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Abstract 

Link-tracing methods are data collection methods that follow social relations in the target population. In studies 

of hard drug users populations link-tracing methods are often applied because formal sampling frames are 

lacking. Individual as well as relational information is collected with link-tracing methods. In most studies the 

focus is mainly on describing the population by individual characteristics despite the available structural 

information. In this paper we discuss a structural analysis of the clients of the drug aid agencies in Heerlen, The 

Netherlands. The relational data are obtained from a random sample of the client registers of the drug aid 

agencies in Heerlen. For each selected client his/her hard drug using contacts in the total hard drug users 

population were observed. Using the concept of a graph total one may assess the effectivity of community-based 

prevention/intervention strategies with as purpose to reach hard drug users inside and outside the aid agencies. 
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1. Introduction 

The need for accurate statistical information in society applies also to populations of heroin, 

cocaine and methadone users, hereafter referred to as hard drug users. The use of probability 

samples is widely accepted to be the most efficient and accurate way for studying populations 

using partial information. However, in studies of hard drug users standard probability 

sampling designs are often impractical due to imperfect sampling frames which decrease the 

possibilities of formal inference (Van Meter, 1992). Some practical problems are the unknown 

size of the population, the geographical clustering of groups of users, the identification of the 

target group, the establishment of contact, etc. To cope with these problems a frequently 

applied data collection procedure is a link-tracing procedure. A link-tracing procedure is a 

data collection method that follows social relations in the target population by using the 

contact patterns that exist between individuals, here hard drug users. The classical link-tracing 

procedure is the snowball sampling technique (Goodman, 1961), in which persons are asked 

to mention a fixed number k of other persons, who, in turn, are selected for extending the 

initial sample by mentioning k other persons, and so on. Some other link-tracing techniques 

are the snowball design of Frank (1977), the random walk design of Klovdahl (1989), and the 

adaptive cluster sampling design of Thompson (1991). An overview of link-tracing data 

collection techniques is given in Spreen (1992). 

In studies of hard drug users link-tracing methods are mainly used as a tool to find a 

substantial amount of respondents in order to describe the population in terms of individual 

characteristics. Standard nonprobability sampling designs such as targeted sampling (Watters 

& Biemacki, 1989) have been elaborated with the intention to mirror an initial simple random 

sample from the total population. Subsequently the link-tracing procedure starts from this 

initial sample. However, data obtained by link-tracing methods can also be used to describe 

the population in terms of structural or relational characteristics (Snijders & Frank, 2000). For 

instance, one may estimate the total number of Intravenous Drug Users (IDU’s) and the total 

number of relations between IDU’s. In this paper we focus on the estimation of relational 

characteristics. Until now the analysis of link-tracing data from a structural perspective has 

been largely ignored in studies of hard drug users. The purpose of this paper is to introduce 

some known design-based inference methods that can be used when describing a hard drug 
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users population by means of a link-tracing procedure. To express the emphasis on relational 

characteristics, we prefer the term network sampling. 

In this paper we consider the situation in which the members of some population G are either 

in subpopulation a or in p. Furthermore members of G are supposed to have relations with 

other members of G. For subpopulation a we have a perfect sampling frame, for 

subpopulation p the sampling frame is lacking. From subpopulation a a one-wave snowball 

sample is drawn, i.e., a simple random sample is drawn from a , and each selected respondent 

mentions his relations with other hard drug users in G. Relational data collected this way can 

be used to estimate by design the number of relations within subpopulation a, and between 

subpopulations a and p. Also the number of indirectly connected pairs of members in a can 

be estimated. As an illustration we use relational data from the Fleerlen Drug Monitoring 

System (Coumans, Neve & van de Mheen, 2000). Here subpopulation a are the clients of the 

aid agencies and subpopulation p are hard drug users outside the aid agencies (hereafter 

referred to as nonclients). Section 2 introduces some necessary notation and definitions. 

Section 3 briefly discusses the estimation principles of link-tracing samples. As an illustration 

in section 4 a structural analysis of the population of hard drug users in Heerlen is described. 

Finally section 5 gives some conclusions. 

2. Notation and definitions 

An undirected graph G with vertex set V = {1,2,..., A} and adjacency matrix Y, representing 

a set of social actors and some relationship between them, is considered. The adjacency 

matrix is defined on the set V2 of the ordered pairs of vertices; If = 1 if there is an edge 

between vertices i and j , and hi = 0 otherwise (Ff = 0 for all i). Since the graph is undirected 

Yy = If. for all i, j. The vertices in G are allowed to have p vertex characteristics 

A, g 91 ^ (i g {1,..., iV}). Vertex set V is composed of two subsets a and p based on an 

auxiliary binary variable Z. In the Heerlen research (see section 4) Z is an indicator variable 

for client registration, i.e. 
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1. a = {ieF|Z = l}, i.e. the clients of the aid agencies in G 

2. p = {y s F] Z = 0}, i.e. the nonclients of the aid agencies in G. 

