted by g('Y,!(tlf)\i e GJ. The 

density of the observed scores for subject i on M objects given a vector (p of model parameters, 

can now be defined as: 

(7) 

In the case of preference regression for preference ratings, g(Ylj(tij)\i e GJ is commonly defined 

by the normal density. So the density for all preference scores of a subject is a mixture of 

normal densities, with as mixing weights the prior probabilities of belonging to each of the 

segments. For a subject belonging to segment s, we thus have for the subject’s score on the 

preference variable at /;J: 

R 

(8) 

where E^/tJ is normally distributed within each segment s. This expression can be considered 

the mixture regression analogue of the expression for the random effects model as given in 

Equation 3. Notice that within each segment, there is no variability allowed for in the 

regression coefficients; the regression weights are fixed. There is, however, for each subject 

and object combination some variability which is captured by a normally distributed error 

term. Note that an extension of Equation 8 can be made, similar to the extension made in 

multilevel analysis, by adding squared object scores to the model (cf. Equation 5). This would 

constitute an ideal point extension of the mixture regression model. 

Next to the prior probability, 7TS, also for each subject i the posterior probability of belonging 

to segment s, kVj, can be calculated. Applying Bayes’ theorem, we have 

ng(K(r) | / e G) 
-/ = *_ 

is S M 

E\ng(W | re G) 

(9) 
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The posterior probabilities can be used to assign subjects to a segment (namely to the segment 

for which the posterior probability is largest) and thus to the corresponding set of regression 

weights. These weights could be used in predicting subject’s preferences. This approach seems 

to be appropriate whenever subjects have posterior probabilities that clearly favor one 

segment. In the case of more mixed results, one would like to consider the posterior 

probabilities for all segments in predicting subjects’ preferences. In the latter case one could 

predict a subject’s preferences by weighting the preferences predicted for each segment by the 

subject’s posterior probability of belonging to this segment. 

Mixture regression analysis (MRA) and multilevel analysis (MLA) make different 

assumptions regarding the nature of heterogeneity in subjects’ regression weights. MLA starts 

from gradual variations in subjects’ regression weights according to a normal distribution. 

MRA on the other hand assumes segments in which subjects have regression weights distinct 

from regression weights characterizing the subjects in other segments, and there is no variation 

within each of the segments. Note that the covariates in a multilevel analysis (see Equation 4) 

may be able of capturing some of the abrupt changes in the regression weights as they are 

modeled in mixture regression analysis. This however critically depends on the availability of 

covariates that indeed capture these differences in the regression weights. To the extent that the 

assumptions of one or the other technique are satisfied more, this technique will give a more 

adequate analysis of subjects’ preferences. The validity of these techniques is an empirical 

issue. There are also developments combining both techniques (see Verbeke & Lesaffre, 

1996). This would be a viable alternative when abrupt changes in subjects’ regression 

coefficients are present and on top of that the regression coefficients change gradually 

according to a normal distribution. By comparing MRA and MLA for a real data set, we aim to 

evaluate the validity of each of these models and also want to obtain insight into the 

fruitfulness of employing a combined technique as proposed by Verbeke and Lesaffre (1996). 

4. Empirical Illustration 

4.1. Data set and procedure 

The data concern judgments as given by 847 consumers for seven different kinds of meat 

products. The data were gathered in 1997 by a market research firm among members of a 
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Dutch consumer panel. The respondents are mainly responsible for meat purchases in their 

household, and are supposed to be representative of the target group in the Dutch population. 

The study was carried out to obtain insights into the cognitive dimensions underlying 

consumers’ preferences for meat (Schifferstein, Candel & Van Trijp, 1998). 

Seven meat products were included in the study: pork, beef, chicken, veal, lamb, minced 

meat and fish. These products were evaluated by the respondents on a set of attributes, which 

were assumed to reflect the major perceptions that consumers have regarding meat products. 

