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Some Remarks to Using Single Factor Analysis 

as a Measurement Model 

Wim P. Krijnen1 

Abstract 

Single factor analysis is frequently applied as a measurement model (Joreskog & 

Goldberger, 1975). It is shown that three loadings bounded away from zero for the 

population vector as well as for its least squares estimator is necessary and sufficient 

for the regularity conditions of asymptotic normality to hold. In particular, the 

model is identified, and the condition number of the Jacobian matrix as well as the 

asymptotic variance matrix are bounded. Least squares estimation is a practically 

feasible method for bootstrap (Monte Carlo) estimation, even when the population 

parameter is close to the boundary of the parameter set. Furthermore, bootstrap 

least squares estimation provides the possibility to test the normality of the empir¬ 

ical distribution of the statistics, to obtain nonnormal confidence intervals within 

the parameter set, and to draw logically consistent statistical inferences. A Monte 

Carlo experiment is reported as well as three bootstrap applications to empirical 

data. 

Key Words: Mean square error of factor prediction, Validity, Reliability, Non- 

parametric estimation, Asymptotic normahty._ 
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1. Introduction 

Factor analysis (Spearman, 1904) with a single factor is frequently applied as 

a measurement model (Joreskog & Goldberger, 1975). Application of the model 

involves estimation of the parameters for making inferences to the population and 

prediction of the factor for making inferences to the cases. 

From the theory of the generalized method of moments, sufficient conditions are 

known for the parameters to be asymptotically normal. One of these conditions 

involves the Jacobian matrix to have full column rank (Browne, 1984). However, 

even when this holds, the Jacobian matrix may be ill-conditioned. A necessary and 

sufficient condition for the Jacobian matrix to be well-conditioned is not known. 

Additionally, the regularity conditions for asymptotic normality have not been ver¬ 

ified with respect to the existence of the estimator, the practical feasibility of the 

estimator, and the Jacobian matrix to have full rank. 

Generally, the single factor is said to be “observable” or “determinate” if and 

only if it is a linear combination of the observable variables. This is almost surely 

the case if and only if the mean squared error (MSB) of factor prediction is zero (e.g. 

Krijnen, Dijkstra, & Gill, 1998). Moreover, a single factor is observable if and only if 

the validity attains unity. However, on the basis of asymptotic normality, empirical 

cases can occur for which it is impossible to draw logically consistent statistical 

inferences. In particular, this impossibility occurs when one is unable to reject the 

null hypothesis of unit validity or that of zero MSB. 

The purpose of this paper is to give a necessary and sufficient condition for the 

Jacobian matrix to be well-conditioned. Furthermore, the purpose is to illustrate 

that (bootstrap) Monte Carlo approximations do not suffer from the above men¬ 

tioned logical inconsistency, yield confidence intervals within the parameter set that 

correct for non-normality, and are useful for testing the normality of the empirical 

distribution of the least squares statistics. 
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2. The single-factor model 

The single-factor model is 

X — na + XoF -t- E, (1) 

where X is the random vector of order p with observable scores on the variables, 

/to= £[X] its expectation, F the random factor, E the random error vector of order 

p, and Ao the loadings vector of order p (e.g. Anderson & Rubin, 1956; Lawley & 

Maxwell, 1971). The subscript zero is added to distinguish population parameters 

from mathematical variables. It will be assumed that pri = o, var[jF] = 1, £[F] = 0, 

£{E\ = o, £\EF] = o, and £[EE'} = \Fo diagonal positive semi definite (Lawley k 

Maxwell, 1971). It will be convenient to collect the parameters to be estimated into 

the population vector = ( ^° ) > where i is the p-vector with unit elements. Let 

\0 be element i of A0, be element ii of !Ro, and Q the set of parameter vectors. 

Defining var[X] = Eo, it follows that 

-S, = AX + X (2) 

When no loading or error variance is fixed, invariance considerations reveal that the 

observable variables may be standardized without loss of generality (cf. Browne k 

Shapiro, 1991). Hence, it will be assumed that E0 is a correlations matrix. It follows 

that \o contains the correlations between the observable variables and the factor. 

