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Simple and Effective Methods to 

Treat Missing Item Responses 

Mark Huisman 

Abstract 

In this paper imputation models to impute missing responses to 

test items are presented. In a first simulation study, the perfor¬ 

mance of some simple techniques that are easy to implement are 

investigated (item and person mean substitution, hot deck imputa¬ 

tion). Improvements of these techniques lead via imputation of a 

corrected item mean to imputation models from item response the¬ 

ory (IRT). Specifically, the one parameter logistic model (OPLM) 

and the model proposed by Mokken are used to impute missing item 

responses. Their performance is investigated in a second simulation 

study. The parametric OPLM allows multiply imputing the miss¬ 

ing data, and a multiple imputation procedure is presented. Also 

the performance of hot deck imputation within adjustment cells is 

investigated. Adjustment cells are related to poststratification and 

are used to correct for nonrandom missingness. 
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1 Introduction 

Among the wide variety of procedures to handle missing data, imputing the 

missing values is a popular strategy to deal with missing item responses. With 

imputation procedures estimates of the missing values are obtained to fill-in the 

blanks in the data set. Because these techniques result in completed data and 

standard statistical techniques can be used, the researcher is apt to forget that 

some values are missing. As a consequence, the danger that standard estimators 

are substantially biased due to nonrandom missing data mechanisms is easily 

forgotten. Naive imputations can even be worse than doing nothing, so care is 

needed while imputing missing values (see Little, 1988). 

In this paper the performance of some imputation techniques is investigated. 

The techniques are used to handle missing responses to some kind of test or scale. 

These tests are often used in behavioral sciences, and consist of items which mea¬ 

sure a latent trait of individuals (like emotional well-being or some aspect of a 

person’s personality). In Section 2, the topic of missing responses to test items 

and imputation is discussed. In the third section, the design and results of a 

simulation study are presented, in which the performance of some simple impu¬ 

tation techniques is investigated. Potential improvements of these techniques are 

presented in Section 4. These improvements include imputing with models from 

item response theory (IRT), especially the one parameter logistic model (Verhelst 

&: Glas, 1995) and the model of Mokken (1971). Also methods which (partially) 

adjust for nonrandom missingness mechanisms are investigated. In a second sim¬ 

ulation study the performance of these techniques is investigated. In Section 5 

the results of the two simulation studies are summarized and discussed. 

2 Missing item responses 

In the behavioral sciences, inferences about a latent property of persons are usu¬ 

ally made by analyzing the responses of these persons to a set of items. Each 

single item does not cover all aspects of the latent trait, and a person’s position 

on the trait can only be inferred indirectly by investigating the responses to all 

items in the scale. With the help of measurement models, the location of a per¬ 

son on the latent trait is determined. Frequently used models are factor analytic 

models, models based on classical test theory, and IRT models. IRT models have 

the advantage that latent abilities, 6, can be estimated using incomplete testing 

designs. In such designs different subsets of items are administered to different 
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subgroups of respondents, which means that the researcher specifies beforehand 

the mechanism that causes the incompleteness of the item responses. For a de¬ 

tailed discussion of incomplete testing designs and ignorability of the generating 

missingness mechanisms see Eggen &: Verhelst (1992) and Mislevy & Wu (1996). 

If the data are not missing by design, inferences for person abilities are only 

valid in the case of ignorable nonresponse. Mislevy & Wu (1996) show that this 

is generally not true when respondents decide for themselves not to respond to a 

presented item. In this case a suitable model for the missingness process should 

be included in the analysis to prevent the inferences to become biased (Greenlees, 

Reece, &; Zieschang, 1982). Finding such a model is a difficult task. 

The data used in this paper to investigate the performance of some imputation 

techniques consists of responses to items X = [a:^] (u = respondents, 

i = 1,• • •, fc items) and some covariates Z = [z,^] (h = 1,- ,q). The k items 

form one scale measuring a latent property of the respondents. All items have a 

fixed number of ordered response categories, and the weighted sum of the item 

responses can be used as an estimate of the latent ability of person v: 

k 

Tv ~ } ) WiXyi , 
;=i 

where Wj is the weight of item i. In the sequel it is assumed that the covariates 

are completely observed and the missingness only occurs in the item responses. 

The missingness mechanism can be modeled with an indicator matrix M = [m„,], 

where mvi = 0 if person v responded to item i, and m„; = 1 otherwise. 

Two specific IRT models are used in this paper, i.e., the one parameter logis¬ 

tic model (OPLM, Verhelst & Glas, 1995) and the model proposed by Mokken 

(1971). In the former model, being a generalization of the well-known Rasch 

model, the sum score, r„, is a sufficient statistic for the latent ability 9V. In the 

Mokken model, r„ itself is used as estimate of the ability. Aspects of the quality 

of measurement can be assessed via Cronbach’s alpha, the classical concept of 

reliability (see Lord & Novick, 1968) and Loevinger’s 17-coefficient, a measure 

of the scalability of items used in Mokken scaling (see Mokken, 1971; Molenaar 

1991). 