The attributes were selected on the basis of an extensive study of the literature (Steenkamp & 

Van Trijp, 1998) as well as qualitative interviews with consumers. Table 1 displays an 

overview of the attributes that were selected for this study. The attributes were scored on 5- 

point rating scales with labeled end points. Product preference was measured on three 

evaluative 5-point rating scales. The end poles were labeled with respectively “pleasant - 

unpleasant”, “attractive - unattractive” and “good - bad”. Overall preference was measured for 

each of the seven products by taking for each subject the mean score on these three evaluative 

scales. 

Yeah-saying tendencies were accommodated for by changing the end labels of both the 

attribute and preference scales randomly. To accommodate for order effects, different versions 

of the questionnaire were used. These versions differed in the order of the products and the 

order of the attributes. The product orders were constmcted according to a latin square design 

(Maxwell & Delaney, 1990). There were two orders for the attributes: a basic order and its 

reverse. 

4.2. Uncovering perceptual dimensions for meat 

The perceptual dimensions assumed to underlie the preferences for meat were uncovered by 

principal components analysis (PCA) of the attribute judgements. The attribute judgements as 

given by each of the subjects for the seven meat products under study were first organized into 

a two-way matrix: the subject-product combinations were located in the rows and the attributes 

in the columns. As shown by Kiers (1991), PCA on such a matrix in fact generalizes the 

analysis techniques for three-mode data known as PARAFAC and TUCKALS-3. Since we 

encountered no interpretationa! difficulties with this more complex analysis, the above 

approach was adapted. 



Table 1. Correlations between product attributes and VARIMAX rotated components 

(correlations larger than 0.4 are printed bold). 
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Principal component 

Special 

Attribute 

Tender 

Good quality 

Tastes good 

Goes with few dishes 

Easily available 

Simple preparation 

Suitable for special 

occasions 

Cheap 

Lean 

Healthy 

A premium product 

Suitable for guests 

No hormones 

Produced 

animal friendly 

Produced environ¬ 

mentally friendly 

No additives 

Produced hygienically 

Sensory Con- 

Quality venience 

.7877 .2130 

.6623 .2464 

.5760 .5080 

.2190 .7835 

.0968 .7365 

.3717 .6157 

.3173 .1188 

.1491 .4373 

.4030 -.0559 

.2844 .1833 

.1202 -.3074 

.3427 .2175 

.0539 -.0257 

-.0704 -.0739 

.1011 -.0001 

.3758 -.0453 

.2873 .0999 

Natural 

Production 

.0408 .0716 

.2851 .2010 

.3170 .0431 

.2112 -.1080 

-.2108 -.0393 

-.2633 -.0167 

.7061 -.0232 

-.6733 -.0856 

.5770 .1514 

.5336 .4583 

.5140 .0607 

.4582 .0137 

.0262 .8200 

.0673 .7998 

.0900 .6029 

.1589 .5378 

.1628 .3347 

In applying PCA a four-component solution was chosen, based on the scree-plot criterion as 

well as the interpretability of the resulting components (Hair et ah, 1998). After VARIMAX 

rotation, these components explained 16.3%, 14.7%, 14.2% and 13.5% of the variance 

respectively, and could be interpreted as sensory quality, convenience in use, special and 
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natural production. The interpretation is based on the attributes that correlate strongly with the 

components (see Table 1 for an overview). The resulting components, for which we obtain 

individual-specific product scores, will act as predictor variables in the preference regression. 

The component scores are standardized across products and subjects, implying that for each 

component the score zero can be interpreted as the “average” product. 

4.3. Mixture regression analysis 

To explain consumer preference from products’ scores on the components uncovered by PCA, 

a mixture regression analysis was performed assuming a mixture of normal distributions. The 

program GLIMMIX version 1.0 (Wedel, 1997) was employed, in which model estimates are 

obtained according to an EM algorithm. To accommodate for local optima, for each number of 

segments multiple analyses with random starting values were done. Each time the smallest 

value for the information criteria AIC, CAIC and BIC and the corresponding solution were 

stored (Wedel & DeSarbo, 1994). These information criteria are based on the likelihood 

function and penalize for the number of model parameters. The latter property allows for a 

comparison between nonnested models on the basis of these statistics. 

