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Sense and sensitivity when intended data are missing 

Els Goetghebeur1 Geert Molenberghs2 Michael G. Kenward3 * 

Abstract 

Classical inferential procedures infer conclusions from a set of data to a population of inter¬ 
est, accounting for the imprecision implied by the designed sampling frame. Less attention is 
devoted to uncertainty arising from unintended incompleteness in the data. Through the choice 
of an identifiable model for (non-ignorable) non-response, one narrows the possible data gen¬ 
erating mechanisms to the point where inference only suffers from imprecision, which typically 
reduces to zero as the sample size tends to infinity. Some proposals have been made for assess¬ 
ment of sensitivity to these modeling assumptions; many arc based on fitting several plausible 
but competing models. We develop an alternative approach which identifies and incorporates 
explicitly both sources of uncertainty in inference: imprecision due to finite sampling and igno¬ 
rance due to incompleteness. The introduction of sensitivity parameters helps inspection of the 
whole set of estimators compatible with the observed data, in function of more or less plausible 
assumptions about which the data carry no information. The developments in this paper focus 
on contingency tables, and are illustrated using data from an HIV prevalence study and data 
from a Slovenian plebiscite. 

Key words: Contingency Table; Imprecision, Missing At Random; Overspecified Model; 
Saturated Model 

1 Introduction 

The problem of missing intended data in a well designed study is a common one. The reasons 

for data being missing are many and varied. There is therefore no straightforward approach to 

statistical inference that accommodates the unknown behavior of unintentionally unobserved data. 

Rubin (1976) provided one of the first systematic studies of this issue, and we use his terminology 

for classifying different classes of processes that give rise to missing values. The abbreviations 

MCAR, MAR and MNAR will refer to missingness processes that are Completely At Random, At 

Random and Not At Random (i.e. nonignorable) respectively. This paper is concerned with how 

one might approach inference when the possibility of a non-random missingness process cannot be 

ruled out on a priori, grounds. 
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One approach is to formulate models that describe the complete data and additionally model 

the probability of a specific response pattern conditional on the possibly unobserved value of the 

complete outcome. For such models, the likelihood of the observed data is obtained by integrating 

the complete data likelihood over the distribution of the missing data. Provided the model is 

identified, conventional inference proceeds from there (see Little, 1995, for a review). Theoretical 

identifiability alone does not protect against practical problems however. Likelihoods can be very 

flat or multimodal indicating little information on specific parameter(s). More alarmingly perhaps, 

models with an entirely different interpretation at the complete data level can show the same 

or similar deviance. At the same time, the intrinsic nature of missing information implies that 

modeling assumptions cannot fully be examined using the data alone. Thus a characteristic form 

of ambiguity remains. A natural way to proceed is to acknowledge the range of inferences that are 

consistent with what is observed, to perform a sensitivity analysis. 

While there is an established formal framework for imprecision (variance, standard errors, 

sampling distributions, confidence intervals, hypothesis tests and so on) most implementations 

of statistical sensitivity analysis have remained ad hoc. In this paper we propose a framework in 

which general sensitivity concepts can be formalized and develop it from the frequentist perspective, 

focusing on categorical data. To this end, we describe ignorance (due to incompleteness of the data) 

in addition to the familiar imprecision (due to finite sampling) and combine both into uncertainty. 

In the next section two sets of data are presented that will serve as examples throughout. 

In Section 3 the concepts of imprecision, ignorance and uncertainty are introduced. In Section 4 

we find that besides enumeration of all possible completed data sets, sensitivity parameters can 

bring added insight into the uncertainty and allow for a natural expression of maximum likelihood 

estimates from overspecified likelihoods. In Section 5, the data on the Slovenian plebiscite are 

analyzed using the new tools. 

