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Abstract 

Mixed effects models for longitudinal data with fixed as well as random parameters are often 

used to describe average profiles. Influence measures are usually constructed to detect 

influential subjects and observations for the fixed regression parameters, treating the subject 

specific parameters as nuisance parameters. One of these measures is the well-known Cook's 

Distance. We show that this statistic may fail to detect or may incorrectly detect influential 

observations due to the random effects variances and covariances. A conditional version of 

Cook's Distance is proposed that deals with the above mentioned problem. 

Keywords: Influential Observations, Cook's Distance, Random effects, conditional Cook's 

Distance 

1 Correspondence to: Frans E.S. Tan, University of Maastricht, Department of 
Methodology and Statistics, P.O. Box 616, 6200 MD Maastricht, The Netherlands. Phone: 
+31433882278. E-mail: Frans.Tan@Stat.Unimaas.Nl 



26 

An influence measure for longitudinal mixed effects regression models 

1. Introduction 

In the past decade there is a large number of literature on longitudinal models with random 

effects (Diggle, Liang and Zeger, 1994, Vonesh and Carter, 1987 among others). In spite of 

this growing interest, diagnostic methods in a longitudinal context remains a somewhat 

neglected topic. This article discusses the problem of identifying an observation with a 

demonstrably large impact on estimated regression parameters. Such observations are called 

influential observations by Belsley, Kuh, and Welsch (1980). Chatterjee and Hadi (1986) 

review several influence measures. Each of them stresses different aspects of influence on the 

calculated values of estimates. Some measures are constructed to detect observations that may 

influence some regression parameters, or a linear combination of these parameters and/or the 

estimated variance of these estimated regression parameters. Barrett and Ling (1992), Cook 

(1968), De Gruttola, Ware and Louis (1987), Rohlf (1975) and Siotani (1959) among others, 

have suggested extensions to multivariate regression. The existing influence measures for 

longitudinal data are developed in the context of fixed effects models with structured or 

unstructured variance-covariance matrices. One of these measures is Cook’s Distance. 

Although it seems natural to use Cook’s Distance as an influence measure for mixed effects 

regression models, some cautions should be made with respect to the application of this 

measure, Several suggestions have been made in Literature. Christensen, Pearson and Johnson, 

(1992) proposed a two step method to detect influential observations. In the first step a 

diagnostic tool is used to evaluate the influence on the estimates of the variance components. 

They noticed that observations that have a large impact on the estimated variance components 

will affect the detection of influential observations for the estimated regression parameters. In 

the second step they used the extension of Cook’s Distance, Banerjee (1998) noticed that the 

effectiveness of Cook’s Distance as an influence measure in the longitudinal data setting is 

limited. Banerjee and Frees (1997) have applied the concept of partial influence to take into 

account the effects on subject specific parameters and measure the impact of a subject on the 

population parameters. Recently, Lesafffe and Verbeke (1998) and Ouwens, Tan and Berger 

(1999) have used the local influence concept to detect influential subjects (second level) and 

observations (first level), respectively. 
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In this article we argue that Cook’s Distance is rather insensitive to changes of the estimates 

of the subject specific regression parameters. This may occasionally lead to an observation 

being incorrectly detected as influential. A conditional version of Cook’s Distance is proposed 

that addresses the above mentioned problem by first conditioning on the subjects in the sample. 

In section two the data from the London Growth Study (Tanner, Whitehouse, Marubini and 

Resele, 1976) are described and the problem of detecting influential observations is motivated. 

In section three the underlying regression model is specified. In section four Cook’s Distance is 

investigated in detail. Examples will be given to demonstrate the shortcomings of Cook’s 

Distance for mixed effects models. A conditional version is proposed in section five and some 

numerical examples are given that show the similarities and discrepancies between the two 

representations of Cook’s Distance. Some general conclusions will also be discussed in detail. 

Finally, the London growth study data will be analysed for influential observations in section 

six. 

