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Abstract 

This paper discusses the generalization of the subject-oriented local influence measures 
for normally distributed responses to observation-oriented influence measures for generalized 
linear models with random effects. A two-step diagnostic procedure is proposed. The first step 
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1. Introduction 

The interest in generalized linear mixed models has grown steadily during the past 
decades (Diggle, Liang and Zeger, 1994). Unfortunately, the estimates of the model 
parameters may heavily depend on a small part of the dataset or even on one particular 
observation or subject. For ease of presentation, a set of observations or subjects is called a 
data structure A data structure which has a large impact on the estimated model parameters 
will be called influential. An approach to detect influential data structures is to compare the 
estimates of the model parameters based on the sample with and without the data structures of 
interest. Diagnostics based on this approach are called deletion diagnostics and are discussed 
for normally distributed responses by Christensen, Pearson and Johnson (1992), Banneijee and 
Frees (1997) and Tan, Ouwens and Berger (1999). The only influence diagnostics for 
generalized linear mixed models discussed in literature are the deletion diagnostics of Preisser 
and Qaqish (1996) in the context of marginal models. For these models the average of the 
responses for each covariate pattern is modeled. 

A second approach to detect influential data structures is based on the curvature of the 
log-likelihood function. One of the measures based on this approach is local influence and has 
been developed by Cook (1986). Local influence for generalized linear models is discussed by 
Thomas and Cook (1989, 1990) Although local influence for longitudinal models with 
normally distributed responses has already been discussed by Lesafffe and Verbeke (1998), 
their discussion is limited to the subject level. In this paper local influence will be generalized to 
the observational level. 

Influential observations and subjects have disproportionally large local influence values 
Consequently, to detect influential observations and influential subjects we have to compare 
the influence values with each other. Using this approach, the detection of influential 
observations is also important In the dataset used in this paper, for example, the influential 
observations are distributed across several subjects in such a way that.the subjects themselves 
were not detected to be influential. Another reason why the detection of influential 
observations is important, is that subject-oriented influence measures cannot discriminate 
between influential subjects due to subject specific characteristics and influential subjects due 
to influential observations within those subjects. Consequently, if the influential data structures 
were to be deleted without taking into account the source of the influence, this may lead to an 
unnecessary loss of information 

The detection of influential subjects remains important. Suppose, for example, that the 
subject specific parameters of a subject are disproportionally large, but the observations are 
fitted well by the estimate of the subject specific profile In that case, the estimated subject 
specific profile will not change significantly due to the deletion of an arbitrary observation of 
that subject. Consequently, the subject will not be detected by the evaluation of the influence of 
observations one at a time. As a result both the detection of influential observations as well as 
the detection of influential subjects need to be accounted for. Therefore we propose to use a 
two-step procedure. In the first step the subject-oriented local influence measure is used In the 
second step, the observation-oriented local influence measure is used. This procedure can be 
applied iteratively. 

In section two the underlying regression model is specified The observation-oriented 
local influence approach is proposed in section three It is shown that the subject-oriented local 
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influence approach is a special case of the observation-oriented influence approach Finally, a 
real dataset is analyzed in section four and conclusions are drawn. 

2. Model specification 

Conditional on the subject specific parameters, the responses^ of subject /, i = 1,...,JV, at 
time point j, j = 1.nh are independent and drawn from an exponential density function 
(Diggle, Liang and Zeger, 1994, pg. 134) : 

fly,} 9,J)=exp[O',J0,J - '|r(e,y))/a,J(<t>) +c,J0,,4>)], (1) 

where 0,y is the canonical form of the location parameter and is a function of the conditional 
mean p^, a^tj)) is a known function of the possibly unknown dispersion parameter, or vector of 
dispersion parameters, (j) and c:j is a known function of the dispersion parameter and the 
responses (McCullagh and Nelder, pg 28). t); is a known function, such that the conditional 
mean of is equal to \i:] = E^jO^) = dtlt(0#)/9(0!)). The subjects are assumed to be 
independent and the subject specific parameters hi are outcomes of the normal distribution 

where G is a qxq variance-covariance matrix. It should be noted, that the dispersion 
parameter c|> may be unknown to incorporate the normal density function. 