2 Examples 

2.1 HIV Prevalence estimation in Kenya 

Example 1 In the context of disease monitoring, HIV prevalence is estimated in a population of 

pregnant women in Kenya. 
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To this end a sample of 787 Kenyan women were tested, with the following result: 

Known HIV + 

Known HIV - 

Unknown HIV Status 

52 

699 

36 

What we learn is that between 52 and 52+36 out of the 787 observed women had a HIV + 

test result. Hence we can produce a best (and worst) case estimator L=6.6% (R=11.2%) for the 

probability of a positive HIV test result. This is the basic form of sensitivity analysis. We explore 

it in more depth in the following sections. 

2.2 The Slovenian Plebiscite 

Example 2 Rubin, Stem, and Vehovar (1995) studied data from a plebiscite organized in Slove¬ 

nia on secession from the former Yugoslavia, in which the Slovenians overwhelmingly voted for 

independence. 

It was deemed useful to anticipate results of the plebiscite from additional questions in the Slovenian 

Public Opinion (SPO) Survey, carried out four weeks prior. The main questions were: (1) Are you 

in favor of Slovenian independence? (2) Are you in favor of Slovenia’s secession from Yugoslavia? 

(3) Will you attend the plebiscite? Questions (1) and (2) are different since independence would 

have been possible in confederal form as well. Question (3) is highly relevant since not attending 

was treated as an effective NO to question (1). The data are presented in Table 1. Full details on 

the study are provided in Rubin, Stern, and Vehovar (1995), who considered a number of identified 

ignorable and non-ignorable models with varying conclusions. The ignorable models turned out 

to outperform the non-ignorable one in the sense that they were much closer to the results of the 

(true) plebiscite. Rubin, Stern and Vehovar saw this as an argument to be more generally in favor 

of MAR models. To gain more insight into the available information we feel a sensitivity analysis 

is called for (Kenward 1998). 

3 Imprecision, Ignorance and Uncertainty 

To distinguish formally between statistical imprecision which is due to sampling variation, and 

statistical ignorance, which is due to the incompleteness of the observations, we consider the simple 
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Table 1: Data form the Slovenian Public Opinion Survey. 

Secession Attendance 

Yes Yes 

No 

* 

No Yes 

No 

* 

* Yes 

No 

* 

Independence 

Yes No * 

1191 8 21 

8 0 4 

107 3 9 

158 68 29 

7 14 3 

18 43 31 

90 2 109 

1 2 25 

19 8 96 

Example 1 first. Let Y be the binary outcome (1 for a positive test result, 2 for a negative one), and 

R indicate observed response (1) or not (0). The complete data model consists of the prevalence 

tt = Prob(Y = 1) and two conditional probabilities 77* of being observed, given infected {i = 1) or 

not (i = 2). 

Consider Na ‘observed cases’ ({Y, R) = (1,1)) and Np observed controls ((Y, i?) = (2,1)) 

along with iV7 observations with missing outcomes. The theoretical probability of falling into each 

of those three respective categories is denoted o,/?, 7 = l — a — (3 respectively. Besides the 3 

observable outcomes, we consider 4 completed (full data) outcome categories for R and Y as shown 

in Table 2. Under the sampling scheme that generated the data but with an infinite sample size, 

we can observe a,/? and 7 but no more. In the limit we thus learn that tt G [a,a 4- 7], but no 

further specific localization of tt. The limiting interval for tt will be called the interval of ignorance 

(II) on tt. in a similar fashion, regions of ignorance would appear for multidimensional parameters, 

like for (ir,r)i) for example. 

A finite sample data set thus provides information on this limiting interval rather than on 

the exact position of tt. Generally, we consider an estimated region of ignorance to be the set of 

estimators derived from all possible completed tables collapsing back to the observed incomplete 
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Table 2: Incomplete and Complete Data of Example 1. 

Observed Latent 

Incomplete Full 

Success Failure Success Failure 

Observed Na Ng Na Ng 

Unobserved__iV7 - N-,a 

Observed a = Trrn 0 = (1 - tt)^ nrn (1 - 7r)»j2 

Unobserved 7 = 1 - tt^i - (1 - 7r)?72 Tr(l-^i) (1 - ?r)(l - 7J2) 

table. Enumeration of all such tables can be done in terms of a single parameter for this example. 