The factor T is a random variable which may be predicted by the linear combi¬ 

nation of the observable variables which yields a minimum amount of mean squared 

error. The latter is accomplished by T = \'oE^lX, the projection of F on the 

space spanned by the observable variables (Luenberger, 1969, p.51). This predic¬ 

tor maximizes cor[F, T], the product moment correlation between F and F (Rao, 

1973, p.264), which is commonly called the “validity” (Lord k Novick, 1968, p.261). 

The “reliability” of a measurement is defined as cor2 [F, F], the squared correlation 

between F and F (Lord k Novick, 1968, p.61; Joreskog, 1971). 

For notational brevity let 70 =A()<Ro-1Ao, given that \Po is diagonal positive def¬ 

inite. It is immediate that MSE[F](= ypp) is positive. Hence, there is no linear 
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combination of the observable variables which yields the factor, so that the factor 
~ / -.1/2 

is “unobservable”. Furthermore, it follows that cor[F,F] = ■ 

3. The Jacobian Matrix 

The Jacobian matrix Aa = \ a a plays an important role in the 
do 0 = o Q 

regularity conditions for the asymptotic normality of estimators for the model of 

factor analysis (Browne, 1984). By the rules of taking first order differentials (e.g. 

Magnus k. Neudecker, 1991) it follows that 

A0 = [(Ao ® J) + (J ® *„),(€! ® eu..,eT ® ep] , (3) 

where e3- is column j of the identity matrix I Part of the conditions is that the 

Jacobian matrix A0 has full column rank (Browne, 1984). Obviously, the matrix 

Ao has full column rank if its condition number k(A0) = svma2.(2ao)/svmin(A0) is 

bounded, where “sv” is shorthand for singular value. The condition number quan¬ 

tifies the sensitivity of the linear equation problem (cf. Golub & Van Loan, 1983, 

p.26), on the solution of which the asymptotic normality of an estimator is based 

(e.g. Ferguson, 1958; Browne, 1974, 1984). A necessary condition is given in 

Result 1. In case p = 3, the condition number k(Ao) = oo if one of the loadings is 

zero. 

Proof. From standard properties of the Kronecker product it follows that 

=[2W + 2\X 2diag(Ao)l (4) 

° ° 2diag(Ao) J 

Hence, A?0 < 1 for all i, implies 1 < evmnl(2l'2\o)< U{A’oA0)< 2p* + 2p + p, where 

“ev” is shorthand for eigen value. Let a pair of single bars denote the determinant 

of a certain matrix. From a well-known result for the determinant of a partitioned 

matrix (e.g. Rao, 1973, p.32), it follows that 

KA.I = 2PIW + - 2diag(Ao * A„)| (5) 
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(6) 

where * is the element-wise Hadamard product. Since the order of the loadings is 

immaterial, suppose A3 = 0. Then the first 2 by 2 principal submatrix has rank one, 

so that evmjlI(zy Z\o)=0. Hence, k(A'0A0) and its root k(Ao) are infinite. This 

completes the proof. 

Since eigenvalues are continuous functions of the elements of their matrix, its 

follows for the p = 3 case that the condition number of the Jacobian matrix is 

unbounded when any of the loadings tends to zero. When p > 3 the necessary con¬ 

dition is that three loadings are bounded away from zero, since permutations would 

lead to a principal submatrix equal to that in Equation (6). That this condition is 

also sufficient is stated in 

Result 2. k(A(i) is bounded if three loadings are bounded away from zero. 

Proof. It is convenient to use permutations such that Aj = max{Ai,.., A^}. 

Since e\max(A'oAo) is positive and bounded, it suffices to prove that evmi„(2V zAo) 

is bounded away from zero. This will be accomplished by showing that is 

bounded away from zero. Using the partitioning \ = ( ^' ) in (5) and a result for 

the determinant of a partitioned matrix (e.g. Rao, 1973, p.32), it follows that 

Let a =Ap/A'1A1. The proof proceeds by separating the cases a < 1 and a > 1. 

Let a < 1 and three loadings bounded away from zero. It follows that X'oXoIp i — 

2diag(Aj * AJ is positive definite, and (1 — a) AjA'j is positive semi definite. Hence, 

(7) implies that 

i=l 
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which is bounded away from zero since three loadings are. Hence, evmin(A^o) is 

bounded away from zero. 