2. The London Growth Study: Data description and problem formulation 

A more elaborate description and analysis of the London Growth Study can be found in 

Tanner et al. (1976), as part of the so-called Harpenden Growth Study of several hundred boys 

and girls in a children’s home in the country just outside London Between 1948 and 1972. 

Each child was observed two times a year until the first signs of puberty appeared, followed by 

measurements every three month until the growth spurt ends, and then each year until twenty 

and finally each five year. Tanner et al. (1976) have analysed 55 boys and 35 girls whose 

measurements were made regularly until they reached adult size. Goldstein (1979) selected 

growth data of twenty pre-adolescent girls between six and ten years old and named this the 

London Growth Study. One of the topics of the London Growth Study was to describe the 

mean growth of the girls for each of three groups of mothers: named short mother (< 155 cm), 

medium mother (155 - 164) and tall mother (>164). Table 1 shows the relationship between 

height and age of the girls for the three different groups. This table can also be found in 

Goldstein (1979). Inspection of the data reveals that the second observation of the fifth girl is 

perhaps a typo. During the analysis, the influence of this observation on the average rate of 

change should be evaluated. Furthermore, the influence of the other observations, which might 

not be apparent in this stage, should also be evaluated. 
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Age 

Girl 6 7 8 9 10 

Short mother 

1 111.0 116.4 

2 110.0 115.8 

3 113.7 119.7 

4 114.0 118.9 

5 114.5 112.0 

6 112.0 117.3 

Mean 112.5 116.7 

Medium mother 

7 116.0 122.0 

8 117.6 123.2 

9 121.0 127.3 

10 114.5 119.0 

11 117.4 123.2 

12 113.7 119.7 

13 113.6 119.1 

Mean 116.2 121.9 

Tall mother 

14 120.4 125.0 

15 120.2 128.5 

16 118.9 125.6 

17 120.7 126.7 

18 121.0 128.1 

19 115.9 121.3 

20 125.1 131.8 

Mean 120.3 126.7 

121.7 126.3 130.5 

121.5 126.6 131.4 

125.3 130.1 136.0 

124.6 129.0 134.0 

126.4 131.2 135.0 

124.4 129.2 135.2 

124.0 129.2 135.2 

126.6 132.6 137.6 

129.3 134.5 138.9 

134.5 139.9 145.4 

124.0 130.0 135.1 

129.5 134.5 140.0 

125.3 130.1 135.9 

124.8 130.8 136.3 

127.9 133.2 138.5 

132.0 136.6 140.7 

134.6 141.0 146.5 

132.1 139.1 144.0 

133.8 140.7 146.0 

134.3 140.3 144.0 

127.4 135.1 141.1 

141.3 146.8 152.3 

133.6 139.9 144.9 

Table 1 

Data of the London Growth Study 
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3. Model Specification 

Suppose yj, i = IN is a vector of responses of subject i at n, time points. These 

responses are described by the longitudinal mixed effects regression model: 

yj=Xfi+Zlbl+el , (1) 

where the vectors e,, e2,...,e„ are supposed to be measurement errors (or disturbances), 

which are independently normally distributed with mean zero and covariance matrix a2I„ i = 

1,...,1V, 7, is the identity matrix of rank ^ and a2 is the common variance of the measurement 

errors, p is a/?xl fixed effects regression parameter vector and b, is a qxl vector of random 

effects regression parameters, which are independently and normally distributed with mean 

zero and covariance matrix D. Finally, the matrices X{ and Zj are the n^p and rc.xg design 

matrix of rank p and rank q, respectively. For longitudinal data the columns of the Z, matrices 

are often functions of the time components. In general, the matrix X, consists of time varying 

and time independent co variates. Furthermore, the Z, matrices are submatrices of the X,- 

matrices. The variance of y. is equal to V; = ZpZ, ’ + a2I,. The block diagonal matrix V is the 

matrix with V, ‘s as block diagonal. 