Let the number of successes out of the AT7 missing observations be denoted by Nla, then the 

corresponding number of failures is IV7 - Nia, where jV7„ can take values in the interval [0,./V7]. 

The compatible full data tables are depicted in Table 2. 

The estimated interval of ignorance on n is the set of estimators ir(iV7a) generated by each 

of the completed tables, and is given by the interval [^f-, Na^Nl]. To acknowledge imprecision on 

the estimated interval, we consider the left and right hand limit of the 95% confidence interval on 

ir(Nlol = 0) and ir(Nla = IV7), respectively. This yields an uncertainty interval approximated by 

— 1-96\/'V“^3+W'i'\ Na^iNl + j . For finite N the uncertainty interval is larger 

than the estimated interval of ignorance. In the limit, the interval of uncertainty and the estimated 

ignorance interval both converge to the true interval of ignorance. In our approach the former 

intervals take the place of the traditional point estimator and confidence interval, respectively. 

Another way of retrieving an estimated interval of ignorance, is by considering the observed 

data likelihood in terms of the most general model one is prepared to consider for complete data 

+ missingness mechanism. For instance, Table 3 shows in the second column the saturated model, 

called Mg at, in terms of parameters (tt, 771,772). In the first column it presents two parameters 

(tt, r;) for an identified model that satisfies the missing at random constraint (MAR=MCAR in this 

simple situation). In both cases it gives the complete data maximum likelihood estimate. The log 

observed-likelihood for Model Msat in terms of (tt, is: 

f. = Na ln(7rr7i) + IV^ln[(l - 77)772] + iV7ln[7r(l - 777) + (1 - 7r)(l - 772)]. (3.1) 
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Table 3: Two Reparameterizations of the Complete-Data Likelihood. 

Model M0: MAR=MCAR 

Parameterization: 

a = nr] 

(8 = (1 - *)*! 

71 = ^(l - V) 
72 = (1 -4) 
Solution: 

V'ycx — 
Na+Nfi 

N 

Nia e [0,A7] 

Model Msat: MNAR 

a = nrji 

8 = (1 - *)m 
71 = 11(1-7/!) 

72 = (1 - 7T)(1 -7/2) 

817a — Nc+hy, 

VV'ya : _^_ 

A7a e [0, a7] 

Typically, maximum likelihood estimators are found by solving the score equations: 

Na _ Np _ _Nyjrn - 7/2)_ 

7T 1 — 7T 77(1 - 7/x) + (1 - 7r)(l - 7/2) ’ 

Na _ _N-yir_ 

7/1 7r(l - 7/1) + (1 - 7r)(l-7/2)’ 

Np = A7(l - 77) 

7/2 7r(l - 7/1) + (1 - 7r)(l-7/2) 

(3.2) 

(3.3) 

(3.4) 

Here, these equations are linearly dependent as (3.3) x rji/n — (3.4) x t/2/(1 — it) = (3.2), and have 

an infinite set of solutions. 

Generally, one can remove the overspecification from a likelihood expressed in terms of 

a parameter vector 8 by possibly reparameterizing first, and considering a minimal set of new 

parameters A, conditional upon which the remaining ones, ]i. are identified. We term A a sensitivity 

parameter and ]z the estimable parameter. Thus each value of A produces an estimate /1(A), and 

the union of these produces the estimated region of ignorance. A natural estimator for the region 

of uncertainty is then the union of confidence regions around each /1(A) whilst A varies over the 

allowable range. 

The choice of sensitivity parameter is non-unique and deserves some thought. It may be 

based on mathematical convenience, ease of interpretation of A or availability of external sources of 



85 

Table 4: Two Sensitivity Parameterizations for the Observed Data Likelihood. 