Let a > 1. It will be shown that the smallest eigenvalue of the matrix of the 

determinant to the right hand side of (7) is bounded away from zero. After taking 

its negative, the eigenvector which corresponds to this smallest eigenvalue is the 

solution of 

x' [(a — IJAjA'j + 2diag(A1 * Aj] x. max 
x'x= 1 

(9) 

Since, this eigenvector will have a zero element if the corresponding element in Ai 

is zero, the problem can be redefined by partitioning in such a manner that the 

diagonal matrix in (9) is positive definite. For the sake of simple notation it will 

be supposed, without loss of generality, that 2diag(A1 * Aj) is positive definite. By 

letting y = [2diag(A1 * A1)]1/,2x, the problem can be written as 

y [(a-l)[2diag(A1 * A,)] 1/2A1A'1[2diag(A1 * A,)] 1/2 + /] y 

(10) 

max 
y'[2diag(Al * AJ] ‘y= 1 

The solution of this problem is well-known to be equal to the suitably normalized 

vector [2diag(Aj * AJ]-1/2A1. Hence 

(11) 

is the solution to (9). Using that A'1[2diag(A1 * AJ] ‘A^ (p - l)/2 and 

A'^diag^ * AJ]-2A1= 1/(4A']AJ, 

it follows that the value of the maximum of (9) may be written as 

A'jAj [(a-l)(p-l)’ + 2(p-l)]. (12) 

Hence, the smallest eigenvalue of the matrix of the determinant to the right hand 



side of (7) is 

A'A-*'A 1(“ - 1)(P - l)2 + 2(p - 1)] = A'A [1 + (p - l)2 - 2(p - 1) + op(2 - p)]. 

(13) 

This eigenvalue is positive if and only if 

p(2 - p) p 

The latter condition holds under our supposition a > 1. This completes the proof. 

From Result 1 and 2 it follows that three loadings bounded away from zero 

is necessary and sufficient for the condition number of the Jacobian matrix to be 

bounded. 

4. Estimation by least squares 

To verify the regularity conditions for least squares factor analysis, the main 

properties of alternating least squares will briefly be reiterated. Let R be the matrix 

with sample correlation coefficients, vec/i = r, and vec.£(0) = tr(0), where “vec” 

transforms a matrix into a vector by stacking its columns one underneath the other. 

The least squares function is defined as 

q{0,r) = ||r - <t(0)||2 = \\R - A A' - !P||2, (15) 

where ||.|| denotes the Euclidean norm. A vector 0n which minimizes q over 0 

is called the estimator of the factor model. This vector may be obtained by an 

algorithm based on the idea of alternating least squares. In particular, substitution 

of the optimal choice Diag(J? — AA') for allows the function to be written as a 

constant plus ||rv — Aj Aj H2, where tv is column j o{ R —I, Xj is equal to A except for 

its jth element which is zero. Now take Xj = (A'A^)-1 A'.rv if [(A'.Aj)_1A'.Tv] < 1 

and Aj = 1(—1) if (A'A^'A'tv > 1(< —1) (Zegers & Ten Berge, 1983). In order 

to prevent that statistical inferences are drawn from locally instead of the globally 

optimal vector, the algorithm was run five times in this study for each sample 

correlation matrix. After randomly chosing A, a run of the algorithm generates a 
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sequence of function values {q{8k,r)} and a sequence of parameter vectors {0t}. 

It is well-known that the asymptotic normality of 6n is based on 

dq(9'r) | ^ = o (16) 
de ' 9 = 0n 

where from the rules of taking the differential (e.g. Magnus, & Neudecker, 1991), it 

can be found that 

dq(6,r) _ 
de 

After a finite number of iterations (16) does not hold exactly for 9 = 0k. To 

ascertain that it holds with a prescribed degree a accuracy, we need a convergence 

criterion e (which was fixed to ItT8 in this study). For a vector interior to the 

parameter set, the algorithm was stopped when the maximum of the absolute values 

of the elements in (17) is smaller than e. However, for Monte Carlo applications to 

small samples a solution on the boundary of the parameter set may occur, so that 

(16) does not hold almost surely. In such a case the algorithm was be stopped when 

the absolute values of the difference between the loadings before and after updating 

are smaller than e. 