The number of vertices in a is denoted Na, the number of vertices in p . 

For illustrative purposes consider the population graph G with vertex set V = in 

Figure 1 where a = {1,2,3} and p = {4,5,6}. 

The population degree of vertex i with other j eV is denoted a?, = V K ; the degree of 

vertex i with other yea by F; . The number of relations between vertices of a is 
jea 

denoted 

(2.1) 

and between vertices of a and p, 

(2.2) 
iax yc# 

In Figure 1 7?a = 2 and Rafi = 3. Note that we do not consider relations within population p 

in this paper. 
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The mean number of relations for / e a with other J ea is 

(2.3) 

the mean number of relations for i e a with _/ € p is 

(2.4) 

In Figure 1 ^ and nop = | 

The sociometric distance is defined as the length of the shortest path between two vertices. In 

this paper we focus only on sociometric distances between the vertices of subset a. For the 

ordered pairs of vertices in a2 a sociometric distance 1 between a pair of vertices (i,j) is the 

existence of a relation, and defined by 

(2.5) 

and sociometric distance 2 by 

{d(Uj) = 2} = {(/J) sa2|(l - Y^j)maxkeV = l}. (2.6) keV 1ik 

If no path is observed between i and j, i.e. they are vertices in different components of the 

graph, the sociometric distance is defined infinite, denoted </(i,jf) = oo; by convention 

d(i,i) = 0. In Figure 1 the sociometric distances between pairs (1,2) and (2,3) is one, i.e. 

<f(l,2) = rf(2,3) = 1, and the sociometric distance between vertex pair (1,3) is two, i.e. 

rf(l,3) = 2. Note that vertex pair (1,3) is indirectly related via vertex 2 but also via vertex 5. 

We return to this in section 4. 
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The number of sociometric distances 1 and 2 can alternatively be described using the concept 

of graph totals (Frank, 1977b). A graph total is defined as the sum of the values of some real¬ 

valued function F of vertex labels and arc frequencies in the ordered pairs of vertices denoted 

by 

(2.7) 

where A = /(Fu, Fjj , Fj, Fjt) is 7 if the dyad (a pair of vertices) has a certain property. Graph 

total (2.7) can be understood as a general graph parameter that can be used to describe various 

graph characteristics. For instance, the number of relations between IDU’s who know each 

other longer than 5 years is an example of a graph total. In this graph total F;i and F;/ 

determine whether i and j are IDU’s and F- = /v whether they know each other. Moreover, if 

they do, whether they know each other longer than 5 years. In this paper we consider only 

graph totals based on the observation of one relation, i.e. whether there is a relation between i 

and j. Consequently throughout this paper 77. = If. The number of dyads for which 77. = 1 is 

also called a dyad count (Frank, 1978). The specific graph totals of the form (2.7) we use in 

this paper are the total number of sociometric distances 7 and 2. 

The total number of sociometric distances 7 between the vertex pairs in a2 is identical to the 

number of relations (2.1), and can be alternatively defined as 

(2.8) 

The total number of sociometric distances 2 between the vertex pairs in a2 is denoted 

(2.9) 
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where F™ = 
1 if rf(i,y) = 2 

0 otherwise 

In Figure 1 T, = Ra = 2 and the number of pairs at distance 2 is T2 = 1 (vertex pair (1,3)). 

3. Basic graph sampling and estimation principles 

Suppose simple random sample without replacement S of size n is drawn from a cV . For 

each i e S vertex characteristic Xt is observed. The standard Horvitz-Thompson estimator 

(Horvitz & Thompson, 1952) or the a-estimator (Samdal, Swensson & Wretman, 1992) of 

the total Ty = ^ A) is 

(3.1) 

where ni = is the probability for i to be included in the sample. 

This estimator is unbiased provided that n: > 0 for all i eS. The variance is defined as 

(3.2) 

An unbiased estimator of this variance is given by Florvitz and Thompson (1952), provided 

that 7i,, >0 for all i,j eS, IJ 

(3.3) 

Another frequently used variance estimator in HT-estimation theory is that of Yates and 

Grundy (1953) which we do not consider in this paper. 