Model (1) may serve at least two different types of objectives. The first type of objectives 

brings into focus the group results. In this case, the expected value of the responses y, is equal 

to the average profile X, p with variance-covariance matrix V;. An influential observation in this 

context is supposed to have al large impact on the estimated fixed regression parameters, and 

the fitted response yi is equal to the estimated average profile X;p. The London growth study 

data dealt also with group results. The main objective was to compare mean growth of pre¬ 

adolescent girls for each of the three groups. The second type of objectives deals with the 

situation that the estimation of the subject specific profiles is of main interest. Examples can be 

found in educational research (Tan, 1994). One of the examples is the analysis of progress-test 

data. A progress-test intends to measure the progress of the students in a school, and describes 

and predicts the growth of knowledge of each student. In this case, the expected value of the 

responsesy; in model (1) is equal to the subject specific profile X, P + Z, b. with variance a2. 

An influential observation in this context may have a large impact on the estimated subject 

specific parameters i;or on the estimated fixed parameters (lor on both. 
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The regression parameters can be estimated, for example, by using the procedure proposed 

by Laird and Ware (1982). The variance-covariance matrices D and V of the random 

regression parameters are estimated by the ML. method. P and b. are given by the following 

formulas: 

■Vi (2) 

and 

brDZ'v-'fa-Xfi) , 
(3) 

respectively. A method to detect influential observations for the fixed regression parameter is 

Cook’s Distance, which will be discussed in the following section. 

4. Cook’s Distance 

Cook’s Distance is based on the concept of the influence function introduced by Hampel 

(1974). At population level an influence function measures the influence on a parameter when 

one observation is deleted. In a standard linear regression context, where the regression 

parameters are fixed, the finite sample approximation of the influence function leads to the 

distance measure developed by Cook (1977): 

c_(y-yayv,(y-yw) (4) 
‘ p 

Where y and y(J) are the fitted values of y = (y,,0’2/,....yw,)/ , using the sample with and 

without observation j, respectively, and p is the number of independent design parameters. 

Note that the variance matrix V ofy is generally unknown and must be estimated from the 

data. The popularity of Cook’s Distance is partly due to the simplicity of its interpretation. CJ 

can be interpreted as the distance between the two vectors of fitted values when the fitting is 

done including or excluding the y'-th observation. It measures the amount of perturbation of the 

fitted response y due to an influential observation. 
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In particular. Cook’s Distance identifies observations (level one) with an unusual large 

impact on the average profile X p . Influential observations that have an unusual large impact 

on the subject specific parameters 6 cannot always be detected by Cook’s Distance and may 

occasionally lead to an observation being incorrectly detected as influential. The following 

example may clarity these statements. The samples in the following illustrations contain 20 

subjects, for which every subject is measured nine times at equidistant time points. The data 

are generated from the following underlying model: 

y* = (Po+6o*)+Pi'+e*. (5) 

where t is the time component, yk is the response of subject k at time t, P0 and p, are the fixed 

intercept and slope, respectively, and bok is the random intercept corresponding with the k-ih 

subject, which is normally distributed with mean zero and variance 62 . The scattergram of the 

relationship between the response yk and the time points in Figure 1 shows a situation in which 

it is known that exactly one observation has a large impact on the estimated value of bok . 

Without loss of generahty we suppose that an observation of subject 8 has a large impact on 

the estimated value of bm. The relationship between the response y% for subject 8 and the time 

points is also made apparent in Figure 1. The data for this illustration are generated such that 

the outlying observation has a large impact on the estimated subject specific parameter 608and 

hence on the estimated fixed intercept (30but not on the estimated fixed slope pj. 
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Figure 2 shows the relative changes (due to the deletion of a level one observation) in the 

estimated fixed intercept P0, the estimated fixed slope fi, and bok , respectively. The relative 

change b(jk is calculated relative to the sum of the standard deviation <5 and the true value of the 

fixed intercept. 

Figure 2. Relative changes in bt)k, P0 and Pj 

percentages 

bJ10 Po P, 

Figure 2 indicates that the fifth observation of subject 8 has the largest impact on p0, and the 

ninth observation of subject 8 has the largest impact on the estimated fixed slope pj. Figure 2 

also shows that the value of the bog is strongly influenced by the fifth observation of subject 8. 