Parameterization III Parameterization IV 

Parameterization: 

a = pr] a = pr] 

0 = (1 - p)(T) + 6) 0=(l-p)T]\ 

7 = 1 - pr; - (1 - P)(t; +9) 7 = 1 - j»; - (1 - p)r;A 

information on A. Sometimes one may choose to let the sensitivity set overlap with the parameter 

of direct scientific interest (see White and Goetghebeur 1997). The particular choice of sensitivity 

parameter does not affect the estimated region of ignorance on the complete set of parameters, when 

the sensitivity parameter is varied over the ‘allowable range’. However, in our approach there is 

no direct estimate of imprecision available for the sensitivity parameter. The region of uncertainty 

is built from confidence regions conditional on a particular value of the sensitivity parameter, it 

will typically vary with the choice made. For instance, in model IV of Table 4 one may consider 

as sensitivity parameter ^ ^ the relative risk of responding for nondiseased versus diseased 

subjects. The value A = 1 corresponds to MAR whilst A = 2 expresses that sick people are twice 

as likely as healthy people to have an outcome observed. A is theoretically bounded by a, ft and 

7. Scientists in the field may well be able to formulate more stringent plausible bounds on A based 

on their experience. The sensitivity analysis then consists of interpreting results conditionally 

on any of those A values. Alternatively, a more detailed prior distribution of beliefs could be 

elicited on the relative response rates. Those help to attach differential weights to the different 

A—based estimators. A Bayesian analysis might want to average the estimated tt over the prior A— 

distribution. We would prefer not to do that but rather consider the possible range of estimators 

keeping in mind their plausibility. 

4 The Sensitivity Approach to Ignorance and Uncertainty 

Consider two additional parameterizations of (3.1), as in Table 4. In Models III and IV we view 

0 and A as sensitivity parameters respectively. The maximum likelihood estimators for tt and r/, 
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given a value of the sensitivity parameter, will be subscripted by the sensitivity parameter. With 

some algebra, Model III is seen to imply -kq = NQ/(Nfjg) and ffg is found as the valid solution 

1 
’*-2 

Calculations are quickly getting cumbersome and therefore, rather than pursuing this approach, 

we turn attention to Model IV. Some algebra yields simple expressions for and f/x : 

a\ XNq 
7TA = 

VX = 

0 + a\ Np -J- NqX ’ 

(3 + dA Np + NaX 
A = 7VA ‘ 

(4.5) 

(4.6) 

Using the delta method, an asymptotic variance-covariance matrix of (nx ,r)x ) can be found, for 

instance: 

Var(5fr) = ^NXf)^ } f1 + V^(1 ~ ^ )[1 ~ ^ (1 ~ A)]} • (4'7) 

The remaining elements of that matrix and similar expressions for the estimated variance of the 

prevalence odds and logit are given in an appendix. The parameter estimates are asymptotically 

correlated, except when A = 1, i.e., under the MAR assumption, or under boundary values (ttx = 

0, l‘,rix = 0). This is in line with the ignorable nature of the MAR model (Rubin, 1976). 

The constraints 0 < nx^X, Ary* < 1 imply a set of allowable values for A : 

A e ^ N-Np 
+ Na _• 

Clearly, A = 1 is always valid. For the HIV example the range equals A G [0.951; 1.692]. 

Table 5 presents estimates for limiting cases. The interval of ignorance for the success 

probability is thus seen to be as in Table 3. It is interesting to observe that the estimated success 

odds is linear in the sensitivity parameter and its estimated interval of ignorance states: 

odds(7r) G 
Na N~y Na 

Np + Af7 ’ Np 

For each chosen A, a confidence interval Cx can be constructed for either nx , its odds, or its logit, 

the union of the Cx forms then the interval of uncertainty on the corresponding parameter. For 

the prevalence data set, these intervals along with point estimates in function of the sensitivity 
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Table 5: Limiting Cases for the Sensitivity Parameter Analysis. 