2.1 Imputation 

With imputation techniques estimates of the missing item responses are made 

and substituted for the missing entries. Sande (1982) extensively discussed the 
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problems an imputer is faced with, and concluded that a procedure is needed 

which 1) will impute plausibly and consistently with the edits, 2) will reduce 

the bias and preserve the relationship between the items as far as possible, 3) 

will work for (almost) any pattern of missing items, 4) can be set up ahead of 

time, and 5) can be evaluated in terms of impact on the bias and precision of 

the estimates. She states that “particular techniques of imputation vary in their 

ability to meet these requirements" (p. 147). 
There are a number of different ways in which a researcher may want to impute 

the missing values. A first distinction which can be made is that between naive, 

ad hoc methods and more principled ones. Although the naive methods are quick 

options (e.g., unconditional mean imputation), they often lead to biased results. 

More principled approaches use models for both the observed and missing data 

to reduce the bias. This leads to a second distinction, that between explicit and 

implicit imputation models. Explicit models are usually parametric models used 

in mathematical statistics, e.g., linear regression. Implicit models are models 

that underlie procedures for fixing up data structures in practice and often have 

a nonparametric flavor, e.g., hot deck techniques that use donor cases to impute 

missing responses. A combination of both kinds of models is predictive mean 

matching (Little, 1988), where an explicit model is used to find a suitable donor 

case of which the observed values are used to impute the missing data (implicit 

method). 
A last distinction is that between deterministic and stochastic techniques. 

In the first group of procedures, imputed values are uniquely determined and 

result in identical estimates when repeated. Stochastics methods use some kind 

of randomization process to impute missing values, and therefore reduce the bias 

due to the overestimation of precision by deterministic methods. 

3 Simulation study I 

In this paper the results of two simulation studies are presented, with which 

the performance of imputation techniques for imputing missing answers to test 

items is investigated. Both simulation studies are also presented by Huisman 

(1999), to which the reader is referred to for a more detailed description of the 

design and results. In the first study, techniques belonging to the group of naive, 

implicit, and deterministic methods are investigated. Six of these techniques 

are presented here. Some of the techniques produce noninteger imputed values. 

These are rounded to the nearest integer to create completed data consistent with 

the edits. 
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3.1 Simple techniques 

Random Draw Substitution (RDS). This ad hoc method replaces a missing value 

with a random draw from the permitted response options. This method is not 

particularly recommended and will only be used as negative benchmark for the 

performance of other techniques. 

Mean Substitution. When dealing with item responses, there are several possi¬ 

bilities to impute a mean. The first possibility is item mean substitution (IMS), 

where the mean item score is substituted for every missing value of a particular 

item. A second method is person mean substitution (PMS). Here the mean scale 

score over the observed items is used to impute missing values of a person. It 

should be noted that replacing missing values by a mean value causes the scores 

of the respondents to move towards the center of the distribution. Variances and 

covariances are therefore systematically underestimated. There are some reme¬ 

dies for this, like adjusting the degrees of freedom, or adding a small random 

quantity (see e.g. Little & Rubin, 1987, or Bello, 1993). 

Corrected Item Mean substitution (CIM). In this third mean substitution method, 

missing values are replaced by an item mean which is corrected for the ability of 

the individual: 

CIM„,' = wvx^ = 
' £ Xvh\ 

h(-obs(v) 

V' j.(h) 
Ls x.h 

\h€obs(v) / 

/ ,, \ 
fcW PMS„ 

£ IMS, 
\h£obs(v) ) 

IMS, , 

where x '^ is the mean score on item i for the nonmissing cases, obs(v) is the 

collection of observed items and k^v' the number of observed items for person v. 

In this combination of both item and person mean, the item mean is multiplied 

with a weight which equals the ratio of the sum of the observed items of a person 

and the sum of the item means of the same set of items as observed for that 

individual. CIM can therefore be regarded as a very simple IRT (imputation) 

model. 

Item Substitution. Instead of imputing the mean scale score of a person, an 

observed response of this person to another item in the scale can also be used 

to substitute a missing value. The method interitem correlation substitution 
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(ICS) replaces a missing value by the observed response on another item for 

which the interitem correlation with the missing item is highest. The correlation 

matrix is computed from the complete cases. This can result in biased estimates 

of the correlations, but only the order of the correlations is used here, which 

probably will not be affected too much even if there is a considerable amount of 

nonrandomly missing data. 

Hot Deck imputation (HD). Hot deck imputation techniques use a completely 

observed donor case for the imputation of an incomplete case (see e.g. Sande, 

1983). The missing values are replaced by the corresponding values of a ‘nearest 

neighbour’ which most resembles the incomplete case with respect to the observed 

items. This donor is found by minimizing the distance function 

dv.v' — ^2 (xvi — xv‘i) , 
t’Goia(u) 

where v is the incomplete and v' a complete case. The case v' for which d,l t/ is 

minimized is used as donor case. When several complete cases are at the same 

minimal distance of the currently considered incomplete case, the complete case 

which is nearest to the incomplete case with respect to its position in the data 

matrix is used as a donor case. 