Figure 3 shows that Cook’s Distance incorrectly recognizes the ninth observation being most 

influential. It indicates that the ninth instead of the fifth observation of subject 8 has the largest 

Cook’s Distance (diagram CD50). If the fifth observation is set equal to the average value of 

subject 8 (diagram CD5E), then the value of Cook’s Distance of the ninth observation becomes 

comparable to the other Cook’s Distances. Obviously, the ninth observation of subject 8 is 

incorrectly recognized to be influential due to the influence of the fifth observation of that 

subject. 
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Figure 3, Cook’s Distance and Conditional Cook’s Distance 

CDSO CD5E CcoJ2 

The influence of observations on the estimates of p depends on the specific time point. It is 

well known, that even if none of the observations has a significant impact on the regression 

parameters, Cook’s Distances at the boundaries of the time interval will be larger than at the 

centre. An obvious way to solve this problem is to compare Cook’s Distance per time point 

across subjects. Figure 4 shows the relationship between Cook’s Distances and time points. 

In general, for each time point there may be one candidate influential observation. A possible 

procedure to detect an influential observation may be to determine the impact on the estimated 

regression parameters by sequentially deleting each combination of potentially influential 

observations. Such a procedure, however, may lead to a large number of possible combinations. 

Another approach, which may be more efficient, is the use of a conditional Cook’s Distance 

which will be elaborated in the next section 
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Figure 4. Cook’s Distance over Time 

Time 

5. Orthogonal decomposition of Cook’s Distance and Conditional Cook’s Distance 

In the previous section the ninth observation of subject S was incorrectly detected as being 

most influential. In this section this incorrect result will be explained and the proposed 

conditional Cook’s Distance will be motivated. Recall that we have started with model (1) as 

the specification of a mixed effects longitudinal regression model. Furthermore, theZ; matrices 

are submatrices of the X matrices. Hence model (1) can be rewritten as 

y. = (Zi A(.)P + Z/>, + e(. 

= Zfil+Afi1+Zfi.+e. , 
(6) 

with A, a n, x (p-g) design matrix, and P = ( P,’, p2’)’. In general, if deletion of an observation 
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has an impact on the estimate of A, p2, then the estimate of Z, Pj will also be influenced. The 

amount of influence depends on both design matrices Z, and A, For example, for model (5), if 

the axis are located around or far away from the centre point of the scattergram, a change in 

the estimated slope P[ due to an influential observation leads to a small or a large change in the 

estimated intercept P0, respectively. In order to evaluate the change of a specific fixed 

parameter estimate not attributed to the change of the other fixed parameter estimates. An 

orthogonal decomposition of the matrix Z is constructed, such that 

y i - ZjPi' +z/ P2 +Zf> i+e,, (7) 

where pjis a function of all fixed parameters, and Zf , is the design matrix orthogonal to Zr 

In model (5), a change in the estimate p* represents a shift, and a change in the estimate P2 

represents a rotation around the center point of the scattergram. Figure 5 shows that deletion of 

the fifth observation of subject 8 causes the largest shift and deletion of the ninth observation of 

the same subject causes the largest rotation. Furthermore, a properly chosen influence measure 

should indicate the fifth observation as being most influential. It can be shown that (Theorem 

appendix), using Cook's Distance according to equation (4), the contribution to the Cook's 

Distance score due to a change in pj is weighted by a monotone function of the inverse of the 

variance covariance matrix of the random parameters. The contribution due to a change in P2 is 

not weighted by a function of this matrix. For example, in the random intercept case the shift 

parameter estimate is divided by a monotone function of the variance of the random intercept. 