Estimator A - ^ a — w 

tr\ \Nn 

N-Ny-NM-X) 
AfX^ 

Tv^aC n 

Nc+Ng 
N 

-Na 
N-Ng 

rjx A 
7T\ 

1-7TA 

N-N-y-TVod-A) 
N 

\Nn. 
N—Na 

Ng 

Nc+Ng 
N 

Table 6: Estimates of the proportion 6 attending the plebiscite and voting for independence, as 
presented in Rubin, Stern, and Vehovar (1995). 

Estimation method 0 

Conservative 0.694 

Complete cases 0.928 

Available cases 0.929 

MAR (2 questions) 0.892 

MAR (3 questions) 0.883 

Non-ignorable 0.782 

Plebiscite 0.885 

NO via 

nonattendance 

0.192 

0.020 

0.021 

0.042 

0.043 

_0.122 

0.065 

parameter A are shown in Figure 1. Remember that A = 1 refers to MAR. Larger values than 1 

barely shift the point estimate for tt but a larger probability of missingness for the sick people can 

have a drastic effect on our prevalence estimation. Alternatively, one may chose to plot logit(A) on 

the x-axis. If desired, a confidence ellipsoid could be built around ). 

5 Analysis of the Slovenian Plebiscite 

Rubin, Stern, and Vehovar (1995) conducted several analyses of this data set. Their main emphasis 

was on determining the proportion 9 of the population that would attend the plebiscite and vote for 

independence. The three other combinations of both binary outcomes would be treated as voting 

“no”. Their estimates are reproduced in Table 6. The conservative method is the ratio of the (yes, 
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Example 1: HIV Prevalence 

Prevalence Odds of prevalence Logit of prevalence 

1.0 12 1.4 1.6 

lambda 

1.0 1.2 1.4 

lambda 

Figure 1: Graphical Representation of Interval of Ignorance and Interval of Uncertainty 

yes) answers to the (attendance, independence) pair and the total sample, i.e., 1439/2074. This is 

the most pessimistic scenario. At the opposite end of the spectrum, we can add the most optimistic 

estimate that replaces the numerator by all who are no definite “no”: 

1439 + 159 + 144 + 136 1878 
2074 

= 0.905. 
2074 
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Both estimates together yield the range II = [0.694; 0.905]. The complete case estimate is based on 

the subjects answering all three questions and the available case estimate is based on the subjects 

answering the two questions of interest here. It is noteworthy that both estimates fall outside the 

interval of ignorance and should be disregarded as they fall outside the interval produced by all of 

the completed data sets. 

There are two MAR models, the first one based on two questions only, the second one using 

all three. The non-ignorable model is based on the assumption that missingness on a question 

depends on the answer to that question but not on the other questions. The authors argue that 

the MAR results are very close to the true response, unlike the non-ignorable model, and suggest 

that the MAR assumption is generally more plausible in carefully designed surveys. To illustrate 

a number of sensitivity issues, we examine a range of fitted models of Baker, Rosenberger, and 

DerSimonian (1992). Results are presented in Table 7, we introduce the models and the issues 

below. 

5.1 General Missingness Patterns in the 2x2 table 

When 4 possible patterns of missingness occur, the full data comprise 15 degrees of freedom, while 

there are only 8 observed degrees of freedom. An interesting class of models has been proposed 

by Baker, Rosenberger, and DerSimonian (1992). It is based on log-linear models for the four¬ 

way classification of both outcomes, together with their respective missingness indicators. Denote 

the counts by YTlT2jk where ri,r2 = 0,1 indicate whether a measurement is missing or taken for 

variables 1 and 2 respectively, and j,k = 1,2 indicate the response categories for both outcomes. 