We compared a mixture regression model with only linear terms to a model also having a 

quadratic term: the squared product scores summated across the four components. This led to a 

significant improvement of the log likelihood (e.g. for four segments: Ax2 = 63.94, Adf=1 , p < 

0.001) as well as to a decrease in the information indices (e.g. for four segments: ACAIC = 

29.62). Allowing the squared scores to have different coefficients for each of the dimensions, 

did not result in abetter fit (e.g. for four segments we have: Ax2= 19.24, Adf= 12 , p >0.05, and 

ACAIC = -100.16). Therefore the results for the analysis including a single regression 

coefficient for the quadratic term, will be reported upon. 

Examining the values of AIC, CAIC and BIC for one up to six segments, BIC and CAIC 

achieve their minimum for a solution with four segments. Within the range of one to six 

segments, AIC does obtain a minimum value. Since CAIC and BIC have been shown to be 

superior for determining the number of segments (Wedel & Kamakura, 1997), we pick the 

four-segment solution. To examine the separation of these segments the entropy measure Es 

(Wedel & Kamakura, 1997) is calculated. This turns out to be 0.48, indicating that the 
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segments are only weakly separated.1 

Interpreting the regression coefficients of the dimensions is a difficult issue. Because of 

the quadratic term in the preference model, the sensitivity of preference to changes in the 

dimensions, as expressed by the derivative of the preference function with respect to the 

dimension under consideration, depends on the location on the dimension. The sensitivity or 

“importance” of a dimension thus also depends on the score on that dimension. The regression 

coefficients for the dimensions reflect the importance of the dimension on the zero location, 

which, because the dimensions are standardized across subjects and products, can be 

considered the location of the “average” product. In comparing the importances of the 

dimensions, we will consider this average product. 

Inspecting the regression coefficients in Table 2 indicates that the four segments can be 

characterized as follows. The modal segment, comprising of 34% of the respondents, finds 

sensory quality and convenience most important in evaluating the products. The next largest 

segment (26% of the respondents) especially values sensory quality and the special dimension, 

and can be characterized as the exclusivity segment. The smallest segment (18%) finds 

convenience most important and thus can be interpreted as a convenience segment. A segment 

comprising 22% of the respondents is similar to the modal segment. However, for this segment 

the sum of the squared object scores has a positive regression weight (although only 

marginally significant), indicating there is an anti-ideal point along all dimensions. It can be 

verified that this anti-ideal is below the range of product scores along these dimensions. 

Consequently, this segment can be characterized as having an increasing and positively 

accelerated preference curve along each dimension for the range of products under 

consideration. The other segments on the other hand, are characterized by a negative 

regression coefficient for the quadratic term, implying an ideal point, which can be shown to 

1 Let pjs be the estimated posterior probability of subject i (=\,...,N) belonging to segment s 
(=1,....,.S). The entropy measure Es is now defined as (Wedel & Kamakura, 1997): 

E 
v x n. In p, 
\ A \ ' * IS r IS 

N\nS 

which takes on values between 0 and 1. The more each subject has a posterior probability 
favoring one segment, the more f.j approaches 1. 
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lie above the products’ scores along each of the dimensions. This means that the other 

segments are characterized by increasing but negatively accelerated preference curves over the 

domain of product scores. 

Table 2. Overview of regression weights (and t-values) for the 4-segment solution of a mixture 

regression analysis. 