The effect of the fifth observation on the estimated fixed intercept is larger than on the 

estimated fixed slope, whereas the effect of the ninth observation on the estimated fixed slope is 

larger than on the estimated fixed intercept. Consequently, the effect of the fifth observation 

will be underestimated. It should be noted that a change in the shift parameter estimate is fully 

ascribed to a change in the subject specific intercept estimates boi, (=,...,1V. Cook’s Distance is 

obviously less sensitive for changes in 6,. due to the division by the variances and covariances of 

the random parameters. We argue that the effect of an observation on an estimated fixed 

parameter should not be normalized by the between subject variance and covariances. 
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Figure 5. Relative change in fi, and 

percents 

These variances and covariances measure differences between subjects, whereas the effect of 

deleting an observation reflects the change of an estimated subject parameter irrespective of the 

between subject variance. This unpleasant feature of Cook’s Distance for mixed effects models 

can be overcome by first conditioning on the subjects in the sample. This conditioning implies 

that the bi ‘s are considered to be fixed parameters, and thus we do not have to deal with the 

variances and covariances of the random parameters. The variance of y, conditionally on the 

subjects in the sample is then equal to the measurement error variance o2. The conditional 

version of Model (1) can be expressed as follows: 
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y=Uy+€, (8) 

Xj Z, 0 0 ... 0 

x2 0 z2 0 ... 0 

0 z. 

Where U is of the form 

Xt and Z, are an n, x p design matrix of fixed parameters of rank p and an n, x q design matrix 

of random effects of rank q, respectively, y is given by 

(9) 

and e =f eN’)’ is the vector of measurement errors. 

Conditioning on y and thus on the b, ‘s and on p implies that the variance matrix of_y is equal to 

o2/, which Ls the block-diagonal matrix containing as ith block o2/,. Unfortunately, the 

regression parameters are not identified, because the design matrix U is in general not of full 

rank. U can only be of full rank if Xi does not contain time independent covariates. Therefore, 

we propose to use the Laird and Ware estimators as done in the unconditional case. Moreover, 

by choosing the same set of point estimates. Cook’s Distance can be compared with the 

conditional Cook’s Distance. Using the concept of Cook’s Distance, the conditional Cook’s 

Distance (conditional on the subjects) is equal to 

(10) 
a2((N-\)q+p) 

Let k=(N-l)q+p, then expression (10) can be decomposed as: 
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The first term Ccond 
(E-fy/X'XCPA-,) 

, can be interpreted as a distance measure for the 
to2 

estimated fixed effects parameters. This term is equal to the Cook’s Distance, but without 

normalizing random variance and covariances (see corollary appendix). The second term 

can be interpreted as a distance measure for the change 

in the estimated subject specific regression parameters. A major advantage of the 

decomposition (11) is that the total amount of influence as given by formula 10 can be divided 

into an amount of influence on the overall parameters and an amount of influence on the subject 

specific parameters. 

To illustrate the merits of the conditional Cook’s Distance the random intercept example is 

used again, where the fifth observation of subject S was influential. The conditional Cook’s 

Distances are plotted in figure 3. Figure 3 indicates that the fifth observation has a large 

conditional Cook’s Distance, and thus the conditional Cook’s Distance correctly detects the 

fifth observation as influential. Figure 6 shows the values of the decomposition terms of 

formula 11 for the illustration mentioned above. Note that the fifth observation has a relatively 

large impact on as well as on bak . Unlike Cook’s Distance, the conditional 

Cook’s Distance does not normalize the effect of the fifth observation by a function of the 

random intercept variance. Figure 6 makes apparent that this variance is substantial, because 

now the fifth observation of subject S instead of the ninth has the largest influence value. The 

second term shows that the fifth observation has the largest effect on the estimated subject 

parameters. The first term of the decomposition also emphasizes that this fifth observation is an 

influential observation for the estimated overall intercept as well. As demonstrated in this 

figure, the last term of the decomposition are extremely small. 
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Figure 6 Values of the three terms of the decomposition 

Values 

C„. <W10 

6. The London Growth Study: An analysis for influential observations 

The model that we use for the London growth study is a random intercept longitudinal 

regression model with time versus group interaction. Note that Goldstein (1979) has used a 

fixed effects model with time versus group interaction. The inter-subject variation for each of 

the three groups is small. The discrepancy between Cook’s Distance and its conditional version 

is mainly due to this variation. Therefore, the first and second group are combined to obtain a 

larger inter-subject variation. The model is specified as follows. 