3.2 Simulation design 

Four independent factors are used in the simulation study, i.e., data set (d), 

sample size (n), missing data mechanism (m), and proportion missing values (p). 

With these factors, incomplete data matrices are generated which will be imputed 

repeatedly (100 replications). For more details see Huisman (1999). 

Data (d) The data come from empirical data sets from the behavioral sciences. 

The original data sets consist of a large number of cases from which a fixed num¬ 

ber n of complete cases is randomly drawn. Data encountered in actual field 

research are realistic and may therefore provide a better picture of the accurate¬ 

ness and effectiveness of the imputation techniques than simulations based on 

data generated with some theoretical distribution (see also Kromrey & Hines, 

1994). Table 1 presents the four data sets used in this study. 

Sample size (n) From the data sets introduced in Table 1, samples of n = 

100, 200, and 400 cases are drawn in which missing values are generated. 
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Table 1: Data sets serving as basis for data used in simulation study / /'names, 
scale, number of items (k), number of response options (Cat.), item weight (wj), 
average interitem correlation (Corr.), and Cronbach’s alpha). 

Data Scale 
d\ 
FFPI(E) 

dl 
RAND(PF) 

d3 
RAND(MH) 

<14 
NHPR(SI) 

Five Factor Personality 
Inventory: Extraversion 
(Hendriks, 1997) 
RAND-36 Item Health Survey: 
Physical Functioning (van der 
Zee & Sanderman, 1993) 
RAND-36 Item Health Survey: 
Mental Health (van der Zee 
& Sanderman, 1993) 
Nottingham Health Profile: 
Social Isolation (Hunt, 
McKenna, & McEwen, 1993) 

“ Average value of ite.m weights. 

k Cat. 
20 1 - 5 

10 0-2 

5 0-5 

5 0-1 

Wi Corr. alpha 
F25 Ch39 0.93 

5 0.61 0.94 

4 0.58 0.85 

20“ 0.41 0.74 

Missing data mechanism (m) The mechanisms used to create the missing 
data are labeled: 

(ml) MCAR—Missing Completely At Random. The probability of response of 

person v on item i is a random number between 0 and 1. 

(m2) NRX—NonRandomness depending on X. The probability of response of 

person v on item i is a logistic function of the scale score r„ and the mean 
item score £,: 

P{Mvi = 0 | rv,x.i) 
exp (a0 + Qirv + Sx.j) 

1 + exp (op + ciirv + Sx.i) ’ 

where = 0 indicates an observed response and a0, ai and 6 are scalar 
parameters. 

(m3) NRXZ—NonRandomness depending on X and Z. The probability of re¬ 

sponse depends on the scale score r,;. the mean item score and the 

covariates sex, Ziv, and age, z2v, in the same way as in mechanism NRX. 

An observation is classified missing (Mvi — 1) when the probability of response is 

small, i.e., smaller than a randomly drawn number from a uniform distribution. 
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Proportion missing values (p) The parameters in the logistic functions, in 

case of nonrandomly missing data, were set at specified levels (see Huisman 1999) 

to create three proportions of missing values: p = 0.05, 0.12, and 0.20. These are 

the proportions of missing cells in the data matrices. 

3.3 Performance of the imputation techniques 

An imputation technique performs well if it is able to obtain unbiased estimates 

of missing values. However, more important is the ability of preserving the re¬ 

lationship among items and the reducing the bias caused by the missing data 

(Sande, 1982). The effectiveness of an imputation technique should be evaluated 

against a criterion that is common in applied research (see Kromrey & Hines, 

1994). Because the latent ability of the respondents is the topic of interest, the 

performance of the imputation techniques is investigated by comparing the scale 

scores after imputation with the original scores before data points were deleted. 

To judge the ability of the techniques to preserve the relationships between the 

items, two overall measures of these relations are investigated: Cronbach’s alpha 

and Loevinger’s H. 

Specifically, the distribution of the deviation dv(t) = rv(t) — r„ is used to judge 

the performance of the imputation techniques, where r„ is the scale score of person 

v in the original complete data and rv(t) the scale score of person v from the data 

matrix imputed with technique t. This distribution is summarized by the mean 

d(t), the standard deviation and the Root Mean-Squared Deviation: 

RMSD(f) = 
E* 
v=l 

£ Wi{xvi(t) - xvi) 
\t€m*s(u) / 

nE‘dv(t)2 
v=l 

^ Umis \ Tlmis 

where x„,(<) is the imputed value for person v and item i, mis(v) is the collection 

of missing item responses for person v, and nmjs is the number of persons with 

missing data in the data matrix. 

