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A COMPARISON OF VARIANCE COMPONENT TESTS 

ALEXANDER F. BRUYNS1 

An analytical evaluation is performed of four tests regarding the 
variance component in a one factor random effects model with a 
balanced design. The actual significance value and power of the 
asymptotic tests are computed by relating the test statistics to the 
E-distribution. In the light of these considerations a uniform 
arrangement of the tests is presented. 
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1 Introduction 

Multi-level analysis (Goldstein, 1987; Bryk & Raudenbush, 1992) has recently attracted the 
interest to the development and applications of level-structured data. The hierarchical models 
provide a description of the variability within and across nested levels. Primary concerns are 
on the estimation and hypothesis testing of variance and covariance components. As a rule 
multi-level analysis refers to unbalanced settings and, therefore, relies on approximate tests 
derived from asymptotical theories. In order to give an indication of the accuracy of these test 
procedures we will provide some finite sample evidence. Only in a one-way random effects 
model this is possible with an analytical approach. In this paper we evaluate the small sample 
properties of the asymptotic tests for variance components in a balanced design. The 
following step might be an examination of the tests for unbalanced data, which should be 
carried out with the use of a simulation study. 

The concept of hierarchical models (Bryk and Raudenbush, 1992) is extensively used 
in applied research. We will present the general framework of observations within groups by 
means of a model at an individual level (also designated as level-1 units) are nested with 
groups (level-2 units). A review of four variance component tests will be made in a specific 
case of the linear hierarchical model, namely the one-factor random effects model in a 
balanced setting, presented in the next section. An outline of the available tests on the 
variance of the random effect will be given in section 3. Section 4 of this paper consists of a 
comparison of these tests on statistical grounds. Finally, we will make some remarks on this 
study. 
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2 The model and its assumptions 

In order to investigate the differences between groups on the scores of their members we re¬ 
gard the following linear relationship at the individual level, 

Vs =Pi+ejj»(2-l) 
between^, the observation of ia' level-1 unit of group j, and the level-1 coefficient, and ei: 
,being the level-1 error. In fact, the equation (2.1) predicts the outcome for each group with 
the intercept, Pj,. At level-2 we assume that each group has its own inherent Pj and 
decompose this effect into the true grand mean in the population denoted by p and the random 
level-2 parameter, br 

Pjl=H + V 
Suppose, that the experiment is performed on n randomly selected level-1 units from J 

randomly chosen groups. Combining the aboved-mentioned formulas, we obtain 
y, = p + bj + e(j i = l,j = l,...J (2.2) 

in fact the conventional one-way balanced random effects model ( Mason et al., 1983), which 
can be regarded as a modification of the corresponding fixed effects model. The groups are 
assumed to have been chosen randomly from a superpopulation of groups; this enables the 
experimenter to generalize beyond the sample being taken and to make inferential statements 
about the superpopulation. In order to examine the validity of these statements, however, the 
model requires assumptions about the observations before a test can be carried out. We 
assume that the random variables are independent and identically distributed as 

bj-NfO.o2t), Cij-NfO,^), 
where b, and e,j are mutually independent. 

Important questions about a random effects model concern the unknown parameters of 
the population of potential groups from which our groups were selected, the mean p or the 
variances ab2 and a,2. We focus on the absence of the population variability of level-2 effects, 

//0:a2b = 0. 

This null hypothesis holds when all unknown group effects b, are fixed and equal. 
An important statistic that gives information about this issue is the ratio of the 

between-groups- and the residual within group sums of squares, which in the case of a 
balanced design are mutually independent and defined respectively as 

B-ni(y-y)2. r = 
J-l i-l i-l 
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3 Tests on H0:CTb2 = 0 

Bryk and Raudenbush (1992) mentioned three large sample tests for this single parameter 
hypothesis: a y2 test, the generalized likelihood-ratio test, and a r-test based on the the ML 
estimator for ab2 and its standard error. As is suggested by these authors, it is better to skip 
the last option, since under the null hypothesis the behaviour of this test results in a symmetric 
acceptance region for ct„2, which is unsatisfactory. In our balanced case we can extend the list 
with the usual F test, and a modified likelihood ratio test proposed to the author by Snijders. 
Only for the F-statistic the distribution is known, the other tests are based on an asymptotic 
distribution. Our list, therefore, contains four tests as potential candidates in investigating the 
variance of the group effect; two generalized likehood ratio tests, the usual F test, and a y2 
approximation to that F test. A more detailed description of the four procedures is as follows. 