Segment 1 Segment 2 Segment 3 Segment 4 

(34%) (26%) (22%) (18%) 

Dimension 

Sensory quality 

Convenience 

Special 

Natural 

Sum of squared 

dimensions 

0.475 (16.90) 

0.329 (12.31) 

0.259 (11.08) 

0.178 (6.54) 

-0.034 (-4.00) 

0.409 (14.17) 

0.220 (7.72) 

0.345 (14.57) 

0.129 (4.49) 

-0.017 (-1.96) 

0.444 (12.31) 

0.275 (7.88) 

0.212 (6.95) 

0.169 (4.93) 

0.019 (1.69) 

0.406 (11.58) 

0.463 (13.80) 

0.184 (6.28) 

0.292 (8.89) 

-0.033 (-3.05) 

4.4. Multilevel analysis 

To perform the external analysis of preferences through multilevel analysis, we use the 

program MIXREG (Hedeker & Gibbons, 1996). MIXREG allows for the estimation of 

normally distributed random effects, at the same time assuming autocorrelated error terms. It 

uses marginal maximum likelihood estimation, and employs both the EM algorithm and a 

Fisher-scoring solution. Estimation of the individual random effects is possible by an empirical 

Bayes procedure. For more details on the estimation procedures implemented in MIXREG, the 

reader is referred to Hedeker and Gibbons (1996). 

First, we analyze the data according to a model including a random intercept and random 

regression coefficients for each of the dimensions as resulting from the PCA. To test for the 

ideal point extension of this model, also the squared object scores summated across the four 

dimensions, were included as an additional term. Since letting the regression coefficient for 

this term be random resulted in convergence problems, the program MIXREG was rerun with 

a constant regression coefficient. This resulted in a significantly better fit (Ax2 = 40.55, Adf=l, p < 
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0.001), pointing to a curvilinear relation between preference and the scores on the dimensions. 

Letting the squared scores have separate regression weights for each dimension, did not result 

in a better fit (Ax2 = 4.27, Adf =3, p > 0.20). Also time-related covariates reflecting the order in 

which the products were judged, were included in the analyis model. This enabled us to devise 

a test for both linear and curvilinear trend effects of time on preference. As expected, including 

these covariates did not improve the model fit: A%2 = 2.97, Adf=1, p > 0.05 for linear trends, and Ax2 

= 0.03, Adf=1, p > 0.80 for curvilinear trends. The parameter estimates for this basic model are 

displayed in the left part of Table 3. 

Next, a number of background variables on the households were added to the model and 

tested for significance. These variables were: a variable indicating single-person versus 

multiperson status of the household, age of the housewife, and geographical location of the 

household. Geographical location consisted of five categories (three largest cities in the West, 

remainder of the West, North, East and South), and was included in the analysis through 4 

dummy variables. South being the reference category. These covariates were used both to 

describe the variable, nonrandom part of the intercept, the variable, nonrandom parts of the 

regression coefficients of each of the perceptual dimensions as well as the variable, nonrandom 

part of the regression coefficient for the sum of squared dimension scores. We trimmed the 

model down by successively deleting nonsignificant covariates from the model. The parameter 

estimates for the final model are given in the right part of Table 3. This model significantly 

improves the basic model (Ax2 = 78.69, Adf=18, p < .001). In the final model, the age of the 

housewife effects the weight attached to the sum of squared product scores, such that the older 

the housewife becomes the less negative the weight becomes. Geographical area turns out to 

be related to the weight attached to two dimensions underlying preference. Households in the 

West and North more heavily weigh the special dimension than households in the South. 

Households in the three largest cities in the West and households in the East weigh natural 

production more than households in the South of the Netherlands. Of course, since these 

results are post-hoc, cross-validation is called for. Additionally, we investigated whether there 

are temporal dependencies between the preference judgements, that can be described by a 

stationary process. MIXREG allows for testing different variants of such processes. We tested 

for an AR(1) process and for a MA(1) process. Both analyses did not improve the model fit: Ax2 

= 0.003, Adf=1, p > 0.95 for AR(1), and Ax2 = 0.002, Adf=1, p > 0.95 for MA(1). 
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Table 3. Results from multilevel analyses in which covariates are added. 

Variable_Parameter 
Fixed part 
Intercept P0 
Sensory quality P, 
Convenience P2 
Special P3 
Natural production p4 
Sum of squared dimensions y, 

Without covariates_With covariates 
Estimate ( S.E.) Estimate (S.E.) 