From this definition it follows that the RMSD(<) is dependent on the item 

weights W{. These weights are used to transform the scale scores of the four 

scales to have equal range, i.e., 0 — 100. The item weights equal k^a-, with 

k the number of items and max the difference between the largest and smallest 

response option1 (see Table 1). This results in a change in the interpretation of 

tFor the NHPR(SI) this only holds for the average item weights 
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the RMSD(t), reflecting that 1) incorrectly imputing an item in a short scale (k 

small) causes more bias in rv(t) than an item in a long scale, and 2) incorrectly 

imputing an item with few response options (max small) causes more bias in 

rv(<) than an item with many response options. Incorrectly imputing an item of 

the FFPI(E), for instance, causes a change in rv(t) of 1.25 when the difference 

between the imputed value and the original value equals 1, while the same error 

in the NHPR(SI) causes on average a change in r„ of 20. 

On scale level, the two measures of internal consistency of a test are investi¬ 

gated which are mentioned earlier: Cronbach’s alpha, (reliability) and Loevinger’s 

//-coefficient (scalability). Both measures are compared before and after deletion 

of data points and imputation, da(t) = alpha(t) — alpha and dH(t) = H(i) — H. 

These measures of internal consistency heavily depend on the covariance matrix of 

the items, which means that bias in estimating variances and covariances caused 
by imputation will lead to biases in alpha and H. 

3.4 Results 

3.4.1 Recovering rv 

The simulation design results in 108 cells (dxnxmxp), in each of which 100 data 

matrices with missing data are generated and imputed with the six imputation 

techniques. The main results of the simulations are presented in Table 2. 

In Table 2 the average values of RMSD(i) of the imputation techniques are 

presented for all factors of the design. From the table it follows that across all 

factors CIM is the best technique. For each independent variable separately, CIM 

also performs best, closely followed by ICS, PMS, and HD in varying order. The 

benchmark method RDS performs worst, as was expected. Imputing an item 

mean (IMS) is on average always worse than imputing a person mean (PMS), 

although the RMSD(PMS) more rapidly increases than that of IMS when the 

number of missing values increases. In many cases IMS is almost as bad as RDS, 

and sometimes even worse, especially for nonrandomly missing data. 

The same picture emerges when the means and standard deviations of dv(t) 

are inspected (results not presented here). The former expresses how well a 

technique on average is able to recover the scale score, the latter the dispersion 

of the errors made by imputation. CIM and ICS both have the smallest values 

for <4(t). IMS has the largest values, even larger (absolute values) than RDS 

which has largely negative values, indicating that on average the imputed values 

are smaller than the original. The other techniques all show positive values for 
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Table 2: Main effects of RMSD(t) for the imputation techniques 

across all factors in simulations study I. 

RDS IMS PMS CIM ICS HD 

air 

FFPI(E) dl 
RAND(PF) d2 
RAND(MH) d3 
NHPR(SI) d4 

n = 100 nl 

n = 200 n2 
n = 400 n3 

MCAR ml 
NRX m2 
NRXZ m3 

p = 0.05 pi 
p = 0.12 p2 
p = 0.20_p3 

11.96 11.17 8.37 

4.51 4.23 2.57 
11.52 11.27 7.40 
12.66 10.57 8.29 
19.14 18.61 15.23 

11.89 11.09 8.28 
11.98 11.18 8.39 
12.01 11.23 8.44 

10.87 6.11 5.13 
11.52 12.89 8.98 
13.49 14.51 11.01 

10.52 10.34 7.26 

11.85 11.19 8.45 
13.51 11.98 9.40 

7.17 8.05 8.82 

2.26 3.26 3.57 
5.62 5.94 7.21 
6.46 8.36 8.26 

14.33 14.63 16.26 

7.09 8.16 9.02 
7.18 8.07 8.79 
7.23 7.91 8.66 

4.58 5.37 5.44 
7.68 8.75 10.53 
9.25 10.02 10.50 

6.19 6.79 7.31 
7.25 8.01 8.79 
8.06 9.34 10.36 

d(t), and only when the missing data mechanism is random (ml), the deviations 

are close to zero. 

When looking at the effect of the four factors the following can be said. First, 

the differences between the performances in the four data sets clearly show the 

influence of the item weights on r„(t). This reflects the ‘punishment’ of incorrectly 

imputing a short scale (d3 and d4), or a scale with few response categories (d2 

and dA). Second, sample size has a marginal effect on the performance of an 

imputation technique, except for the hot deck method. Third, the higher the 

percentage missing, the larger the number of errors. Finally, the more complicated 

the missing data mechanism, the more values are incorrectly imputed. 

Interactions When looking at three-way interactions d x m x p (not reported 

here) CIM also proves to be the best method, in almost every cell. Competitors 

are ICS (in the RAND(PF) and NHPR(SI) data), PMS (FFPI(E) data), but 

they are almost never better than CIM (only in some cases with small proportions 

missing). In situations with medium to large proportions of nonrandomly missing 

data in the long scales, RDS performs better than IMS. 
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3.4.2 Assessment of scale quality 

To assess the ability of the imputation techniques to preserve the relationships 

between the items, the change in Cronbach’s alpha and Loevinger’s H is inves¬ 

tigated. For a detailed description of the results see Huisman (1999), here only 

the main results are presented. 