In the case of the random effects model (2.2) we combine the likelihood function of ytJ 
conditional on bj with the likelihood function of the group effect (see Aitkin (1989) for 
detials). This leads to the following profile likelihood in 0=ctb2/CT(,2 

(1 + n& f2. PL(0)-- 
W + B / (1 + n 0 ) 

nJ 

Note that 0 > 0, while the null hypothesis is 0=0. This implies that the null hypothesis 
corresponds to a boundary region of the parameter space and the maximum likelihood 
estimator of 0 can indeed be equal to the boundary value 0. If (n-\)BIV/ > 1, the M.L.E. of 
ab2 and <Te2 are 

1 W 
' J ) J -1~ (n -1 )J 

W 

(n-l)J 

and the maximum of PL(0) is assumed for 1 +n0 =(n-\)B/W, 

~\-nJ/2 r- 

PL(0) = 
IV 

(n-l)J 

(n-l)B 

W 

For (n-l)S/Vk< 1, we obtain the following maximum likelihood estimators. 

ai = 0, 

~2_1 
CTe- 

n 

l B 
+(n-l)- 

W 

J ) J -1 ' ' (n-1 )J 

In total, the likelihood ratio for the model where 0 > 0 is given by 

A = 

1 

At (n-l)J 

(n-1) i 

for( n-l)B/W <1 
-nJ/2 r . 

tv otherwise 
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According to the usual theory of the generalized likelihood ratio tests, which does not 
take the 0 > 0 into account, the asymptotic distribution of -Zln/.j is a x2 w'th one degree of 
freedom, which means that we will reject the null hypothesis when -21n>.| is larger then x2hia 
(1) [Test 1], From Self & Liang (1987) and Chernoff (1954) we know that the approximate 
distribution of -21n>. under H0 behaves like a 50% : 50% mixture of a X2 (0) ( mass point at 
zero ) and the earlier mentioned x2 (!)• The rejection-rule for this modified LR-test is given 

by 2ln>, > x2i-« (1) [Test 2], 
The next test is based on the common F statistic [Test 3]. The null hypothesis in 

question can be regarded as a hypothesis on differences between group means in a fixed 
effects model. Since under normality the sums of squares B and W are independently 
distributed as (oe2 + nab2)xV-l) and ae2xV(n-l)), respectively, this is an exact method. 
Herbach (1959) shows that this test is uniformly most powerful similar and invariant in a 
balanced design. Moreover, in a balanced one-way classification, the exact LR test appears to 
be equivalent to this F-tesl. When ab2 is equal to zero we have the exact distribution 

F= B/(J-±2-p ( J -1 ,J ( n-1)) (3.1) 
W/(J(n-l)) 

However, the alternative hypothesis distributions differ between fixed and random 
effects models. In the case of a random factor one can derive that the F-ratio (3.1) is exactly 
distributed as a central F (3.1) multiplied with a constant c, 

Finally we employ another large sample test of H0:ab2=0, recommended by Bryk & 
Raudenbush, which is the x2 approximation to the above-mentioned F test. Under the null 
hypothesis, the statistic in question 

nY.( y,-yJ 
M_ B 

W/J(n-l) 
=(J-1)F (3.2) 

has approximately a x2 distribution with 7-1 degrees of freedom [Test 4]. 
Summarizing we can test the present hypothesis by four tests, namely the generalized 

LR-test [1], the adjusted LR-test [2], the exact F-test [3], and the x2 approximation to test 3 
[4]. Critera to choose between the tests are the validity, i.e., the size of the test being equal to 
(or not greater than) the nominal significance, and the statistical power. We prefer the tests 
which have a correct size (the probability of type I error); if several tests would have the 
correct size, we would show preference for the test with highest power. In the next section we 
will see that it is possible to express the power and the actual significance level of the large 
sample tests in terms of the exact F distribution. 
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4 Evaluation of the tests 

From the previous section we have perceived that all test-statistics are based on the ratio of 
the sums of squares B and W, the main ingredients of the F test. We shall indicate now how 
the size a and power of the three asymptotic tests can be expressed as exact probabilities of 
the central E-distribution. 