The Poisson density used in the real data example in this paper is a member of the family 
of density functions of the form (1). The Poisson density is equal to 

pf "exp(-|i ) 
-——-=exp[y(jlog(pl;)-py-!ogOv!)] (2) 

TV 

and can be obtained from expression (1) by taking ^(4)) = 1, 0,_, = log(pIJ), t|)(0j) = exp(0tf) and 
c(y,r (f)) = -l°g(y„!) In the real data analysis it is assumed that pBis equal to tIJexp(x,J' p+ z,jb,), 
where xIJ is the p design vector of the fixed effects of subject / at time point j and z,-, is the 
corresponding q design vector of the random effects. P is the p vector of fixed regression 
parameters and bt is the vector of random effect regression parameters. t:j is the number of days 
in the period, called the follow-up time The model parameters can be estimated using the 
MIXPREG (source http://www.uic.edu/~hedeker/mixdos.html). In the next section we will 
discuss methods to detect influential observations and subjects. 

3. Local influence 

The first part of this section focusses on the detection of influential observations. The 
relationship between the observation-oriented and the subject-oriented local influence is the 
subject of the second part 

Some specific notation and definitions are used throughout this paper. The vector of 
fixed model parameters is denoted by C For the Poisson model C consists of the regression 
parameters P and the q (q+l)/2 parameters specifying the variance-covariance matrix G of the 
random effects. The influence of a response is the influence of the observation determined by 
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the combination of that response and the corresponding design vectors of the random and fixed 
effects In this paper it is assumed that the deletion of a certain response also leads to the 
deletion of the corresponding design vectors of the random and fixed effects. The complete 
sample is the sample consisting of all measured observations. The vector of responses^ can be 
written as [y„. jv], where yr is the vector of n, responses of subject /, / = 1,..., N. Finally, let 
M, be the set of responses to be evaluated. Then yM is the vector formed by stacking the 
responses in set M, and yi(fJ) is the vector formed by stacking the responses of subject i not in 
Mt. 

3 1 Observation-Oriented Local Influence 

Observation-oriented local influence measures for random effects models have not yet 
been discussed in the literature. In this section we will derive such a measure using the 
approach to evaluate the influence of a data structure by comparing the maximum likelihood 
estimates based on the sample with and without that data structure. The estimates can be 
compared using the Likelihood Displacement given by Cook and Weisberg (1982): 
where C and C(M) are the maximum likelihood estimates based on the complete sample with 

IOM(=2[T0|C)-T0K(Mi))J, (3) 

and without the observations in AT,, respectively, and L denotes the log-likelihood function of 
the complete sample. Expression (3) can be Taylored using weighted log-likelihood functions. 
Cook (1986) called this the local influence approach Since the subjects are independent, the 
log-likelihood function is the sum of the contributions of the individual subjects to the log- 
likelihood function. Let /(y,|C) and / (M .(y,(M JQ be the contributions of the z-th subject to the 
log-likelihood functions of the complete sample and of the sample without the responses of 
subject i in AT„ respectively. The log-likelihood functions of the complete sample with and 
without the responses of subject i in AT, are both of the form 

iO’IC,ww)=T(y|C)+(l-towX/)(M)(vwIO-/)0’1IO), (4) 

where coA/ is a scalar. If g>m = 1, expression (4) is equal to the log-likelihood function of the 
complete sample; if =0, it is equal to the log-likelihood function of the complete sample 
without the responses in AT,. Expression (4) indicates that the weighted log-likelihood function 
can be defined as: 

(5) 
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where to is the vector of weights 0)M . Using expression (5), expression (3) can be written as: 

LD(C)=2[L(y\l^Q)-L(y\^0)], (6) 

where to denotes the vector of weights for which each element is equal to 1, except the weight 

corresponding to set Mt which is equal to 0, and w0 is the vector of weights for which each 

element is equal to 1. The corresponding maximum likelihood estimates of the model 

parameters are and Cu The assessment of influence due to the deletion of units can be 

interpreted as perturbing tfie empirical distribution function. Weights between 0 and 1 can be 

used to asses smaller perturbations of the empirical distribution function. Different vectors o> 

may be of interest The evaluation of all possible vectors go of interest, however, may be very 

laborous. One way to reduce the amount of work is to approximate the likelihood displacement 

by the second order Taylor expansion around co0 The likelihood displacement in co0 is zero 