The most noticeable result is the overestimation of both alpha and H by 

the techniques PMS and CIM. ICS only overestimates the scale quality in the 

short scales, the other three techniques lead to lower values of alpha and H. The 

overestimation by CIM is not surprising, because this technique was called earlier 

a very simple IRT model. When such a model is used for both the imputation of 

missing values and the analysis of the imputed data, the model fit will increase. 

Alpha and H can be seen as goodness-of-fit measures of measurement models, 

and will therefore be overestimated when missing values are imputed with an 

IRT model. 

There is no overall best method according to the two criteria, although ICS 

seems to do reasonable well. Hot deck imputation underestimates the quality of 

the scale, but the absolute deviates are larger than those for CIM. The RDS pro¬ 

cedure performs worst in practically all situations. Only in case of dichotomous, 

nonignorable missing items [NHPR(SI)], IMS is worse. 

The deviations in alpha are largest for the short scales. They can be fairly 

large, for example, in case of m = NRX, p = 0.20, and d = NHPR(SI), alpha 

equals 0.29 after imputation of item means (IMS), where in the original data 

alpha is 0.74. The deviations in H are generally larger than those in alpha, 

except in the short scales where they are of equal size. Longer scales are more 

robust against imputation according to Cronbach’s alpha (the absolute deviations 

are never larger than 0.15, and often almost zero). Because of the dependence 

of alpha on k this is not surprising. This positive effect of test length does not 

occur for the if-coefficient. However, the overestimation of H by CIM and PMS 

is much smaller compared to alpha, or does not even occur in some cases. 

4 Simulation study II 

The techniques investigated in the first simulation study were characterized ear¬ 

lier as being naive and simple methods. There are three ways in which the quality 

of the imputation of missing item responses can be improved: 1) adjusting for 
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nonrandom missing data mechanisms, 2) using more advanced imputation mod¬ 

els, and 3) both. The first two potential improvements are studied in this second 

simulation study. The adjustments for nonrandom missingness are based on im¬ 

putation within so-called adjustment cells (poststratification), the more advanced 

imputation models are item response models, specifically, the model of Mokken 

and the OPLM. With this latter model also a multiple imputation procedure is 

constructed. For a more detailed presentation of the design and results of this 

study, see Huisman (1999). 

4.1 Adjustment cells 

Adjustment cells are strata based on completely observed covariates, and contain 

cases with both observed and missing item responses. Within each adjustment 

cell, response is assumed to be independent of the items and the sampling selection 

process, and the subpopulation is assumed to be homogeneous with respect to the 

missingness mechanism. In this way the procedure is related to poststratification. 

For example, if age is known to influence the probability of response and age is a 

covariate that is observed for every person, age groups can be formed within which 

missing item responses are imputed. This conditioning on observed covariates 

reduces nonresponse bias in case of data Missing at Random (MAR) and also to 

some degree in case of nonignorable nonresponse as long as nonresponse is limited 

and good covariate information is available (Rubin, Stern, & Vehovar, 1995). 

Corrected Item Mean substitution (CIMA). Within each adjustment cell the cor¬ 

rected item mean, as defined in the first study, is imputed for every missing item 

response. The values of CIM are rounded to the nearest integer. 

Hot Deck imputation (HDA). Within adjustment cells a completely observed 

donor case is sought by minimizing the distance function given earlier. The 

response pattern of the complete case that most resembles the incomplete case 

(nearest neighbour) is used as donor, and the observed values are substituted for 

the missing ones. 

4.2 Item response models 

As was discussed earlier, all imputations are based on some kind of model, ei¬ 

ther implicit or explicit (see also Sande, 1982). Examples of implicit models are 

given earlier (hot deck or mean imputation). Explicit models are the parametric 
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models usually used in statistical analysis, like regression. Because imputation is 

a form of prediction, imputations should be based on the predictive distribution 

of the missing values given the observed values, and Little (1988) argues that “a 

model underlies this distribution, so a systematic approach to imputation requires 

modeling the data" (p. 288). 

The obvious class of models to use for imputation of missing item responses 

in the case of measurement of latent abilities, is the class of measurement models. 

In particular IRT models seem most appropriate, because of their benefits with 

incomplete testing designs (Eggen & Verhelst, 1992; Mislevy L Wu, 1996), and 

as a continuation of the procedure CIM from the first study, which can be viewed 

as a very simple IRT model. 