Since the E-test is exact, the actual significance level is equal to the nominal level. 
Using the definitions (3.1) and (3.2) we obtain for the x2 approximation to the E test [test 4] a 
precise expression of the type I error probability, 

a=P[ F>z2lJJ-J)/(J-l)J, 

Similarly we express the GLR statistic -Zink, as a function cp(.) of the E statistic (see 
also Miller, 1977) 

<p( F ) = -2\aZi = -J ( n - / ) ln| -~—^j + nln( n ) + \n( F )-nln( + ^ 

Test 2 and 3 reject H0 whenever <p(.) is either larger than y2, oO) or x2i-2«(1) 
respectively. The function is strictly increasing whenever E is larger than 7/(7-1), which is 
precisely the turn-over point of the likelihood-ratio in the previous section. For this case, one 
can formulate an exact LR test as a E-test; instead of applying a critical value based on the 
large sample y2-distribution, one can take the critical value of the E-distribution. Using the 
Newton- Raphson algorithm, it is now possible to calculate which E-value corresponds to the 
specific critial values of asymptotic tests, leading to comparable forms of the rejection-rule of 
the concerning tests. As a result, probability statements of the tests can be transformed in 
terms of percentiles of the E-distribution with each a typical critical value. The only difference 
between the tests is the critical value. By comparing the critical-values of the E-distribution 
and those of the '^-distributions with a significance level for all practical purposes up to and 
including the 25 percent (Herbach, 1959), we can order them as follows: 

< F> "( J-U(n-1))< <p-' {z2,2J1))< <p ' (zlJl)) (4.1) 

It is important to remember that only the E procedure is valid under the null 
hypothesis and the normality assumptions. Thus, the inequality (4.1) indicates that the y2 
approximation to E is liberal and the generalized likelihood ratio tests are conservative. The 
modified LR test is less conservative than the unmodified LR test. To give an illustration of 
the difference between the type I errors of the three limiting tests and to demonstrate their 
convergence properties as n —> co, we will show some examples for various values of the 
number of groups 7 and the group sizes n. 
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TABLE 4.1 Actual significance levels with the generalized and modified LR test and the y_2 
approximation of F for various numbers of groups J and group-sizes n at the nominal 
significance level of 0.01 or 0.05. 

CL = - 

n J 

5 5 

5 10 

5 20 

5 50 

10 5 

10 10 

10 20 

10 50 

20 5 

20 10 

20 20 

20 50 

50 5 

50 10 

50 20 

50 50 

LR 

.00199 

.00249 

.00296 

.00352 

.00154 

.00212 

.00267 

.00332 

.00136 

.00196 

.00254 

.00323 

.00126 

.00187 

.00247 

.00318 

0.01 

mLR xV-1) 

.00409 

.00514 

.00610 

.00721 

.00325 

.00444 

.00556 

.00683 

.00291 

.00415 

.00513 

.00666 

.00272 

.00398 

.00518 

.00656 

.03069 

.02747 

.02490 

.02257 

.01823 

.01703 

.01605 

.01516 

.01366 

.01315 

.01234 

.01273 

.01137 

.01118 

.01103 

.01089 

LR 

.01076 

.01352 

.01596 

.01864 

.00886 

.01195 

.01473 

.01779 

.00806 

.01127 

.01418 

.01740 

.00762 

.01088 

.01387 

.01718 

0.05 

mLR xV-D 

.02265 .08689 

.02838 .08347 

.03325 .08017 

.03840 .07684 

.01916 .06643 

.02551 .06499 

.03102 .06356 

.03687 .06209 

.01767 .05776 

.02425 .05710 

.03001 .05643 

.03617 .05575 

.01685 .05300 

.02353 .05275 

.02943 .05249 

.03577 .05223 

With respect to the probability type I error, table 4.1 confirms inequality (4.1): the 
likelihood-ratio tests are conservative and the x2 approximation of F is liberal. The size of the 
modified LR is about twice as large as that of the generalized LR, but continues to remain 
smaller than the nominal significance value. For large group sizes the significance level of the 
X2(J-1) test is closer to the nominal a of the exact F statistic than the LR tests, especially for 

small group sizes; The likelihood-ratio tests show a relatively strong countereffect when the 
group sizes n increase in comparison with a rise in J. The net effect is however upward if the 
number of groups J increases with the same proportion as n. With the y\J-1) test these 
changes of n and J work in the same direction, but are again more substantial for the group - 
size. Similar conclusions can be drawn for other low tail probabilities of a. 

In section 3 we saw that the probability statements of the four test-statistics under the 
null, as well as under the alternative hypothesis, depend on the exact distribution of F 
statistic. For the alternative hypothesis we have the same central /-'-distribution, but now 
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modified by a positive constant c. This implies maintenance of the order in inequality (4.1), 
as all critical values are divided by the same value of c: the most conservative test is the least 
powerful and vice versa. For instance, the expression of the power of the common F-test 
becomes 
/r=P[ F> F,-J I-U( n-1) )/ c] 

Notice that the power can be derived from the ordinary cumulative F-table, instead of 
the more complex charts of the noncentralized F in the fixed effects model. 

