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ABSTRACT 

In correspondence analysis similarities or correlations in categorical data are 
translated into distances between dots in a scatterplot, making possible very easy 
and clear interpretation. However, a limitation of this technique thus far in 
analysing causally related variables, is that it offers no information about the effects 
a variable has without the aid of other variables in the model. For this information 
we have to control for the effects of these other variables. By means of an example of 
industrial relations it is shown that this may be done by using a linear model and 
the computer program RENOVA. 

INTRODUCTION 

For the analysis of quantitative data of ordinal and interval level the social science 
researcher can choose out of a wide range of techniques. In the last few decades the 
number of techniques for the analysis of nominal data has considerably increased. 
These techniques may be divided in techniques for statistical testing on the one hand, 
and for description on the other. An important technique in the first category is 
loglinear regression. The results of this technique are slightly more difficult to interpret 
than those of ordinary least squares analysis. From the descriptive techniques we 
mention homogeneity analysis, nonlinear principal components analysis and 
correspondence analysis. In this article we discuss one of the main variants of the latter 
technique. 
In this article correspondence analysis is promoted as a suitable alternative for other 
multivariate techniques, provided that the right type of inputdata is used. It will be 
argued that nominal variables are gaining interest of researchers and of the users of 
social science research. Together with its graphical output, that is highly appreciated by 
most people, this is very much in favor of correspondence analysis (section 2). 
However, a limitation of correspondence analysis applied to variables that are 
supposed to be causally related, is that it offers no information about the effects a 
variable has of its own, without the aid of other variables in the model. We will 
scrutinize under what conditions adjusting for the influence of other variables can be 
neglected or is important (section 3). Next it is shown how the problem of adjusting for 
the influence of variables may be solved by combining correspondence analysis with 
an analysis of a linear model and the use of the computer program RENOVA. This 
procedure is illustrated by an example in the field of industrial relations (section 4). 
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WHY CORRESPONDENCE ANALYSIS? 

The last decade there has been a growing interest in nominal data. As a consequence of 
internationalization and globalization during the last decade, new uses of nominal data 
come into being. That is, as a consequence of this trend we want to compare different 
countries and cultures. We also may want to know to what extend results of social 
science research are different for different cultures. For instance we want to know 
whether a correlation between wage and output of industrial workers, is constant over 
different countries and different cultures. This comes down to introducing 'cultural 
unit' as a nominal variable. 
Another instance of growing interest in nominal data is the rise of practice oriented 
research. Instead of theoretical knowledge with a high degree of generalizability, in 
practice oriented research we want knowledge that is specific for different groups. An 
example is marketing research. Many industrial and agricultural products, and all 
kinds of services as well, aim at different target groups. For that reason target group 
may be an important nominal variable in this type of research. 
A last but not least reason for an interest in categorical data is the feeling of many 
researchers that background variables such as age and gender, although they often 
make possible a high degree of explained variance, are theoretically empty. For 
instance, age in its bare essence is an interval variable that has a strong correlation with 
many other variables. But as such it is an empty variable. An alternative that is much 
more interesting from a theoretical and practical point of view, is the variable 'stages of 
life'. For instance, we may divide the life of human beings in five episodes: childhood, 
adolescence, career building, consolidation of the career and old-age. Thus an interval 
variable changes in a nominal one. Another example is gender. This variable also often 
gives a high proportion of explained variance in a wide variety of dependent variables. 
But instead of gender it may be very fruitful to think about differences between the 
sexes, such as differences in interests and capabilities. So the dichotomous variable 
gender may be split up in several nominal variables of theoretical and practical interest. 
Besides this growing importance of nominal variables there is a second reason for 
using correspondence analysis as a technique for data analysis. The output of 
correspondence analysis is a graphical display that, even in case of complex 
contingency tables, permits rapid interpretation and understanding. In the last few 
decades there has been a tremendous rise of visualisation and visual information. The 
reason for this is that most people are prepared for visual rather than for textual infor¬ 
mation. Moreover, visual information may be processed more rapid than textual 
information. In most graphical displays we see at a single glance the way the data are 
related to each other, and we more easily see regularities such as patterns and profiles 
in the data. 
The graphical output and the easy way it can be interpreted, is the main advantage of 
correspondence analysis. Greenacre: '...hundreds of researchers were introduced to the 
method and became familiar with its ability to communicate complex tables of 
numerical data to nonspecialists through the medium of graphics' (Greenacre, 1993, 
preface). 
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ADJUSTING FOR THE INFLUENCE OF OTHER VARIABLES 