3.528 (0.010) 
0.418 (0.010) 
0.308 (0.010) 
0.262 (0.008) 
0.184 (0.011) 

-0.019 (0.003) 

3.649 (0.044) 
0.502 (0.031) 
0.446 (0.029) 
0.270 (0.029) 
0.091 (0.036) 

-0.037 (0.009) 

Age housewife Po, 
Geographical area: 
- Cities in the West (vs. South) p02 
- Remainder West (vs. South) p03 
- North (vs. South) P04 
- East (vs. South) Po5 

Age housewife x Sensory quality P,, 
Age housewife x Convenience P2I 
Age housewife x Special P31 
Age housewife x Natural p41 

-0.006 (0.006) 

-0.025 (0.030) 
-0.058 (0.025) 
0.031 (0.034) 
-0.012 (0.027) 

-0.012 (0.004) 
-0.020 (0.004) 
-0.007 (0.004) 
0.009 (0.004) 

Special x Geographical area: 
Cities in the West P32 
Remainder West P33 
North p34 
East P3S 

Natural x Geographical area: 
Cities in the West p42 
Remainder West p43 
North p44 
East P45 

0.076 (0.027) 
0.046 (0.022) 
0.087 (0.030) 
0.019 (0.024) 

0.092 (0.034) 
0.014 (0.028) 
0.027 (0.037) 
0.056 (0.030) 

Age housewife x 
sum of squared dimensions y,, 0.003 (0.001) 

Random part 
Intercept 
Sensory quality 
Convenience 
Special 
Natural production 

o2(U0) 0.028 (0.004) 
o2(U,) 0.018 (0.004) 
o2(U2) 0.020 (0.004) 
o2(U3) 0.014 (0.003) 
o2(U4) 0.022 (0.004) 

0.028 (0.004) 
0.018 (0.004) 
0.019 (0.003) 
0.013 (0.003) 
0.020 (0.004) 

Residual o2(Eij) 0.221 (0.006) 0.220 (0.006) 

- 2 log likelihood 8495.61 8416.92 
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4.5. Interpretation of the analysis results 

In interpreting the results from the multilevel analysis we are especially interested in the 

sensitivity of preference to changes in the dimensions underlying the consumers’ perception of 

meat products. First, one should note that the regression coefficients for the perceptual 

dimensions each vary significantly across subjects, as evidenced by the significant variances of 

these coefficients (p < 0.001). On the other hand, the variances are rather small relative to the 

mean coefficients, so that the mean coefficients are indicative of the sensitivity of preferences 

to changes on these dimensions. This average sensitivity can be read from the partial 

derivatives of the preference regression model (with mean coefficients) with respect to each of 

the corresponding dimensions. To facilitate the interpretation, below we give the expressions 

for these derivatives for each of the four dimensions (cf. Table 3): 

Sensory quality: 

Convenience: 

Special: 

Natural: 

0.502 - 0.012 Age + (0.006 Age - 0.074) Sensory quality 

0.446 - 0.020 Age + (0.006 Age - 0.074) Convenience 

0.270 - 0.007 Age + 0.076 Cities West + 

0.046 Remainder West + 0.087 North + 0.019 East + 

(0.006 Age - 0.074) Special 

0.091 + 0.009 Age + 0.092 Cities West + 

0.014 Remainder West + 0.027 North + 0.056 East + 

(0.006 Age - 0.074) Natural 

As can be seen, due to the quadratic term in the multilevel model, for each of the dimensions 

the sensitivity depends on the score on the underlying dimension. We will consider the 

sensitivity for the dimensions for the average location of the products across all respondents (= 

score 0). For this score, a person living in the South of the Netherlands and belonging to the 

youngest category (age = 1), the partial derivatives for sensory quality, convenience, special 

and natural are respectively: 0.490, 0.426, 0.263, and 0.100. So, for a youngster living in the 

South of the Netherlands, when considering the centroid of the perceptual space, sensory 

quality and convenience are the most important dimensions, whereas special and natural are 

least important. As another example, for the centroid, a person living in the Eastern region, 

belonging to the highest age category (age =11), has the following importances for sensory 

quality, convenience, special and natural respectively: 0.370, 0.226, 0.212, and 0.246. Hence 