In order to assess the power, it is necessary to specify some numerical values of the 
ratio 0. We will vary the population variances under the condition that their sum is equal to 
one. Due to the simple division of the constant c, general reflections on table 4.1 still 
maintain: the more observations or the higher the nominal a one is considering, the smaller 
the probability of type II error and thus, the larger the power. Once again, the group size 
exerts a greater influence than the number of groups J. To give an indication of the 
difference, we will show some results. 
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TABLE 4.2 The power of the four tests for several numbers of groups J and group sizes n 
a equals 0.01 under the condition that the sum of the variance equals one. 

LR mLR F xV-1) LR mLR F xV-1) 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

7=10 

.03505 .05687 

.15309 .20975 

.36214 .44023 

.59889 .66982 

.79391 .84030 

.91697 .93908 

.97609 .98329 

.99609 .99738 

.99983 .99989 

7=20 

.08391 .12515 

.37895 .46250 

.72446 .78689 

.92014 .94429 

.98496 .99040 

.99828 .99898 

.99990 .99995 

1.0000 1.0000 

1.0000 1.0000 

n=5 

.08767 

.27588 

.51912 

.73380 

.87849 

.95597 

.98846 

.99826 

.99993 

n=5 

.16306 

.52468 

.82664 

.95792 

.99319 

.99932 

.99996 

1.0000 

1.0000 

.16495 

.40530 

.64778 

.82456 

.92702 

.97560 

.99403 

.99915 

.99997 

.25995 

.64665 

.89128 

.97719 

.99673 

.99970 

.99999 

1.0000 

1.0000 

7=5 

.05800 .08513 

.22110 .27641 

.42445 .48627 

.60923 .66214 

.75443 .79293 

.85907 .88350 

.92911 .94233 

.97181 .97737 

.99368 .99498 

7=5 

.20831 .25919 

.52454 .57896 

.73209 .77023 

.85222 .87579 

.92081 .93435 

.95988 .96706 

.98173 .98511 

.99330 .99457 

.99860 .99887 

n=10 

.14858 

.37941 

.58756 

.74201 

.84782 

.91690 

.95983 

.98454 

.99663 

n=20 

.36436 

.67268 

.83082 

.91155 

.95429 

.97743 

.98992 

.99636 

.99925 

. 19806 

.44502 

.64505 

.78408 

.87526 

.93297 

.96801 

.98781 

.99736 

.39587 

.69715 

.84567 

.92001 

.95890 

.97979 

.99101 

.99676 

.99933 

if 

The table illustrates that power values tend to unity when we consider more 
observations. If we compare samples with the same total of measurements, but with a 
different values of n and /, then at a certain point the power turns to a higher value. Therefore 
just as with a, the group size n shows a greater impact in comparison to the amount of 
groups. 
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5 Final remarks and suggestions for further research 

This paper has discussed the evaluation of four tests for a variance component. Only in the 
case of perfectly balanced designs the distributions of the F statistic under the null as well as 
under the alternative hypothesis are exact. This enabled us to determine the exact validity and 
power of related asymptotic test-procedures. An order between these tests was given and 
illustrations were shown to reflect the differences between these tests and the most appropriate 
test. The x2 (T-l) test is liberal, the modified LR is conservative, and the GLR is very 
conservative. In the overall assessement, the common F-test gives the best balance, as it 
represents the nominal a even though the power is lower than its x2 approximation. The 
modified LR test is to be preferred to the unmodified LR test. 

For more complicated but useful designs, we have to generalize beyond the scope of 
the model offered in this article. The model can be extended if we include some covariates, 
either level-1 predictors or group-characteristics with fixed effects which predict the group 
means This additon will affect the definitions of the sums of squares and the degrees of 
freedom of the test-statistics, but in total the conception of the tests remains the same (Bryk & 
Raudenbush, 1992). With more random factors included in the model, the F tests remains the 
most attractive but shows no link with the limiting likelihood ratio tests due to the more 
complete boundaries to the paramater space (Herbach, 1959 and Gautschi, 1959). The 
relationship with the x2 approximation to the F test in models with multiple random factors is 
a topic for investigation. The proposed computations have to be extended to these situations. 
This large sample test is, however, also practical in the more frequent unbalanced cases. The 
likelihood ratio test is also suitable for the multiparameter hypothesis tests, for which the 
modified LR test is the most appropriate. For the unbalanced classifications improved 
estimators of the effects and simulation studies in these settings are needed to supplement the 
guidelines to the real significance value and power differences in this article. The paper 
already gives an indication of the suitablity of the large sample distribution in the unbalanced 
designs. 
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