Mokken scaling (MOK). In Mokken scale analysis the cumulative response mech¬ 

anism of the scale is used to order the persons and the items on the latent trait 8 

(Mokken, 1971). Laros & Tellegen (1991) use Mokken scaling to impute missing 

item responses in an adaptive testing situation. The idea is that the items should 

be ordered according the percentage correct responses (decreasing), from ‘easy’ to 

‘difficult’. Rules are made for imputing the missing responses with as few errors 

as possible. The steps in the procedure are the following: 

1. Compute the proportion of correct responses for every item based on the 

available cases. In case of polytomous items the responses should be trans¬ 

formed into dichotomous item steps (Molenaar, 1997). These item steps rep¬ 

resent imaginary thresholds between two adjacent response options, where 

the value 1 indicates that the respondent crossed the threshold, and 0 if 

not. 

2. For every missing data entry the following five rules are applied: 

2.1. If the response 1 (correct) follows the missing response 9, impute the 

value 1. 

2.2. If not, then if the response 0 (incorrect) precedes the missing response 

9, impute the value 0. 

2.3. If not, then define aoo as the number of incorrect responses (0’s) pre¬ 

ceding a missing response, and a0i as the number of correct responses 

(1’s) preceding a missing response. If a0o •> “oi impute the value 0 

(incorrect). 
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2.4. If not, then define Cio as the number of incorrect responses (0’s) fol¬ 

lowing a missing response, and On as the number correct responses 

(1’s) following a missing response. If ai0 < On impute the value 1 

(correct). 

2.5. In all other cases impute a random draw from the empirical distribu¬ 

tion of the dichotomous items, based on their proportion correct. 

3. After imputation, transform the item steps into the original response op¬ 

tions in case of polytomous items. 

Example: Imputation steps 

The items are ordered according to decreasing proportion correct. 

9111109100 
1111009109 
1000019900 
1101990110 

1111101100 
1111001100 

aoo = 4 > aoi = 2 =*• 1000010000 
oio = 2 < o„ = 2 => 1101110110 

Note that the rules, especially 2.3 and 2.4, are somewhat arbitrary and other 

rules could be formulated. However, the rules used here perform reasonably well, 

because they keep the number of errors small. 

The One Parameter Logistic Model—OPMISS. With the program OPLM (Ver- 

helst, Glas, & Verstralen, 1995) the one parameter logistic model can be fitted to 

the data set. Based on the observed responses, estimates of the item and person 

locations on the latent trait 8 can be computed. With these parameter estimates, 

the distribution of the responses in every cell (u,i) of the data matrix can be 

computed; 7Ty(0v) is the estimated probability of person v giving the response 

option j for item i. An ad hoc module called OPMISS was added to OPLM 

to impute missing item responses with the estimated response probabilities (see 

Nap, 1994a). 

With OPMISS different imputation techniques can be used. For instance, the 

expected value of the distribution or a random draw from the distribution can 

be imputed. Nap (1994a, 1994b) showed in several simulation studies that the 

best results were obtained when the random draw option was used. Two versions 

of this procedure are investigated here: 1) replace every missing value once by 

a draw from the estimated response distribution, and 2) multiple imputation of 

each data set by repeated draws from the distribution (Rubin, 1987). 
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OPMISS—Expected Value substitution (OEV). The expected response of person 

v on item i is substituted for the missing value, 

OEVvi = X>o(0v) > 
3=0 

where j represents the response categories with values 0, • • •, c (all items in a scale 

are assumed to have the same number of response options). The values OEV,,,- 

are rounded to the nearest integer. 

OPMISS—Single Draw substitution (OSD). The values used for the imputation of 

the missing item responses are randomly drawn from the estimated distribution 

of each cell, with probabilities ffiof^v), • • •, Kic(6v). Every missing entry is imputed 
only once. 

OPMISS—Multiple Draws substitution (OMD). For every incomplete data matrix 

the OSD procedure is repeated five times, i.e., every missing entry is imputed five 

times. This results in five completed data matrices. Each imputed data matrix is 

investigated separately with the criteria that will be defined in the next section 

to judge the performance of the imputation procedures. The five results are 

combined to represent the overall result of this multiple imputation technique. 

4.3 Simulation design 

The design of this second simulation study is almost the same as that of the first 

one. There are two important differences. First, due to technical problems the 

data sets RAND(MH) and FFPI(E) could not be imputed with OPMISS (see 

Huisman, 1999). The items of first data set are recoded (less response options) 

to solve this problem, and the latter data set is replaced by an artificial one. 

Moreover, the artificial data, which is generated with the OPLM to follow a Rasch 

scale with equal discrimination parameters, allows comparison of the performance 

of the OPMISS procedures under ideal circumstances. These two new data sets 

can be found in Table 3. The data sets used in the second simulation study are 

RAND(PF), RAND(MH)-recoded, NHPR(SI), and RM(D) (or d2, d3r, d4, and 

d5, respectively; see also Table 1). 

The second difference is the number of cases drawn from the data sets; instead 

of 100, 200, and 400 cases, here n = 200, 400, and 800 cases are drawn in which 

missing data are created. The other two independent factors are the same as 
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Table 3: Extra data sets serving as basis for data used in simulation study II. 