Normally the input of a correspondence analysis is a contingency table with data that 
are not adjusted for the influence of other variables in the analysis or the model. In 
many cases this is no problem or even preferable. The first case to be mentioned is 
when our aim is prediction. For instance, we may want to predict how much time 
people spend each day at looking tv. We may do this by simply regressing tv exposure 
(Y) on variables (X,) that correlate positively or negatively with exposure, as is 
visualized in model (a) of figure 1. The parameters linking exposure to each individual 
predictor is not our main interest. We rather are interested in R-square, the coefficient 
of multiple determination, indicating the proportion of explained variance in Y that can 
be attributed to the X variables. For calculating R-square we only need bivariate 
correlation coefficients and we need not to account for the influence of the other 
predictors in the model. 

(b) (c) (d) 

X—>Y->Z 

Y 

▼ 
Z 

Figure 1. Four basic types of causal models. 

Causal chains is another category of models where there is no need for adjusted data 
(case b in figure 1). In this type of model the effect parameters are bivariate. For 
instance, in calculating the effect of Y on Z, we need not to partial out X. The same goes 
for models of type (c). Most measurement models have this form, where X is a theoreti¬ 
cal variable to be measured, and Y,, Y2 and Y3 are indicators of X. Here too the 
parameters linking the indicators with the theoretical variables are bivariate; there is no 
need for adjusted data. 
However, in causal models where there is more than one causal pathway from one 
variable to another, we need multivariate effectparameters, which means that we have 
to partial out the other variables. In principle this is the case in models of type d. For 
instance, in order to know what in this model is the effect of X on Z without the help of 
Y, we have to partial out the latter. But also in models of type (a) we may have to 
partial out other variables. This is the case when we want to know the causal effects of 
each individual X variable on the Y variable. This is just the difference between 
explanation in the sense of prediction of Y (former use of model (a)) and explanation in 
terms of causal effects of X variables (latter case). 
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One might argue that in case a model of type (d) is used as an impact model, i.e. a 
model that indicates that we have to manipulate X in order to affect Z, the only thing 
that matters is the amount of change in Z that can be invoked by (manipulating) X. 
From a standpoint of effectively intervening in reality this argument is valid. However, 
if after the intervention an evaluation points out that Z did not change very much, it is 
very important to know whether the reason for a poor effectivety is either a weak 
direct effect of X on Z, or a weak causal path leading from X to Z via Y. In the latter 
case we may take measures in order to reinforce this causal pathway. This indicates 
that for impact models and practice oriented research too it may be very important to 
adjust for the influence of other variables in the model. As to correspondence analysis 
we may conclude from this paragraph that in case of models of type (d) and eventually 
(a), we prefer the input of contingency tables with frequencies that are adjusted for the 
influence of other variables. In the next and last section will be demonstrated how this 
can be done. 

THE LINEAR MODEL AND RENOVA 

In this section we will show how correspondence analysis in an efficient way can be 
based on controlled contingency tables. Simple correspondence analysis (CA) can be 
used to analyze and visualize the relation between two categorical variables. The 
researcher is free to consider one of them, say Y, to be causally dependent on the other 
one, say X. When the Y variable is thought to be dependent on several X variables 
simultaneously, a specific version of CA can be used called Composite CA (Israels, 
1987). However, in this version the influence of one X is not controlled for the influence 
of the other X's in the model. This may be a problem, as this case is an instance of 
model (a) in section 2, interpreted as a causal rather than as a predictive model. As will 
be shown, this control in principle can be simply achieved by using a crossed 
contingency table, where an independent variable is crossed with all the other 
independent variables in the model. However, a difficulty is that the number of cells in 
a crossed table increases very quickly with the number of variables and the number of 
categories per variable. A more simple contingency table may be produced as input for 
a controlled correspondence analysis. 
The procedure that we propose for doing this adequately will be elaborated by means 
of an example in the field of industrial relations (table 1). The data in this table are 
taken from the EPOC research project in which 5786 establishments of business 
companies in 10 member states of the European Union participated (EPOC Research 
Group, 1997). 