L(>|CU ,t*)0) is always larger than or equal to L(y\la,w0). Consequently, the value of the first 
derivative in o)0 is zero Hence the second order Taylor expansion depends only on the second 

derivative Let A = 
d2L(y\(j,w) 

acaw 
and d be the direction in which the second derivative is 

evaluated For example, to evaluate the influence of the responses inMf the only element of d 
unequal to zero is the element corresponding with u>M . The local influence measure in O)0 in 

the direction d is defined as twice the absolute value of the second derivative in the direction d 
For example, if we are interested in the influence of unit i is equal to the vector for which only 

the /th element is unequal to zero. The ;th element is equal to 1. Cook (1986) shows that the 
local influence measure is equal to: 

C^Irf'A' a27.(yl0' 
ac2 

A</|, (7) 

evaluated in C=C Local influence measures for a particular subset of the model parameters 
can be obtained by the procedure proposed by Cook (1986). 

To calculate the value of the local influence Cd, the information matrix and A must be 

computed. The information matrix of the model parameters is standard output of most 
computer programs and can be interpreted without knowing the exact analytical expression. 

Thus we only need to concentrate on A to compute the local influence measure in (7). 
Let S, and , be the contributions of subject i to the score function based on the 

complete sample with an without set M„ respectively The column of A corresponding to 

weight is then equal to S, - Sl{U} The general expressions for (St - Sl(M)) are given in 

appendix A. For the Poisson model. S', and St,M) can be derived using the information given in 

the model section The model parameters in the Poisson model are the regression parameters P 
and the parameters specifying the variance-covariance matrix G of the random effects 

Consequently, the difference in the score functions consists of the subvector of the difference 

in the score function for the regression parameters and the subvector of the difference in the 

score function for the parameters specifying the random effects variance-covariance matrix G. 



76 

Local influence for generalized linear mixed effects models 

The subvector corresponding with the regression parameters is given by: 

^0, - A,) -'’CpO'.w,) - (8) 

where X, is the design matrix with yth row and Jf ) is the design matrix of the responses of 
subject i not in AT,, p, is the vector of empirical bayes estimates of the responses of subject i, 
based on all n, observations of subject i, and p,(M) is the vector of empirical bayes estimates of 
the responses of subject; not in AT,, based on tbe responses not in AT,. 

Assuming that the random effects variance-covariance matrix is unstructured, the 
parameters specifying the variance-covariance matrix of the random effects are the elements of 
the matrix G. The derivative of the weighted log-likelihood function with respect to the jk-ih 
element of the variance-covariance matrix of the random effects G, G.k, and fory # A in 
0=0 is equal to the sum of the jk-th element and the kj-th element of the matrix 

(9) 

where E(bfi'\y.,Q and E(bb'\yi(M yQ are the empirical bayes estimates of the second moment 
of the random effects of subject i, based on the complete sample with and without the 
responses in set AT„ respectively. The derivative with respect to is equal to the jj-th element 
of this matrix (9). 

It should be noted that the larger the difference in contribution of subject / to the score 
functions, the more the corresponding maximum likelihood estimates differ. To take the shape 
of the log-likelihood function into account, expression (7) normalizes the difference in 
contribution using the variance-covariance matrix of the model parameters 

Note also that the form of expression (7) is very similar to the form of Cook's Distance 
(Cook, 1977), where the amount of difference in regression parameters is evaluated with 
respect to the metric defined by the variance-covariance matrix of the estimated regression 
parameters. Expression (8) is a function of the residuals and the location in the design space 
where the responses are measured, which is similar to the diagnostics in ordinary least squares. 
In the next section the relation between the subject-oriented local influence measure and the 
observation-oriented local influence measure will be discussed. 