Data Scale k Cat. ti>; Corr. Alpha 
d3r RAND-36 Item Health Survey: 5 0 — 3 6.67 0.59 0.87 
RAND(MH) Mental Health recoded 
d5 Data following Rasch Model: 10 0 — 1 10 0.14 0.63 
RM(D) Dichotomous items 

RM(D) item parameters: -2.0, —1.7, —0.9, -0.5, —0.1, 0.2, 0.6, 1.1, 1.5, 1.8 

in the first study: missingness mechanisms (m) MCAR, NRX, and NRXZ, and 

proportions missing (p) 0.05, 0.12, and 0.20. The performance of the techniques 

is investigated by inspecting RMSD(f), and the differences in Cronbach’s alpha 

and Loevinger’s H: da(i) and 

Adjustment cells Based on the covariates sex and age, adjustment cells are 

created in every data set. Because age is a continuous variable, categories are 

made such that the data are split into two groups (young/old). This means that 

four adjustment cells are made: two sex groups and two age groups. Huisman 

(1999) also presents the results of a more refined categorization, with two sex 

groups and four age groups. These results are, however, never better than the 

rough categorization with two age groups presented here. 

4.4 Results 

4.4.1 Recovering r„ 

The design of the second study results in 108 cells (dxnxmxp). Due to technical 

problems, an amount of 100 incomplete data matrices could not be obtained for 

every cell of the design (see Huisman, 1999). However, in every cell at least 50 

incomplete data matrices are generated and imputed (in most cells the number 

is close to or equals 100). The main results of the simulation are presented in 

Table 4. 

In Table 4 the average values of RMSD(f) are presented for all factors of the 

design. It follows that across all factors OMD performs best when estimating 

the scale score. The second best after OMD is OEV, except for the RM(D) data 

where CIMA is better. More specific, in 83 out of 108 cells in the design OMD 

was the best technique and in 20 cells it was second best. In 62 cells OEV was 

the second best technique. The third technique using the OPLM, OSD, does not 



73 

Table 4: Main effects of RMSD(t) for the imputation techniques across 

all factors in simulation study II. The data sets are ordered according to 

the item weights, reflecting the difficulty to impute the data. 

CIMA HDA MOK OEV OSD OMD 

ali 8l93 11.58 9T5 

5.59 8.57 5.63 RAND(PF) d2 
RAND(MH)r d3r 
RM(D) db 
NHPR(SI) rf4 

n — 200 nl 
n = 400 n2 
n = 800 n3 

MCAR ml 
NRX m2 
NRXZ m3 

p = 0.05 pi 
p = 0.12 p2 

8.00 10.45 8.18 
7.68 10.40 8.41 

14.46 16.88 14.38 

8.92 12.00 9.12 
8.92 11.54 9.15 
8.96 11.18 9.18 

6.50 7.41 6.71 
9.11 12.90 9.30 

11.19 14.41 11.43 

7.54 9.56 7.73 
9.00 11.68 8.61 

10.26 13.48 10.56 

8.60 9.27 8.28 

4.93 5.50 4.78 

7.78 8.79 7.71 
7.91 8.61 7.25 

13.77 14.20 13.38 

8.54 9.25 8.23 
8.59 9.26 8.27 
8.65 9.31 8.34 

6.27 6.97 5.94 
8.47 9.21 8.18 

11.04 11.65 10.72 

7.02 7.79 6.76 
8.61 9.27 8.29 

10.16 10.76 9.80 p = 0.20 p3 

r Recoded data. 

perform as well as the other two, and most of the time CIMA and MOK perform 

better. The hot deck technique, however, is in practically all cells (98 of 108) the 

least accurate. The construction of adjustment cells does not seem to improve 

the main effects of the techniques. 

The effects of the four independent factors are as expected. First, incorrect 

imputation in a short scale is more severe than in a long scale, as is the case with a 

scale consisting of dichotomous items compared with polytomous items. Second, 

the effect of sample size is negligible. Only for the hot deck technique there is a 

slight improvement. Third, the more complicated the missingness mechanism, the 

harder it is to impute correctly, as is the same for higher proportions of missing 

responses. 

Interactions Investigating interactions (not reported here) reveals the same 

general picture: when the situation becomes ‘uglier’, the performance worsens. 

‘Uglier’ is here defined as a scale that is more difficult to impute (higher weights), 
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more complicated missing data mechanisms, and/or more missing values. OMD 

generally proves to be the best technique. However, the differences between OMD 

and OEV, CIMA, and in some cases MOK are not large and not in all cases in 

favor of OMD. The HDA procedure performs worst, but the performance gets 

better with increasing levels of n and when the mechanism is a function of the 

covariates (NRXZ). For the RM(D) data the performance of the IRT imputation 

techniques (including CIMA) also improves when the mechanism is nonignorable. 

More specifically, for m = NRX, the methods perform better than when the data 

are MCAR. 