24 

for an aged person living in the East, sensory quality stands out as the most important 

dimension, whereas convenience, special, and natural production are of equal (but lower) 

importance. Note that both persons described above have a pattern of importances that does 

not fit in nicely with one of the patterns of importances characterizing the segments as 

uncovered by mixture regresion analysis (see Table 2). Assuming that the two importance 

patterns discussed are representative for a reasonable number of consumers, this makes 

comparing MLA and MRA on their validity for analyzing preference, a relevant issue. 

On the basis of the empirical Bayes estimates for the regression coefficients, we are also 

able to verify that all subjects have ideal points along each of the dimensions. Furthermore, in 

the case of sensory quality, convenience and special nearly all subjects have ideal points that 

are above the range of their component scores. Consequently, for these dimensions the 

subjects have increasing but negatively accelerated preference curves: the more, the better, 

albeit that some kind of satiation seems to occur. For the natural dimension on the other hand, 

a small number of the subjects (5%) has an ideal score amidst their component scores. For a 

minority of the subjects there thus seems to be some optimal amount of natural production 

when choosing among different types of meat. Note that these preference functions are not in 

line with the preference functions characterizing the segments uncovered by mixture 

regression analysis. Here we also had positively accelerated preference functions and for none 

of the segments the optimum position was among the product scores along the dimensions. 

This calls again for comparing MLA and MRA on their validity as models of preference. 

4.6. Evaluation of the multilevel model’s predictive power 

We evaluate the predictive power of the estimated multilevel model. The model could be used 

to develop an optimal product from consumer point of view, by using a grid-search technique. 

In this procedure the perceptual space is scanned systematically and for each point in the space 

the preference is calculated (see e.g. Kim et al., 1999). The usefulness of this procedure 

depends on the predictive power of the model with respect to consumers’ preferences. In 

evaluating the predictive power we distinguish between the set of products on which the model 

is estimated, the estimation set (pork meat, beef, veal, lamb, minced meat, chicken and fish in 

our study), and the set of products not involved in model estimation, the validation set. The 

validation set can be used for testing the model’s predictive power. In our analysis a meat 

replacing product was part of the validation set. To obtain a larger validation set, one can re- 
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analyze the data starting from the total set of products, leaving one product out. We did two 

such re-analyses with respectively the product veal and chicken left out. 

Table 4. Improvement in the mean squared error of prediction (MSEP) of the multilevel model 

relative to alternative analysis models. 

Comparison Intercept Disaggregate Aggregate Mixture 

model only Regression Regression Regression 

Validation set: 

Meat replacer 66.0 % 

Veal 51.3% 

Chicken 75.0 % 

93.6% 

97.0 % 

99.5 % 

3.4 % 8.5% 

11.0% 14.3% 

7.1 % 15.6% 

To evaluate the predictive power for the three validation products, the mean squared error 

of prediction (MSEP) was calculated as a measure of the badness-of-prediction. Let Y.(t,) be 

the predicted preference score for subject i and object j according to a particular model, then 

the MSEP for object j is defined as follows: 

(10) E (Yit.) - YU,))2 
MSEP = 

i N 

Comparing the MSEP of the multilevel model to the MSEP of a model, in which the 

preferences are predicted by the average preference score across all products in the estimation 

set (the intercept only model), substantial improvements are found. As can be seen in the first 

column of Table 4, the improvements in MSEP relative to this primitive model are rather 

substantial (varying between 51.3% and 75%). At one end we can predict preference by the 

intercept only model, at the other end we can perform separate least squares regressions for 

each individual (disaggregate regression analysis) and use the results for predictions. Since we 

expect the latter to lead to regression coefficients with a larger mean squared error of 

estimation compared to the empirical Bayes estimates of multilevel analysis, we expect 

multilevel analysis to lead to more adequate predictions (see Bryk & Raudenbush, 1992). The 
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results in the second column of Table 4 support this expectation. The relative improvements in 

MSEP run from 93.6% to 99.5%. It appears that the number of products, seven in this study, is 

too small for the disaggregate regression analysis to come up with stable estimates that are 

useful in predicting product preference. 