T, = (Po+*o,)+PiG+P2'+P3G*/+e, (11) 
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where G is the indicator for tall mothers, fijJ = 0.3 are fixed regression parameters, is the 

error term, b0! is the intercept of subject i, and y, is the length of girl i at time point (age) t. 

Figure 7 shows the Cook’s Distances, the conditional Cook’s Distances and the values of the 

three terms of decomposition (11). Cook’s Distance C; indicates that the fifth observation of 

the first girl in the second group (girl number 14) is most influential. The conditional Cook’s 

Distance Ccond , however, indicates that the second observation of the fifth girl of the first 

group (girl number 5) is most influential. The same observation is indicated as most influential 

by the first and the second terms C . and C . , respectively. The fifth observation of first 
'i 

girl of the second group is also indicated by the first term as influential. A closer inspection of 

the data in Table 1 shows, that the growth curve of the height of girl is flatter than the other 

curves in her group. Table 2 shows that deleting observation five changes upwards the fixed 

regression slope estimate by means of (53. Cook’s Distance correctly detects this change. 

The average growth of the first group remains unchanged. Furthermore, the second observation 

of the fifth girl of the first group is lower than the first observation of the same person. Deleting 

this observation changes upwards the estimated intercept P0 as well as the estimated slope 

of the average growth. The average growth of the second group remains unchanged. Cook’s 

Distance does not detect this change. The conditional Cook’s Distance however, points out 

that the deletion of this observation has the largest impact on a fixed parameter- and subject 

parameter estimate as well. This illustration demonstrates that Cook’s Distance is less sensitive 

for influential observations on the fixed parameters associated to the random effects and that 

the second term of the conditional Cook’s Distance is sensitive for observations that are 

influential for the random effects. 
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Figure 7. Cook’s Distances, values of the three terms of the decomposition and Conditional 

Cook’s Distances 

Values 

-coml^ 

K 
P, 

k 
P, 

Sample 

81.437 (1.218) 

1.686 (2.059) 

5.506(0.102) 

0.742 (0.173) 

Sample without 

2nd observation 

of girl number 5 

82.050(1.083) 

1.073 (1.828) 

5.445 (0.076) 

0.804(0.128) 

Sample without 

5th observation 

of girl 

number 14 

81.437 (1.191) 

0.939 (2.030) 

5.506 (0.098) 

0.849 (0.170) 

Sample without 

both 

observations 

82.050(1.050) 

0.331 (1.782) 

5.445 (0.070) 

0.910(0.120) 

Table 2 

Estimates and Variances of the Elements of p 
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7. Discussion 

In this article we argue that influential observations that have a large impact on the subject 

specific parameters cannot always be detected by Cook’s Distance due to large between subject 

variation. Since some of the fixed regression parameters are more sensitive to changes of 

subject specific parameters, the problem of influential observations should be approached 

locally. A conditional version of Cook’s Distance is proposed that deals with this problem. The 

conditional measure can be decomposed in a part that measures the influence in the estimated 

fixed parameters, a part that measures the influence in the estimated subject specific 

parameters, and a part that can be neglected. 

In general, the error terms in model (1) are correlated due to within individual serial 

correlations. However, in specific applications the effect of serial correlation may be dominated 

by the combination of random effects and measurement error (Diggle et al. 1994, page 88). In 

this article we restrict ourselves to uncorrelated error terms. Note that, if an observation has a 

large influence on an estimated subject parameter, then deletion of this observation will affect 

the variances and covariances of the random parameters and hence V. The second term, Ccond , 
2j 

of the decomposition (11) replaces the variance component analysis of Christensen et al. 

(1992). 

In practice, subject oriented as well as observation oriented diagnostics should be apphed. 

The proposed method is not meant to be used at subject level. Analysis at subject level alone is 

not sufficient. Instead, one could think of a combination of the method proposed by Banerjee 

and Frees (1998) and the conditional Cook's Distance. Based on this two step approach it 

appears that, at subject level, subject 9 of the London Growth Study is an influential subject. 