The models are written as: 

E{Ynjk) = mjk, E(Yoijk) = mjk<Xjk, 

E(Yiojk) = mjkPjk, E(Ymjk) = mjkajk^jkl, 

with rrijk = y++++7riijfc, and 

Qoi\jk n Qioi jk Qn\jkQoo\jk 
Q-jk — i Pjk — ? 1 — 

‘Illljfc Qllljk Ql0\jkQ01\jk 

The subscripts are missing from 7 since Baker et al. have shown that this quantity is independent 

of j and k. These authors consider nine identifiable models, based on setting ctjk and /3jk constant 
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in one or more indices: 

BRD1 : (q,/3) BRD4 : (a,&) BRD7 : (ak,/3k) 

BRD2 : (a,0j) BRD5 : (a^,/?) BRD8 : (aj^k) 

BRD3 : (ak,0) BRD6 : (ctj^j) BRD9 : {ak,0j). 

Interpretation follows from there. For example, BRD1 is MCAR, in BRD4 missingness in the first 

variable is constant, while missingness in the second variable depends on its value. Two of the main 

advantages of this family is ease of computation in general, and the existence of closed-form solution 

for several of its members (BRD2 BRD9). Molenberghs, Goetghebeur, Lipsitz and Kenward (1997) 

used these models in an informal sensitivity analysis of repeated binary measures in a psychiatric 

study. We consider a slightly different but equivalent parameterization 

_ exp[/?jfc(l - r2) + - n) + 7(1 - ri)(l - r2)] 
nririjk Pik 1 + exp(/3jfc) + exp(oyfc) + exp(0jk + ajk + 7) 

which contains the marginal success probabilities pjk and forces the missingness probabilities to 

obey their range restrictions. Model 10 will be defined as (ak, (3jk) with 

/fyc = /3o + ft+&. (5-9) 

Since one parameter is not indentified, we propose to use 0k as the sensitivity parameter. 

Observe that BRD1, being MAR, is equivalent to MAR (2 questions) in Table 6. Model 

BRD2 produces an estimate for 9 which is extremely close to the results of the plebiscite. It 

assumes that missingness on the independence question depends on the attendance question. Note 

that BRD8 assumes that missingness on either question depends on the question itself and therefore 

is very similar to the non-ignorable model of Rubin, Stern, and Vehovar (1995). 

Next, we present three estimated Intervals of Ignorance, the result of considering in turn 3 

different ‘horizons’, that is, we consider ignorance under the constraint that models 10, 11 and 12 

respectively hold. Model 10 in Table 7 is based on 1 sensitivity parameter, as in (5.9). Similarly, 

Model 11 uses 

aj* = oq+ 0!j-ha*, (5.10) 

while Model 12 combines both (5.9) and (5.10). The estimated II for Models 10 and 11 are very 

similar and the true plebiscite value is marginal within these II. Note that Model 11, and hence 
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Table 7: Estimates of the proportion 6 (confidence interval) attending the plebiscite and voting for 
independence, following from fitting the Baker, Rosenberger, and DerSimonian models (1992). 

Model d.f. loglik 0 

BRD1 6 -2503.06 

BRD2 7 -2476.38 

BRD3 7 -2471.59 

BRD4 7 -2476.38 

BRD5 7 -2471.59 

BRD6 8 -2440.67 

BRD7 8 -2440.67 

BRD8 8 -2440.67 

BRD9 8 -2440.67 

Model 10 9 -2440.67 

Model 11 9 -2440.67 

Model 12 10 -2440.67 

0.891 [0.877;0.906] 

0.884[0.868;0.899] 

0.881 [0.865;0.896] 

0.779[0.702;0.857] 

0.848[0.814;0.882] 

0.822[0.792;0.850] 

0.774[0.719;0.828] 

0.753[0.691;0.815] 

0.866[0.849;0.884] 

[0.762;0.893][0.744;0.907] 

[0.766;0.883][0.715;0.920] 

[0.694;0.904] 

also Model 12, does contain a number of boundary solutions for the model parameters, which could 

be seen as evidence against these models. 

Another quantity which Rubin, Stern, and Vehovar (1995) reported is the proportion of NO’s 

via nonattendance (see Table 6). Observe that most estimates are way below the plebiscite value. 