Since we are also interested in the added value of random subject heterogeneity, we 

compare the multilevel model against the predictions made by a regular aggregrate regression 

analysis, where no random variability of the regression coefficients is allowed for. This 

illustrates the effect of additional intersubject variability on top of the consumer background 

variables included as covariates in the regression model. Table 4 shows moderate, but 

consistent improvements in MSEP (ranging from 3.4% to 11.0 %). The random variation in 

the regression coefficients appears to add moderately, but consistently across the set of 

products, to the predictive value of the model. 

Finally, the predictions made by mixture regression analysis are compared to the 

predictions made by multilevel analysis. The results from mixture regression analysis can be 

used in predicting consumer preference, by weighting the preferences within each of the four 

segments with subject’s posterior probability of belonging to each of these segments. (Since 

the posterior probabilities for most subjects did not favor one of the segments, this may be 

considered a better strategy than predicting subjects’ preferences by the preferences of the 

segments for which their posterior probability is largest). As can be seen in Table 4, for all 

three products of the validation set, the predictions resulting from mixture regression were 

worse than the multilevel predictions. (This also turned out to be the case when subjects’ 

preferences were predicted by the preferences of the segments for which their posterior 

probabilities were largest). 

An explanation for the multilevel model having a better predictive power than the mixture 

regression model may be that the variation in the regression coefficients is not so much of a 

discrete nature, that is, characterized by abrupt changes in their values, but rather of a gradual 

nature as captured by the normal distribution. A way of checking this is by adding the segment 

memberships (that is, the posterior probabilities) resulting from mixture regression analysis as 

covariates to a multilevel analysis without any other covariates. To explain that this analysis 

enables a test as to whether there are abrupt changes in the regression weights, assume a 

situation, where for each subject the posterior probabilities are 1 for one segment and 0 for the 

others. In this case the posterior probabilities act as indicator variables, indicating to which 
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segment a subject belongs. The regression weights obtained for these indicators in a multilevel 

analysis thus can capture abrupt changes in the regression weights corresponding to 

differences in the segments (see Equation 4). In the more general case that the posterior 

probabilities vary between 0 and 1, the regression weights reflecting the segment related 

changes, are no longer multiplied by indicator variables but by posteriors expressing the 

degree of segment membership. By adding the posterior probabilities as covariates to a 

multilevel analysis, we are thus able to test whether there are abrupt changes in the regression 

weights on top of the continuous changes as modeled by multilevel analysis. This analysis did 

not show an improvement in model fit (Ay2 = 9.34, Adf=18, p > 0.90). Remember that we also 

found that the segments from mixture regression analysis are weakly separated. These results 

point to the regression weights not changing abruptly from one segment to the other. 

Subsequently setting the regression coefficients fixed in the multilevel analysis leads to a 

significant decrease in model fit (Ay2 = 271.712, Adf= 15, p < 0.001). The latter result supports 

that there is substantial variation in the regression coefficients, which, however, seems to be of 

a more gradual nature. 

5. Conclusions and Discussion 

Multilevel modeling was introduced as a technique to perform an external analysis of 

preferences, in which explicit care is taken of individuals’ differences in preference formation. 

The technique was contrasted with several competing techniques, that is, mixture regression 

analysis, and disaggregate regression analysis. In the empirical illustration multilevel analysis 

appears to outperform the predictions made by the disaggregate regression analysis, and also 

turns out to outperform the predictions made by mixture regression analysis. Particularly the 

suitability of multilevel analysis vis-a-vis mixture regression analysis seems to be largely an 

empirical matter. Whether gradual variations in the regression coefficients as assumed in 

multilevel analysis, lead to better explanations of the data compared to the abrupt changes in 

the regression coefficients as assumed in mixture regression analysis, can only be ascertained 

after applying both analysis techniques to numerous relevant data sets. Note however, that 

through the availability of appropriate covariates, multilevel analysis, like mixture regression 

analysis, may be capable of modeling abrupt changes in the regression coefficients. To the 

degree that abrupt changes in the regression weights are present, which can not be captured by 
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including appropriate covariates in a multilevel analysis, an approach like the one developed 

by Verbeke and Lesaffre (1996) would become a relevant alternative. For the present data 

however, no such indications were found. 