Using (3.1) we can only infer to individual characteristics of population a, because the 

method of measurement is restricted to individual characteristics. Additional relational 
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information is obtained by asking each i g S to give his relations with other vertices who are 

member of vertex set V. When the focus is on structural aspects between the vertices in a 

only, we may ask each i e 5 to give his relations with other vertices in a. When the focus is 

also on relations between vertices in a and P we may ask each i e S to give his relations 

with other vertices in G. 

In this paper we consider two well known methods of graph measurement: the partial graph 

and the subgraph measurement method (Frank, 1971). The partial graph measurement method 

is defined as: for each i e S his relations in G are observed (asked). For instance, in the 

Heerlen research each sampled user is asked to indicate his relations with other users in 

Heerlen. Consequently, the final dyad sample consists of the adjacencies If for i e .S' and 

/ e S, i e S and j e a, or ; g S and j e p . In this situation there is information about pairs of 

vertices both drawn in the sample and about pairs in which one of the vertices is drawn in the 

sample. The inclusion probability n- is defined as the probability that the sample contains 

vertex pair (i,j). This may differ from the definition usually applied in survey sampling 

because the observability of vertex pair (i,j) is dependent on the applied method of 

measurement. The inclusion probability of the partial graph method of measurement (Frank, 

1971; Spreen, 1999) is 

(3.4) 

: (Na-n-l)(Na-n) 

(Na-l)Na 

i.e. one minus the probability that neither of the 2 specified vertices are in the sample. 

A graph total of the form (2.7) can be estimated by 

„ / _ F F 
T = L2^-+ X ^ 

j € 0.\S 

(3.5) 
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Note that for F;. = F-') = Y:i the number of relations (2.1) or (2.8) is estimated and for 

. = /v,2) the number of sociometric distances 2 (2.9). 

The definition of the subgraph method of measurement in sample S is that each i e S gives 

information about other sampled vertices j eS. For instance, a selected drug user is 

instructed to indicate his relations with other sampled drug users. Consequently the final dyad 

sample consists of the adjacencies Y:l for i e S and j eS. The subgraph inclusion probability 

in the final dyad sample is 

n — 1 ) n(n -1) 

7K)~~ Na(Na-l) 

\ n J 

Note that the inclusion probability (3.6) is the conventional second-order inclusion probability 

of standard survey sampling (see Samdal, Swensson & Wretman, 1992). A graph total of the 

form (2.7) can be estimated by 

JeSnij 

(3.7) 

Note that for Fj = F*n =Yjj the number of relations (2.1) or (2.8) is estimated and for 

F~ = F™ the number of sociometric distances 2 (2.9). 

To decide whether a graph parameter allows a design-unbiased HT-estimator, it is necessary 

to know the inclusion probabilities of the vertex pairs as well as the observation of the 

structural aspect (the F„ -value) in the sample data. This way the F- -value can be expanded 

for inference purposes. 



104 

To find the variance of graph total estimators Frank (1971) noted that in a simple random 

sample all dyads are equally likely to be included. By defining the second-order probabilities 

tip, as the probability that vertex pairs (i,j) and (kj) will be included in the sample, it can 

be shown that the inclusion of two, three, or four specified vertices in the sample depend only 

on the vertex frequencies and not on the identities of the vertices. 

Recall that in this paper 77. = l'., >7 = If, and Fu = 0 by convention. For estimators of graph 

totals based on the subgraph method, i.e. estimator (3.7), it can be shown that the variance is 

(theorem 5 of Frank (1977a) 

Var (T) (3.8) 

In (3.8) Q = ^(K+)’ is the sum of squares of the degrees and nH is the inclusion probability 
i=l 

for 4-tuple in the final dyad sample consisting of //distinct vertices denoted 

71 H ~ (3.9) 

for H = 2,3,4. For clarification of (3.9): Tt, is the inclusion probability of the dyads (i,j) 

and (k,l), n , is for instance the inclusion probability of dyads (i,j) and (i,l), and n2 is for 

instance the inclusion probability of dyads (i,j) and 

Provided that n4 >0, i.e. « > 4, an unbiased variance estimator of (3.8) is obtained using the 

corresponding sample statistic divided by the appropriate inclusion probability 7t„ (Frank 

1977b: theorem 4, corollary 5), i.e. 