We can gain some insight in this phenomenon by plotting the estimated joint region of ignorance 

for 6 and the proportion of NO’s via nonattendance. Since Models 10 and 11 are based on a single 

sensitivity parameter, the regions of ignorance are curves, while a planar region is obtained for 

Model 12. The regions are shown twice in Figure 2, on different scales, where Models 10 and 11 are 

represented by curves and Model 12 by the result of sampled points from the bivariate sensitivity 

parameter. Model 10 incorporates relatively little ignorance about NO via nonattendance, but 

at the same time fails to include the plebiscite value. Models 11 and 12 on the contrary allow a 

relatively large II for this quantity. A black square marks the plebiscite values for both quantities. 

It is clear that the plebiscite result is outside of the range produced by Model 12. Note that 

a saturated model would incorporate 5 extra sensitivity parameters ! It becomes easier then to 

abandon the representation in terms of sensitivity parameters and just show the estimated global 
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YES/YES Probability YES/YES Probability 
Versus NO Through Non-Attendance Versus NO Through Non-Attendance 

Figure 2: Graphical Representation of Regions of Ignorance for the Slovenian Plebiscite. Proportion 
of YES Votes Versus Proportion of NO via Nonattendance. Models 10, 11, and 12. 

bounds, [0.694; 0.905] for 8 for instance. 

6 Discussion 

In this paper we have defined the concept of ignorance and incorporated this into a frequentist 

framework by combining it with the familiar idea of statistical imprecision, producing a measure of 

uncertainty. As an extension of the concept of confidence, uncertainty is expressed as an interval for 

scalar unknowns (parameters) and a region for vectors. These reduce to conventional confidence 

intervals and regions when it is assumed that there is no ignorance about the statistical model 

underlying the data. In the special case of simple categorical data settings with missing values, we 
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have seen that intervals of ignorance can be constructed in a relatively straightforward way, and 

these reflect in a natural way ignorance about underlying relationships involving unobserved data. 

The construction of the intervals of uncertainty in function of sensitivity parameters is seen to add 

useful information in the examples about the problems of interest. In particular, we see that earlier 

conclusions about the selection and behavior of classes of models for the Slovenian Plebiscite are 

not strictly justified. 

We can approach the calculation of the interval of ignorance in several ways, but we found 

that a (possibly) overspecified model and associated likelihood are natural concepts to use. This 

approach will be important, if not essential when we extend the simple categorical setting to 

more complex problems with continuous and finely stratified covariates and, very importantly, to 

continuous responses. For these the complete table approach leads to considering missing continuous 

values within a finite horizon, as members of a bounded set. In these settings careful consideration 

needs to be given to the family of models within which we are assumed to be ignorant. 

Formal tools to assess validity of the new concepts are clearly needed. In a separate paper we 

suggest consistency definitions for the region of ignorance and coverage for the region of uncertainty. 

They extend familiar concepts used when there is no ignorance and they might provide a reasonable 

starting point for further exploration of the notions introduced. 

Returning to the specifics of social science practice, we acknowledge that many studies suffer 

from a high percentage of missing data. Whereas this may tempt one to turn to identified models 

and ignore the ignorance, it may be argued that the opposite reflex should guide the scientist. 

Confronting one with the existing level of ignorance, the sensitivity approach encourages more 

conscious gathering of the external information necessary to narrow uncertainty intervals to useful 

proportions. It is our sincere hope that the tools provided here will be helpful in this process. 
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Appendix: Some variance expressions for model IV, in Table IV 

For the prevalence example, the variance of is given by (4.7). Following the delta method one 

obtains in a similar’ fashion: 

Cov((ST,»?r)) = (i - , 

For the prevalence odds: 

Var(odds(7TA )) = ~ I1 + V^1 ~ ^ ~ *A r'A ^ _ A)l} 

and for the prevalence logit: 

%r(logi^ )} = nL *a(1-*a) {' + V(1 “ #A )[1 - "A ^ (1 " A)l} ' 
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