In the empirical illustration it was also tested whether autocorrelated errors corresponding 

to either a first-order autoregressive process or a first-order moving average process, 

significantly improved the MLA analysis. This turned out not to be the case. A reason for not 

finding such dependencies across time may be that the preference judgements for the different 

products were sufficiently separated in time. Between the preference judgments for two 

different products, a subject had to give various attribute judgements on the products. This 

may have minimized the dependencies across time. Another explanation may be that, since the 

attribute judgements and the preference judgements for a particular product were grouped 

together in the questionnaire, both types of data may be subject to the same psychological 

influences. Since the attribute judgements are assumed to influence preference via the 

corresponding principal components, these possibly also explain serial correlations between 

preferences that otherwise might have been explained by autocorrelated residual terms. If, for 

instance, we would have related subjects’ preferences to physical product parameters (which 

are constant across time), we possibly might have found significant improvements in model fit 

due to letting the residual terms be autocorrelated. 

The present study discussed mixture regression, without considering techniques that also 

incorporate subject dependent covariates in the model. Relating subjective differences in the 

regression coefficients to covariates in a single analysis however is not the sole benefit of 

random effects modeling. Mixture regression models have been proposed in which the 

covariates determine the prior probabilities of belonging to the segments, each of which are 

characterized by a distinct set of regression coefficients. These mixture models are, however, 

not included in GLIMMIX version 1.0 (Wedel & Kamakura, 1997), A program that does 

provide the possibility to incorporate such concomitant variables is the Latent GOLD program 

version 2.0 (Vermunt & Magidson, 2000a; Vermunt & Magidson, 2000b). 

The multilevel approach suggested in the present paper can also be applied to the analysis 

of other types of data expressing subjects’ preferences. Subjects could, for instance, make 

choices from each pair of alternatives that can be constmcted from the M alternatives. The 

resulting data can be analyzed according to a random effects binomial logit model. For such a 

logit formulation, MlwiN (Goldstein et al. , 1998) or the program MIXNO (Hedeker, 1998) 
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could be employed to estimate the regression parameters. Within the context of mixture 

regression analysis, GLIMMIX (Wedel, 1997) or the program Latent GOLD (Vermunt & 

Magidson, 2000a; Vermunt & Magidson, 2000b) can be employed to obtain information on 

potential discrete segments and corresponding posterior probabilities. These programs allow 

for analyzing data according to a mixture of binomial distributions. So, also in the case of 

choice data, programs are available that enable the application of the approaches that have 

been compared in the present paper. 

Appendix 

We show that the preference of subject i for object j on moment tip Y^tJ, as defined according 

to a distance model of preference with a normally distributed ideal, leads to a regression model 

with random coefficients. Let dy denote the Euclidean distance between subject’s i ideal and 

object j in an /{-dimensional space defined by the objects’ attributes. The dimension is 

indicated by r = Let Iir be the ideal position of subject i along dimension r, and let Xijr 

be object’s j position on dimension r as perceived by subject i. We can now formulate the 

distance-based preference model as 

(Al) 

which can be elaborated as 

R 

(A2) 

(A3) 

which, after the following substitutions 
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R 

(A4) u: - yE/2 , p + IT = -2y/ 0/ ' ir * ~r n * jr 
r=l 

can be written as: 

(A5) 

It is easy to see that this is a random coefficient model. Since Ilr is normally distributed, U'n is 

also normally distributed, whereas lToi is non-normally distributed. The quadratic terms each 

have nonrandom regression weights that are identical for each of the dimensions (i.e. y). 
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