1 I 
Fm-(D= K(S)+ — 2(5)+ — 

71, 71 

1 1 
KiS), (3.10) 

where (S) indicates the structural information that is observed with the sample. 
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For estimators of graph totals based on the partial graph method, i.e. estimator (3.5), Frank 

(1977a: theorem 8) showed that the variance is 

Var(f) = 
(<?< -gQ 

V~q2)2 
+ 

{<h -gj 
(l-q2y 

Q + 
{q2 -2q3 +qt) 

u-q2y 
(3.11) 

In (3.11) qH is defined as the inclusion probability that H specified distinct vertices are in the 

complement S for H = 2,3,4, i.e. 

qH = (3.12) 

An unbiased variance estimator is given by 

Var(f) = 
(g< -q22) 

U-q2) (7-2<?2 +qt) 

{qz -iqi +g<) 
\l-q2y(l-2q2+q4) 

K2(S) + {q3 -9.) 
(l-q2)\l-2q2+qt) 

Q{S) 
(3.13) 

K(S) 

An alternative is to approximate (3.9) by pH For instance (3.8) is then simplified 

to 

and (3.10) to 

Var (f) &—Q + 
P 

Var (f)« 4e(5)-^«a(5), 
P P 

(3.14) 

(3.15) 

where q = 1 - p (Frank, 1977a, corollary 7). Capobianco and Frank (1982) note that the same 

variance expressions would be obtained for a Bernoulli sampling scheme with selection 
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1 V- Y 
probability p with estimator r= — V-^-. They argue that (3.14) and (3.15) are usually 

2ij1sP 

sufficient for the degree of approximation needed in practice for sample surveys. 

A remark is in order here. Variance estimators (3.10) and (3.13) may have negative values 

(Frank, 1971; Karlberg, 1997). This holds for most HT variance estimators, but also for most 

Yates-Grundy variance estimators. In a simulation study of several triad count estimators 

Karlberg (1997) showed that the obtained Yates-Grundy variance estimators more frequently 

had negative estimates than HT variance estimators for some observation schemes. He also 

remarked that the more structural information is collected in the sample, the less frequent are 

negative variance estimates. In (3.10) and (3.13) there are some negative terms (note that 

rc, < , and may occur). Especially when the amount of collected structural 
71 j TZ 2 TZ 4 

information is small, (3.10) and (3.13) are sensitive for very minor differences (see for 

instance example 4.3.4 (p.94) in Frank (1971)). 

4. Illustration of a structural analysis 

To illustrate the use of graph total estimators in population studies of hard drug users, 

relational data obtained from the Heerlen Drug Monitoring System (DMS) is analysed. The 

purpose of the DMS is to describe the population of marginalised (nearly) daily users of 

opiates and/or other drugs (like cocaine) in terms of prevalence, patterns of use, problems 

(with use), social relationships and contacts with aid agencies. The system is based on three 

pillars, knowing: 

1. information collected by a group of key informants who regularly report on phenomena 

and developments in and involving drug use, 

2. ethnographic qualitative information about the natural context in which drug use takes 

place is collected by community field workers, 

3. quantitative information about distributions and associations of various individual and 

relational characteristics in the population is collected by a network sample. 
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In this paper we analyse data from the network sample. We focus on the estimation of the 

number of contacts between clients of the aid agencies and between clients and hard drug 

users that are not registered (hereafter called nonclients). From a health promotion perspective 

these figures are relevant because they give an impression of the extent to which aid agencies 

could employ their clients for community prevention/intervention strategies to reach also a 

substantial amount of nonclients. The distribution of contacts between clients and nonclients 

of the aid agencies are analysed using the introduced graph total concepts. Note that a relation 

between clients or between clients and nonclients is viewed in this section as a channel of 

communication. 

In Heerlen 435 hard drug users were registered as a client of the aid agencies (at June 1 1999). 

Local experts assessed this figure to be a substantial part of the total unknown population. 

Because the purpose of the DMS is to draw on a regular base samples it was decided to use 

the client list, i.e. a = {l,2...,435}, as an initial sampling frame. A simple random sample 

without replacement S of size n = 38 was drawn from a c V and for each i e S his relations 

with other users (alters) were observed and individual characteristics about the alters were 

collected. In other words the partial graph method was applied. The criteria for the alters to be 

included in the sample were: 

1. respondent and alter must meet each other on a daily or regular base in Heerlen, 

2. respondent and alter must know each others sur- and family name, 

3. alter must know the respondent as a hard drug (heroin, cocaine, etc.) user. 

This way not only individual and relational information about clients of the aid agencies was 

collected but also about other users directly connected to the clients. 

Using graph total estimator (3.5) the estimated total of relationships between the clients of the 

aid agencies was estimated to be about 975 with a standard error of 240. The average number 

of contacts an arbitrary client had with other clients was estimated to be 

A a = 4.48 (s. e. 1.1). 
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To estimate the number of relations between the clients and the nonclients, estimator (3.1) and 

variance estimator (3.3) were applied, resulting in an estimate of 

11^ 
R = - = 1053 (s.e. 138). 

ni 

The average number of relations an arbitrary client had with hard drug users not registered by 

any aid agency is estimated as 

AaP=^^=2.42(5.e. 0.32). 