This large scale comparative survey was initiated by the European Foundation for the 
Improvement of Living and Working Conditions. One of the research questions was 
which variables (X's) are responsible for changes in the number of employees during 
the last three years (Y). Of all features that turned out to be significantly related to 
change in employee number, we selected 'country' (X,) and 'unionization' (X,), the latter 
being the percentage of union-membership per establishment. For the sake of simpli¬ 
city we only selected Spain and Sweden for the first variable, whereas we divided the 
second one into three categories (see table 1). The count columns show the numbers of 
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X| Spain | 

i i 
Sweden |0% union |l-69% union|70-100% | Total | 

(members (members (union memb. j 

|Count|Col %|Count|Col %|Count)Col %|Count]Col %|Count|Col %|Count)Col %| 

number 

increased] 139 
same j 137 
reduced j 115 

Total | 391 

36% ( 193 
35% | 316 
29% j 207 

100% I 716 

I 

27% | 
44% | 
29% j 

100% | 79 

48 
21 
10 

I 

61% | 124 
27% j 141 
13% j 86 

100% I 351 

I 

35% | 160 
40% | 291 
25% | 227 

100% | 678 

24% | 664 
43% | 906 
33% j 645 

100% |2215 

I 
30% | 
41% | 
29% j 

100% | 

Table 1: Observed frequencies of number of employees (Y) against country (X,) and unionization (X2). 

establishments for each row-column combination, while under the name Col % the 
corresponding column percentages are specified. 
In this example with one Y-variable and two X-variables, in a standard composite CA 
the composite table simply consists of the two contingency-tables of Y against Xj and X2 
respectively (table 1). By means of Composite CA we produced the two-dimensional 
scatterplot presented in figure 2. For determining the coordinates of the asterisks in this 
plot we used the canonical normalization option of ANACOR in SPSS (SPSS,1990), 
which is proposed by Gifi (1990). 

Figure 2: Composite CA plot for table 1 Figure 3: composite CA plot for table 4 
(uncontrolled) (controlled) 

In this figure all the X- and Y-categories are represented by an asterisk. The distance 
between the asterisks indicates similarity of the respective column-proportions in the 
contingency tables; the smaller the distance the higher the similarity. For instance, 
the column-proportions of Sweden and of 70-100% union members' in the broad 
columns two and five of table 1 are more alike than those of 'Spain' and 70-100% 
union members'. Correspondingly in figure 1 'Sweden' is more close to 70-100%' 
than 'Spain' is. Moreover 'Sweden' and 'same' are in the same direction from the 
origin +, while 'Spain' and 'same' lie in the opposite direction. This corresponds with 
the fact that in table 1 'Sweden' has relatively more companies in 'same' (44%) than 
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the total sample has (41%), while 'Spain' has less companies (35%) in 'same'. To put it 
simply, figure 2 shows which X-categories 'belong to' which Y-category in the sense 
of having a relatively high proportion of companies in that Y-category. In figure 2 the 
X-categories '0% union members’, T-69% union members' and 'Spain' all belong to 
the Y-category 'increase in employee-number'. They all are left of the origin +. 
'Sweden' and 70-100% union members' on the contrary belong to 'same employee 
number' and/or 'reduced in number', as they all are right of the origin +. In 
conclusion, the figure shows that Spain has done better during the last three years, as 
it has more 'increase' and less same' than Sweden. 
However, instead of looking at the gross difference between both countries we might 
ask how different the Y-scores for both countries are, comparing establishments that 
have the same degree of unionization. That is, we want to know the effects of country 
on number of employees, controlled or adjusted for the influence of unionization. A 
straightforward way to get these controlled effects is to construct a table of 