3.2. Subject-Oriented Local Influence 

For the subject-oriented local influence measure each set AT, will consist of all 
observations of subject i, implying that the function l,(kr)(yi(M jQ will be equal to zero. Let S, 
be the set of all observations of subject /, If we are only interested in the influence of 
subjects, expression (5) can be rewritten as: 

/-(vic)+E:v, E.„, (i-“m)(V,,0',(m,,io-/0',io) (10) 
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--im+Y", (i-«sx-//0'jic))=ET., «s/,o,io, 

which is equal to the expression given by Lesaffre and Verbeke (1998) for the subject-oriented 
local influence approach Hence the subject-oriented local influence measure is a special case 
of the observation-oriented local influence measure (7). In the following section these influence 
measures will be applied in the analysis of a real dataset 

4. Data description 

The dataset which will be used to illustrate the influence measures is reported by 
McKnight and Van Den Eeden (1993) and is obtained from a two treatment multiple period 
crossover trial in which the number of headaches per week is repeatedly measured for 27 
patients. In the first period, each patient received the placebo. In the other four periods the 
patients received either the placebo (P) or the aspartame (A), in random order, using the 
double-blind crossover treatment design. To wash out the effects of the treatment of the 
foregoing periods the periods are separated by one day. Although most of the counts are based 
on periods of seven days, the number of treatment days in the periods varied. Hedeker (1999) 
showed that the sequence in which the placebo and aspartame is given did not matter 
significantly. Furthermore, he assumed only random intercepts. This formed our motivation to 
assume that the patients only differed in their intercepts and that the sequence in which the 
observations are taken was not important. Table 1 shows the dataset. The data are grouped 
according to the use of aspartame and the use of placebo. The last column shows the actual 
sequence in which the placebo and the aspartame were given. Almost all periods were seven 
day periods, but some periods were smaller. The number of days in the periods smaller than 
seven days are given within brackets. The asterisks in Table 1 indicate the observations and 
patients which will be detected to be influential. 

We fitted the poisson regression model with random intercepts: 

■EOylPA) = ',,exP(Po + DrugAspv P, + (11) 

where po is the fixed intercept, DrugAspjj indicates whether placebo (0) or aspartame (1) is 
given to patient; at timepoint j, P, is the corresponding fixed regression parameter, bm is the 
random intercept for patient i and 4 is the number of days in the period. The standard deviation 
of the random intercept />„, is denoted by 8. 
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Table 1. Number of Headaches of the Patients 

Patient Aspartame Placebo Sequence 

1 0 0 
2 5 * 
3 2 2 
4 0 0 
5 0 0 
6 1 1 
7 4 3 
8 0 1 
9 2 
10 0 0 
11 1 1 (3) 
12 5 * 0 
13 7 6 
14 1 2 
15 2 1 
16 3 
17 1(1) 
18 1 0 
19 1 0 
20 1 (2) 
21 2 6* 

22 1 1 
23 2 3 
24 1 2 
25* 6 7 
26 
27 3 2 (4) 

3 
0 
2 
0 
3 
1 
1 
1 
2 
0 
0 
0 
7 
2 
3 
1 
4 
0 
0 
1 
1 
2 
7* 
1 
1 
0 
3 

3 
2 
3 
0 
2 
0 
1 
1 
0 
0 
0 
0 
7 
2 
1 
1 

1 
1 
6 

3 
0 
3 
0 
1 
1 
3 

1 PAPPA 
PAP 

2 PAPPA 
0 PPAAP 
0 PAPAP 
3 PAPPA 
2 PPAPA 

1 (2) PPAAP 
1 (5) PAPP 

0 PPAPA 
3 PPAPA 
0 PPAAP 
7 PAPAP 
0 PPAPA 
0 PPAAP 

PAP 
PA 

1 PAPPA 
1 PAPAP 

PPA 
3 PAPPA 
0 PAPPA 
2 PAPAP 
0 PPAPA 
0 PAPAP 

PP 
0 PPAPA 

Figure 1 shows the subject-oriented local influence of the patients on the regression 
parameters p0, P,, the variance of the random intercept 6, the vector of regression parameters 
P = (P0, Pj) and the vector of all model parameters (p, 6), respectively. Patient 25 has a much 
larger influence on the regression parameters than the other patients of the sample. Table 1 
shows that patient 25 has extremely many headaches using aspartame and a small number of 
headaches in the placebo condition. 

Figure 1. Values of the subject oriented influence measures for five different sets of model 
parameters 
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After deletion of the observations of patient 25, the subject-oriented influence measure did not 
detect any other influential patients for the regression parameters. Figure 2 shows the influence 
at the observational level. The numbers in Figure 2 refer to the patients from which the 
influential observations are taken. The values of the influence measure for the four influential 
observations are more than three times larger than the values of the other observations The 
influential observations are marked by an asterisk (*) in Table 1. It can be seen that the 
influential observations deviate from the subject-specific profiles. For example all observations 
of patient 12 are equal to 0, except the influential observation itself, which is equal to 5. 