The implication of this structural analysis is that an arbitrary client of the aid agencies tend to 

have relatively more contacts (65%) with other clients than with nonclients (35%). 

Consequently, if pa and (1^, are understood as the mean numbers of communication channels 

per client with other hard drug users, we could assess that the diffusion of a client-based 

community prevention/ intervention strategy tend to reach for a substantial part other clients. 

The number of pairs of indirectly connected clients may also be relevant for a client-based 

community prevention/intervention strategy because two clients who are not directly related 

to each other, may have a mutual friend. If this mutual friend happens to be another client, the 

diffusion of prevention/intervention strategies will be restricted to the client population. If this 

mutual friend happens to be a nonclient, the diffusion of prevention/intervention strategies 

will have a chance to reach also the nonclient population. In other words, the more indirect 

contacts pairs of clients have via nonclients, the more likely a chent-based community 

prevention/intervention strategy would reach a substantial part of the non-registered hard drug 

users. 

To estimate the number of pairs of indirectly connected clients, we use graph total estimator 

(3.7). To observe sociometric distance 2 between a pair of clients the following conditions 

must be satisfied: 
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• a direct relation between clients i 6 a and / ea does not exist, i.e., yi = 0 ; 

• clients / e a and yea have at least one mutual hard drug user k € V directly connected 

to both of them in G, i.e. maxkeyYlkYJk = 1. 

To decide which measurement method we may use, consider Figure 2 which illustrates two 

hypothetical population networks of order 4. In both networks a simple random sample of 

order n = 3 is drawn resulting in {i,j,h} eS and {k} <tS. 

• • 
i i 

GRAPH A GRAPH B 

Figure 2 Two hypothetical situations for {i,j,h} eS and {k\ &S 

We focus on vertex pair (i,j), and denote the observed distance between i and j in the sample 

by d‘(i,j). In both graphs the actual sociometric distance between client pair (ij) is 

d(i,j) = 2. Suppose the subgraph measurement method is applied. The sampled structural 

information leads in graph A to d‘ (i,j) = 2 but suggests d'(i,j) = co in graph B. This implies 

that for the subgraph measurement method a sociometric distance 2 (the true if -value) 

cannot always be ascertained from the sample data. Thus for the subgraph measurement 

method an observed within-sample distance greater than 2 can hide a real distance equal to 2. 

For the partial graph measurement method, however, for each pair of clients in the final dyad 

sample the actual sociometric distance is always observed in both population graphs, i.e. 

d‘ (i,j) = 2 for all sampled pairs with d(ij) = 2. 

In formula (2.9) the sociometric distance 2 is regarded as a special case of a graph total. 

Applying (3.7) an estimator for the total number of indirectly connected client pairs is 
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where 

= 10741 (s.e. 3354) 

Fm = a 
1 if d(i,j) = 2 for i e S and j e S 

0 otherwise 

Note that rt® is defined in (3.6), i.e. the probability that clients i and j are both drawn in the 

sample. 

The proportion of indirectly connected clients is estimated by 

if 
-2— = 0.11 {s.e. 0.04), 
N(N-l) ’ 

and can be interpreted as the proportion of pairs of hard drug users not directly connected to 

each other but who have at least one mutual contact. To assess the effectness of the diffusion 

of an intervention starting from the client group it is relevant to know whether these mutual 

contacts are other clients, nonclients, or other clients as well as nonclients. In Figure 3a,b,c the 

different types are graphically displayed: 
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In Figure 3a d(l,3) =2 via vertex {2 set} , in Fig. 3b d(l,3)=2 via vertex {5 eP}, and in Fig. 

3c d(I,3) =2 via vertices {2 ea} and {5 sp}. 

From the estimated total of indirect connected clients 87,5% have mutual contacts only with 

other clients (Fig.3a), about 7,5% only with nonclients (Fig.3b), and about 5% have mutual 

contacts with other clients and nonclients. This implies that a client-based community 

prevention/intervention strategy in Fleerlen will have the tendency to reach mainly other 

clients. 

5. Concluding remarks 

The results of the structural analysis of the hard drug users population in Heerlen showed that 

applying a network measurement method to a random sample of clients of the aid agencies 

provides valuable structural information. This information was not restricted to the clients 

only but also to hard drug users who are not clients of the aid agencies, and directly connected 

to clients. Using the concept of graph totals we got an indication that clients on the average 

have the tendency to be linked with other clients. For community-based interventions this is 

important information because it shows that one must do an extra effort to reach those hard 

drug users that are not clients. 
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