0% union members | 1-69% union members 70-100% union members | 

| spain | Sweden | spain | Sweden | spain | Sweden 

number |Count)Col %|Count)Col %|Count)Col %|Count)Col %|Count)Col %|Count)Col % 

increased) 32 | 54% | 16 | 82% | 102 | 36% | 22 | 34% | 4)9%) 156 | 25% 
same j 19 | 31% j 3 j 14% j 109 j 38% j 32 j 49% | 9 j 20% | 281 j 45% 
reduced | 9 | 15% j 1 j 4% | 75 j 26% j 11 j 17% j 31 j 71% j 195 j 31% 

Table 2: Number of employees against country, crossed with unionization. 

(changes in) the number of employees (Y) against country (XJ, one for each of the 
levels of unionization (X2) (table 2). Row 1 of table 2 shows that Sweden has more 
increase than Spain. At the same time in row 3 we see that Sweden has less reduction 
than Spain. So controlling for unionization reveals that Sweden is doing better than 
Spain as to employment, whereas in the uncontrolled case we found the opposite. 
This difference shows the importance of partialling out the influence of the other 
variables. 
However, as already mentioned, in case of many independent variables, each contai¬ 
ning several categories, the number of cells may increase very quickly. For instance, 
when we have an Y variable and three X variables all having three categories, we 
obtaint a crossed contingency table having 3x3x3=27 columns. As each column is 
represented by an asterisk in the CA plot, this makes the plot very complex and its 
interpretation difficult. It is true that using this complex contingency table has the 
advantage that we get insight in all eventual interactions between the variables. But 
if there is little reason for expecting interactions, we may prefer a more simple plot, 
where we get an impression of the global effect of the X variables on Y, instead of the 
detailed effects of each X within each combination of categories of the other X's. In 
doing so we suppose that each X has the same or nearly the same effect on Y within 
each combination of categories of the other X's, which in many cases will be a 
reasonable assumption. In that case we need a contingency table with only 3+3+3=9 
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columns, where the cellfrequences are controlled for the effects of the other X 
variables in the model. Because of a modest number of variables and of categories, in 
our example there only is a small reduction of columns; 3x2=6 against 3+2=5 
columns respectively (compare tables 2 and 3). 

x| Spain 1 Sweden |0% union |l-69% union170-100% | Total 
I members | members (union memb. | 

(CountjCol %(Count)Col% (Count|Col% |Count|Col% (Count(Col jCount( Col 

increased( 
same 

95 

128 
167 

j 391 

I 
24% | 236 

33% | 325 
43% | 155 

I 
100% ( 716 

33% | 

45% j 

22% ( 

100% | 

I 
I 

39% j 143 

46% ( 266 

15% | 268 

100% | 351 (100% | 678 

I 
64% | 138 

32% | 161 
4% | 51 

I 

1 
I 

21% | 663 
39% ( 906 
40% | 645 

100% 12214 

30% 
41% 

29% 

100% 

Table 3: Controlled frequencies of number of employees (Y) against country (X) and unionization (X2). 

Such a condensed table can be adequately produced with the aid of a method propo¬ 
sed by hammers and Pelzer (1992), where in principle there is no limitation to the 
number of X-variables to be included in the analysis. This procedure, that can be 
carried out by using a computer-programma called RENOVA., is shown in the next 
section.For more details the reader is referred to hammers and Pelzer (1992). 
Applying this procedure to our example we get a table of Y against X, controlled for 
X, as is presented in the left part of table 3. This table shows that higher unionization 
goes together with less employment (less increase, more the same, more reduction). 
This is the same conclusion as can be drawn from the right part of the table 1. 
Just like we did for table 1 we performed a Composite CA on table 3. The resulting 
scatterplot is presented in figure 3. Comparison of figures 2 and 3 shows that Sweden 
has moved a little towards 'increased', while Spain lies clearly in the same direction 
as 'reduction'. This corresponds to our previous conclusion that Sweden is doing 
better as to employment than Spain, provided that we control for the influence of 
unionization. We also see that the distances from the three unionization-levels to the 
origin are greater in figure 3, corresponding to the fact that the relation between 
growth and unionization has become stronger after controlling for the influence of 
country. 