Figure 2. Values of the observation oriented local influence measures 

0.3 

0.2 

0.1 

To show the effect of the deletion of certain observations and/or patients on the 
estimated parameters. Table 2 displays the estimates of p0, P, and 6, based on the sample 
omitting certain observations and/or patients. 
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Table 2. Estimated Model Parameters, Based on the Sample with and without Certain Patients 
or Observations. 

_(h_ 

sample -1.72 

Sample without subject 25 -1.70 

Sample without subject 4,10,13 and 25 -1.61 

Sample without subject 25 and without the -1.74 

influential observation of subject 12 

Sample without subject 25 and without die -1.72 

influential observation of subject 23 

Sample without subject 25 and without the 3 -1.74 

influential observations of the aspartame 

group 

Sample without subject 25 and without the 4 -1.77 

influential observations 

P,_5 

0.28(0.14) 0.69 

0.15(0.14) 0.70 

0.19(0.16) 0.39 

0.09(0.15) 0.78 

0.20 (0.15) 0.68 

-0.03 (0.16) 0.76 

0.02(0.16) 0.74 

From Table 2 it can be seen that the estimate of P, remains unstable after the deletion of 
patient 25 and that the estimate of p, varies between 0.20 and -0.03. The change in the 
estimate of P,, due to the deletion of patient 25, is 0.13 and is as large as the additional change 
due to the deletion of the four influential observations. This means that the results still depend 
heavily on a small part of the dataset. 

5. Discussion and Conclusions 

In this paper the subject-oriented local influence measure proposed by LesafFre and 
Verbeke (1998) is generalized to the observation-oriented local influence measure. 
Furthermore, local infuence is discussed for generalized linear models with random effects. The 
real data example shows that both the detection of influential observations and the detection of 
influential subjects are important. It shows that subjects may have a large influence while none 
of their observations is detected to be influential On the other hand, the example shows also 
that influential observations may be distributed across subjects which are not detected to be 
influential by the subject-oriented influence measures. If we only use subject-oriented local 
influence measures the estimates of the parameters may heavily depend on the remaining small 
number of influential observations. Consequently, if one of these measures is not used, the 
possible instability of the parameter estimates may not be detected. 

The influence is evaluated both for the whole set of parameters as well as for subsets of 
parameters. This can be motivated by the fact that some parameters may be of more interest 
than other parameters. Another motive is shown by the analyses of the real data example. The 
analyses of the real data example showed that if we had only used detection methods to detect 
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influential data structures for the whole set of parameters, some influential subjects for the 
estimation of the variance of the random effects were not detected to be influential 
Unfortunately, the local influence approach is a local approach. The change in the estimated 
parameters due to the deletion of the detected subjects and observations may not always be 
disproportional large. This is especially the case for the detection of influential subjects for 
subsets of parameters. If, for example, the estimates of two regression parameters P, and P2 are 
highly correlated, it may be expected that a change in the estimate of P, will be followed by a 
change in the estimate of P2. This is taken into account by the multiplication with the variance- 
covariance matrix of the model parameters in expression (7). However, a change in P, may not 
necessarily be followed by a change in P2. In other words, suppose that the influence of a 
subject for the estimate of p, is large, while the influence of that subject for P2 is small Then 
the local influence measure may detect that subject to be influential for the estimate of P2, due 
to the large correlation between p, and P2 and the large influence of that subject for the 
estimate of Pt. One method to avoid this is to orthogonalize the design matrices. 

It should be emphasized that we used normally distributed random effects in this paper. 
Further research is needed to evaluate the robustness of the measures against violations of the 
normality assumption of the random effects. This paper discussed observation-oriented local 
influence and subject-oriented local influence in a very general form. Nevertheless, models 
assuming, for example, serial correlations are not contained in the discussed models. 
Fortunately, the weighted log-likelihood function in (5) can also be used for models with serial 
correlations. The relationship between local influence and goodness-of-fit seems to be very 
strong. Consequently, this is a topic for further research. 