In conclusion, we argue that for mixed effects longitudinal model the unconditional Cook’s 

Distance is more suitable than Cook’s Distance to detect influential (level one) observations. 

An influential observation is primarily influential for the estimated regression parameters of a 

specific subject. The amount of influence of an observation should not depend on the amount of 

variation between subjects. Needless to say that, for fixed effects models both measures are the 

same. The error terms are supposed to be uncorrelated. Hence, for fixed effects models we are 

dealing with the common OLS Cook’s Distance. The advantage of conditional Cook’s Distance 

arises when random parameters are present. 
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Appendix 

In this appendix the relationship between Cook’s Distance and the first term of the 

Conditional Cook’s Distance is derived. Given model (1), Z, is a submatrix of X,. Consequently 

the X,-space can be decomposed in the Z, -space and the subspace of X, orthogonal to the Z, - 

space. It follows that for every i the change in the estimates of _y, is equal to 

X(P-pw)=Z,u+Z>, (Al) 

for some vectors u, and , and Z' a matrix of full rank for which the columns are vectors in 

the X,-space and are orthogonal to the columns of Z,. 

Theorem 

Suppose that {siv...,sik } is an orthonormal basis for the kernel of ZflZ,’ and 

{f.,,...,/, ,m } is an orthonormal basis of eigenvectors of the image of Z/)Z, with 

eigenvalues Ajm . Let <y > be the inproduct, p times Cook’s Distance is then 

equal to 

Proof: 

pCr-n, Ell i 
<sim,Z^v>2 

hv 1 
Z_/m = 1 

<t.,Zu >2 

GL 
(A2) 

pC/=(y-4)V,(y-V=Er=I(0-^),X/V.:1X.(P-^) (A3) 

Using the union of {sjv...jik } and {,m } as a basis for the X, -space 

X,(p-pffi) can be written as 

E»;=i <sim^,(P-Po))>s™+SM ^.^/p p0)>'™- (A4> 

The sim’s and tim's are eigenvectors of the matrix V ' with eigenvalues a2 and a 
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+ Alm , respectively. Consequently, the Cook’s Distance can be written as 

Ef. Pw)>: Eimi 

m-1 
o2+Xi. 

(A5) 

It will be proven below that the sim ‘s are orthogonal to the columns of the Z, 

matrix and that the rjm‘s are linear combinations of the columns of Zj. Expression 

(A2) can then be derived from expression (A5) using expression (Al) and the 

statements in the previous sentence, which completes the proof. 

s,m is orthogonal to the columns of for every m, m= 

Proof: 

Take an arbitrary i< A and m< k,. Then ()=ZDZ-stm-sllnZpz'sim . Since D is of 

full rank it follows that Z,’ sim = 0. Consequently sim is orthogonal to the columns 

of Zf. Because i and m were arbitrary, this holds for all i s A and m < k,. 

The tim‘s are linear combinations of the columns ofZ, 

Proof: 

Take an arbitrary is A and m< Im,. Then t,„, can be written as tim = ZJb +d, for 

some b and d, where d is orthogonal to the columns of Z,. Furthermore t,„, is an 

eigenvector of ZfiZ-. Note that Xim is larger than zero. The result can be derived 

as follows: 

ZDZ DZ 
d'd=d\Zp +d) =d'(——'-(Zb +rf)) =(<f'Z,.)—d-(Z,i •d))=0. 

k. A . 
(A6) 

This implies that d is zero and thus that tim is a linear combination of the columns 

of Zj. Because i and m were arbitrary, this holds for all i, i < A and m < Im,. 

□ 
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Corollary 

Let k be the denominator of the Conditional Cook’s Distance (p + (N-\)q). k 

times the first term of the Conditional Cook’s Distance is then equal to 

kC., _ 
, \ 

<Sin,AV,> <Cm.Z,",>2 
/—^m -1 , Zsm = 1 - (A7) 

and the relationship between Cook’s Distance and the first term of the 

Conditional Cook’s Distance is given by 

kC. 
cortdy - pC} Z-/m=i 

<t 

(A8) 
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