4.4.2 Assessment of scale quality 

The main results of the investigation of Cronbach’s alpha and Loevinger’s H for 

and after imputation, show the same picture as was found in the first simulation 

study. Imputation techniques based on IRT models result in an overestimation 

of the reliability and scalability of the items. The overestimation is largest for 

OEV. Even if the data are MCAR, the coefficients are severely overestimated 

with OEV. For example, in case of m = MCAR, p = 0.12, and d = RM(D), 

H equals 0.34, which classifies the items as weakly scalable (see Mokken, 1971), 

where the original value equals 0.25, indicating nonscalable items. 

The overestimation is generally smallest for OMD and OSD, followed by MOK 

and CIMA. For the dichotomous data [NHPR(SI) and RM(D)], MOK performs 

better than CIMA, for the polytomous items CIMA is better. The hot deck pro¬ 

cedure, on the other hand, underestimates the quality of the scale. The absolute 

deviations are generally smallest when the data are MCAR, but generally largest 

for mechanism NRX. For NRXZ they are as large as those found with CIMA. 

Again, the small values of the deviations in alpha show that long scales are more 

robust against imputation according to this criterion. 

5 Discussion 

As expected, from the results of the simulations studies it follows that the propor¬ 

tion of missing data, the missingness mechanism, and characteristics of the scale 

under investigation, all largely influence the success of imputing missing item re¬ 

sponses. Sample size, on the other hand, does not seem to affect the performance 

of the imputation techniques very much. Exceptions are the hot deck procedure, 

for which the performance slightly improves when the sample size increases, and 
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imputation within adjustment cells. The effect of sample size is still small in 
these cases. 

Although the two simulation studies cannot strictly be compared, due to 

minor differences in the designs, some general remarks can be made. When 

the sum score r„ of the respondents is investigated, the OPMISS procedures 

generally prove to be the best performing techniques. If only the mean sum 

scores are considered, imputing the expected value from the estimated response 

distributions (OEV) is best, if the variation between the sum scores is also taken 

into account, OMD (average of five times multiply imputing random draws from 

the estimated response distributions) performs best. A drawback of the multiple 

imputation procedure is that every data set has to be imputed and analyzed five 

times, and the results have to be combined to obtain a final result. The results 

of imputing only one draw from the response distribution, however, are not as 

good as the other two methods. Imputing a corrected item mean is in most cases 

actually even better. Also the simpler methods ICS and PMS work reasonable 
well in some specific situations. 

Investigation of the ability of the imputation techniques to recover the rela¬ 

tionships that exist between the items, by looking at differences between relia¬ 

bility of the scale (Cronbach’s alpha) and scalability of the items (Loevinger’s 

H) before and after creating and imputation of missing values, shows a disad¬ 

vantage of using IRT models for imputation: the IRT imputation methods cause 

an overestimation of the quality of the scale. This overestimation is due to us¬ 

ing IRT models for both imputation and analysis of the completed data, which 

causes an increased model fit and therefore a too optimistic presentation of the 

internal structure of the test. The increased model fit results in higher values of 

alpha and H, and can be very severe. The same is true for imputing a corrected 

item mean, which can be considered a very simple IRT imputation model. The 

overestimation is largest for OEV, and smallest for OMD. 

The success of the imputations not only depends on the factors in the design, 

but is also dependent on the quality of the imputation model. If a good fit 

can be accomplished, the parameter estimates, and therefore the estimates of 

the response distributions will be better. This will result in better estimates 

of r„. There are, however, two drawbacks. First, improving the model fit will 

cause the overestimation of the internal consistency of the scale to become even 

larger. Second, more time and effort are needed to obtain estimates of the missing 

values when more advanced imputation models are used. In this respect, the 

computational simplicity of the methods CIM and MOK (or even ICS and PMS) 
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may prevail the slightly better results obtained with the OPMISS procedures, 

which are more difficult to use. 
Using IRT models for the imputation of scale (i.e., IRT) data results in good 

estimates of the missing values, especially when the missing data mechanism is 

in some way dependent on the item responses. The case of the artificially created 

Rasch data illustrates this result. Here, the performance of the IRT procedures 

improves when the mechanism changes from missing completely at random to a 

nonignorable mechanism in which the missingness is a logistic function of the item 

responses. The missing data mechanism in this case resembles the data generating 

model, and is implicitly included in the analysis when IRT imputation models are 

used to handle the missing data. This results in better predictions of the missing 

responses. When covariate information is used for the generation of the missing 

values, the performance of some procedures can be slightly improved by post¬ 

stratification on the covariates. The construction of adjustment cells, however, 

only results in a better performance when large proportions of item responses are 

missing, and only the hot deck procedures showed some improvement. 

How to deal with missing values is a problem that is hard to tackle and for 

which no generally best solution exists. Imputation is one way in which item non¬ 

response can be treated, although it can never completely solve the missing data 

problem. Still, trying to find good imputation methods is worthwhile, because 

complete data sets are rare in empirical research and missing data will not cease 

to exist. 
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