CONSTRUCTING CONTROLLED FREQUENCIES. 

Suppose we have a variable Y with three categories and three predictor variables, 
say A, Band C, with A and B both being nominal-scale variables with three 
categories each and C being an interval-scale variable. We would like to produce the 
crosstable of Y against A controlled for the influences of B and C. In order to 
calculate the cell-frequencies in this crosstable we employ a lineair regression model 
for each categorie of Y . The three model-equations are: 
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y, = 6, + b2 A2 + b} /43 + bt B2 + b5 B2 + b6C + e, 

Y2 = b2 + bsA2 + b9A, + bi0 B2 + bu B} + bl2C + e2 (1) 

y, = *u + i,4 A2 + il5 A, + bl6 B2 + b„ B, + fel8 C + e, 

In the equations Yu Y2, y, are 0-1 dummy-variables indicating whether a respondent 
belongs (1) to a y-categorie or not (0). In the same way A2, A, and B2, B, are 
dummy-variables indicating the A and B categories where respondents belong to or 
not. Since A has three categories only two dummy-variables (we arbitrarily chose A2 

and A,) can be entered as predictor-variable in the above equations; the same applies 
to B . The terms c,, e2 and «, are random error-terms with expectations assumed to 
be zero. 

If the fist equation in (1) is a correct specification of the true relation between Y and 
A, £and C respectively, the expectation of y, for any given set of values of A, B 

and C should equal 

EiY^A'BX) = b, + b2A2+b,A, + biB2+b5Bi + b6 C (2) 

Apart form this the expectation of variable y, given the values of A, Band C is 
defined as 

£(yilA,B,C)= 0 * P(.Yt=0 \ A, B,C) + 1 * £(y, =1 I A, fi, C) = P^=l\A,B,C) (3) 

where P(y, =0 I A, B, C) and />(y| =l l A, B, C) stand for the probability of Yt being 0 
and 1 respectively, given the values of A, B and C. Combining (2) and (3) we obtain 

P( Kj = 1 \ A, B, C) = ^2 ^3 ^3 ^4 ^5 ^3 ^6 ^ 

This equation shows that the expected value of y, as can be computed from the first 
equation in (1) under the condition that the values of A, Band C and of the b 

parameters are known, in fact stands for the probability of y, being 1 (i.e. of Y being 
1). Because of this the first equation in (1) is called a probability-model and because 
of the linearity the full name is 'linear probability model'. In the same way the 
second and third equation in (1) specify the probabilities of y2 being 1 and of y3 
being 1 (i.e. of Y being 2 and Y being 3). Further on we shall spend a few words on 
problems that may arise when assuming a linear model for probabilities and when 
applying ordinary least squares (OLS) estimation (as we do) to such a model. 

In order to estimate the h -parameters in (1) we apply OLS for each of the three 
equations seperalely. It can be proven that the resulting three b -estimates for the 
same predictor-variable (or dummy) sum to zero, e.g. for a2 we have b2+bs+bu =0 
and for C we have b6+b,2+bK =0. In OLS the intercept fc, of the first equation is 
estimated as 
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— K| — ^2 ^2 — ^3 ^3 ~ ^4 ^2 ~ ^5 ^3 ~ ^6 ^ 

For given values of /l, Band C we can now compute K,, that is the predicted 
probability of Y being 1: 

r, = fc, + b2 A2 + b2A,+ £4 B2 + £5 b, + b6 C 

= Y] - b2 A2— £3 2I3 — bA B2 — £5 B; — b^C + b2 A2 + b2 A2 + £., B2 + £5 B; + b6 C 