For the analyses of the real data example the random effects are assumed to be normally 
distributed However, other distributions can be assumed It should be noted that the only 
changes in the expressions if the distribution of the random effects is discrete rather than 
continuous is the change from integrands into sums. 
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Appendix A 

The expression for the contributions of subject i to the score functions for the model 
parameters are given in this appendix. 

If the conditional density of the responses of subject i, i = is given by 

/sIf-i exp| 
v 0 -i|;(0 ) 
^ ^ " +c 0 ,(|>) 

«/4>) ,J 
and the density of the random effects is given by 

g= 
^2nY\G\ 

exp(-A^G 'h/2), the contribution of subject z to the log-likelihood function 

based on the complete sample is equal to log 1/ g db, Note that the parameters specifying / 
are not used to specify g and vice versa, implying that the vector of model parameters ( can be 
divided into the vector of parameters f,, specifying G, and the vector of parameters C2, 
specifying f. The derivative of the weighted log-likelihood function with respect to the y/t-th 
element of the variance-covariance matrix of the random effects G, Gjk, and cqw for j * k in 
0=0 is equal to the sum of the jk-th element and the kj-th element of the matrix 

Ig ’(£(66;iy„C)-£(*6>i(M(),0)g (12) 

where £'(6 />,/[y,,C) and E(bb'\yi(M),Q are the empirical bayes estimates of the second moment 
of the random effects of subject z, based on the complete sample with and without the 
responses in set M„ respectively. The derivative with respect to G is equal to the //-th element 
of this matrix (9). 

Let S:(Z2) and SllM ^(j,) be the contributions of subject z to the score functions for (2. 
S,(Q is then equal to: 

xq=/e;\ 
v -Li (30 SiJ r,j 
«,/<!>) 3C2 

Sc,{y,r$) 

a<t> 

v 0 Si] ‘J 

a,,2(4>) d<S> 

a<t> 
8C, 

/, g 

ff, g 
-db 

db, 
(13) 
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Consequently, S\(X2) is the empirical bayes estimate of 

(14) 

Analogously, ■S’j(M)(C2)is the empirical bayes estimate of 

based on the responses not in It should be noted that if the dispersion <t> is constant, the 
second term vanishes. This is the case when, for example, Poisson models and logistic models 
are used. In Appendix B. more attention will be paid to the Poisson model, because this 
regression model is used for the real data analyses. 

Appendix B. Expression (8) to (10) for Poisson regression: 

In this appendix the expressions (8) to (10) are formulated for Poisson regression with normally 
distributed random effects. To simplify the expressions we introduce some notations: 

The location parameter: -wik = xrlt p + b. 
The conditional mean of the responses: A,* = t,k exp(w,t) 
The Poisson density funtion: /, = exp( - As + jr, log tj+yj wt] - log(y„!)) 

exp(~bliG>b/2) The Normal density function: 8,= 

Expression (8): X'fr,-p,)-p,(M>) 

The matrices Xt and Xi(u^ and the vectors of responses and jr(M) are already defined in the 
text. The only vectors which depend on the choice of the model are p( and g/(A/). For Poisson 
regression element k of p(. is equal to 

evaluated in p = pand G = G Element k of pl(M) is for Poisson regression equal to 
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r 
IK—-- 

evaluated in p = P and G = G. 

Expression (9) : '[E(bb'\y ^Q-Eibb'^Xp ‘ 

The matrix G is already defined in the text. The conditional estimates of the second moment of 
the random effects are given by: 

£(6AV„0= [bb] db 

jKUf.jg.dh, 

and 

/ « r ! tJ ij&i 

bh1,---—db< 

fU'u.M/vgph, 

both evaluated in p = p and G = G 

Expression (10): 

^(vio+E;v, EMi («/)-/,0’,io)= 

The log-likelihood function L(y\C,) for Poisson regression is given by 

Ef 1 log/IX"'i/;^*, 

The contribution of subject 1 to the log-likelihood function based on all observations, /,(y,|C), is 
equal to log (W^'^f^g/rfb and the contribution of subject / to the log-likelihood function based 



85 

Local influence for generalized linear mixed effects models 

on all observations, except the observations in /M(y |0, is equal to 

iog/lT fjS:dbr 
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