We now define S',' as the probability of S' being 1 predicted solely by variable A but 
controlled for the effects of B and C. The value of can be computed from (4) by 
simply setting to zero the b effects of all variables other then the dummies of A: 

Y," = Y, - b2A2-b,A,~ 0*B2-0*B,-0*C + £2A2 + £, A, + 0*B2 + 0*B, + 0*C _ A „ \P) 

— K, — ^2 ^2 — ^3 ^3 ^2^2 ^3 ^3 

For each A-categorie we can now compute the predicted probability of Y being 1, 
solely based on the fact that the respondent falls in that A-categorie. Indicating this 
probability as hu=; .<' = 1.2 or 3 we can write the following equations: 

h l/4=l “ S', - b2 A2 - £ , A3 
h 1/1=2 = S', - *2 ^2 _ *3 'h + ^2 

h l/l=3 = Yt - b2 A2 - £, A, + £3 

In a similar way we can compute the values of i^'i ,1=1 / ^2*1 a=i and *2*1 a=3 and also the 
values of S',', A=l, sq", A=2 and K,', A=3. We can collect all these probabilities in a 

crosstable of Y against A: 

All probabilities in the table are based on the effects of variable A alone. These 
effects are multiple effects, meaning that they are controlled for the influences that 
B and C may have on Y . Once we have computed the probabilities in the table we 
can simply convert them to frequencies by multiplying each probability by the total 
number of respondents in the category of A that applies. Since the probabilities in 
each column of the table sum to zero, the frequencies in each column sum to the total 
number of respondents in that A-categorie. The frequencies calculated this way are 
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based solely on the effect that variable A has on Y controlled for the influences of B 

and C. 
There are certain drawbacks in specifying probabilities by means of linear equations 
as we do in (1). A detailed description of these problems can be found in Aldrich and 
Nelson (1984). One of the problems arises from the fact that the expected probablities 
as predicted by the model can become negative or larger than one, and such 
'impossible' probabilities could never be predicted by any realistic probability 
model. These out-of-range probabilities typically occur when the relation between 
the Y variabele and the predictor-variabels is not linear. Application of a linear 
model might then produce biased parameter-estimates. However, when the 
underlying relation is (almost) linear, most of the predicted probablities will be 
within the 0-1 range. Only a few will lie outside that range due to sampling error. 
However, these few out-of-range probabilities will be very close to 0 or 1. In such a 
situation the linear probablity model is still appropriate. 
Two other problems are attached to the linear probability model. In order to test the 
significance of estimated parameters the assumption is often made that the terms c,, 
e2 en c;, are normally distributed. This assumption is violated here since e, (and the 
same applies to e2 and e,) can take only two different values for given values of A, 

B and C. Despite the violation it can be proven that the OLS-estimates of the b - 

parameters in (1) are unbiased and asymptotically normally distributed. The other 
problem has to do with heterogeneity of the variance of the error terms, i.e. the 
variance of say e, is not the same for every combination of values ot A, B and C. As 

a consequence the estimates of the standard errors of the OLS b -parameters in (1) 
are uncorrect but the bias is very small when the predicted probabilies are in the 
range 0.15-0.85 (Keller, 1985). If they are in a wider range one might consider 
methods of correcting for the heterogeneity described by Keller (1985). 
Concluding the linear model can be an attractive and easy to interpret alternative in 
contrast to other probability models such as the logistic and the probit model. 
However, for the linear model to be appropriate, by far the majority of the predicted 
probabilities should be within the 0-1 range while the few that probably are not 
should be close to 0 or 1. 

CONCLUSIONS 

In causal models where there is more than one causal pathway from an independent 
X variable to a dependent Y variable we have to adjust for the effect of the other X 
variables in the model, in order to get a correct impression of the effects of the X 
variables in the model. The example shows that if we do not adjust, we can easily 
obtain biased estimates of the parameters, which may lead to wrong conclusions. In 
case of correspondence analysis on categorical data the adjustment may be done in 
an adequate way by means of a linear model and the computer program RENOVA. 
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