5. Regularity Conditions and Asymptotic Normality 

Browne (1984) has given regularity conditions under which the estimator of the 

factor model is asymptotically normal. It can be shown that these conditions actu¬ 

ally hold if three loadings are bounded away from zero for the least squares estimator 

as well as for the population vector, both being interior points of the parameter set. 

This can be seen as follows. 

Since A; e [-1,1] and £ [0,1], and 0 is the cartesian product of these closed 

and bounded real intervals (cf. Copson, 1968, p.80), it follows that 0 is closed 

and bounded, and hence compact (Rudin, 1976, p.40). From 0 compact and q 

continuous on 0, it follows that q attains its infimum on 0 (Rudin, 1976, p.89). 

That is, there exists a vector 9n £0 such that q(9n,r) = inf^eg) g(fl,r). 

Obviously, three loadings bounded away from zero implies that there are three 

4(||A||2/ + <f'-R)A 

2 (?Rt — i. T A * A) 
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non-zero loadings. The latter is necessary and sufficient for the identification of 

the parameters in a neighborhood of e.g. 0O (Anderson & Rubin, 1956; Shapiro, 

1984). That is, S{0) = E(0o) implies 6 = 0o. Furthermore, by the law of 

contraposition, the latter is quivalent to 0 ^ 0O implies £(0) ^ S(0o). That is, 

different parameters yield different correlations matrices. 

Since each update is based on linear projection, {q(,6k,r)} is monotonically 

decreasing, as A; —» oo. Hence, apart from local optima, the sequence of func¬ 

tion values converges to the infimum of q, because q is bounded from the below 

(Rudin, 1976, p.55). For convergence of the sequence of parameter vectors a slightly 

stronger condition must hold. In particular, the condition that q attains its infimum 

at a unique point is neccesary and sufficient for {0fc} —►(?„, as Ac —> oo (Krijnen, 

Kroonenberg, & Dijkstra, 1998). 

Moreover, all derivatives involved exist (and are continuous) since all partials are 

taken of polynomials of elements of the parameter vector (cf. Rudin, 1976, p.105). 

The first order derivative of q is zero, since the estimator is an internal point of 

the parameter set. From Result 3 and the continuity of Ao, it follows that the 

Jacobian has full rank and that it is bounded in a neighborhood of 0o. Additionally, 

the computation of is practically feasible since evmin(A'0A0) is bounded 

away from zero. Finally, it is straightforward to show that the second order partial 

derivatives of cr(0) are continuous and bounded in a neighborhood of 0o. 

It is well-known (cf. Ferguson, 1958; Browne, 1984; Bentler &; Dijkstra, 1985) 

that these regularity conditions imply, under e.g. finite fourth order moments of 

independently and identically distributed observable variables, 

(18) 

where Oo is the asymptotic variance matrix of i/nr- (e.g. Hsu, 1949; Browne 

& Shapiro, 1986). In particular, Result 2, (A^AJ-1/'2A^fi^A^A^A^-1/2 < 

and (^A,)'1 < (ev^JAA,))-17’ implies that the asymptotic 

variance matrix in (18) is bounded. 

The asymptotic normality of estimators of the MSE of prediction, the validity, 
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and the reliability can be obtained as follows. Since these statistics are estima¬ 

tors of functions of 70 =AJ)4'0“1A0 = ^ *s convenient to go first into the 

asymptotic distribution of 7„ = A'n>^n 1At]. It is easy to see that 
c?7 j 
dd' 0 = Oo 

= ... —■ Lets denote this vector by 6 . Then (18) and the 

multivariate version of the delta theorem (or “method”), implies 

Vn(% - 7o) Af (o, , (19) 

where = 6'JA'oAor' A'0f20A0{A'llA0)-160 (Serfling, 1980, p.122). 

Let 3 be a function of 70 having a non-zero first order derivative 3'(7<I). Then, 

(19) and the univariate version of the delta theorem (Serfling, 1980, p.118) imply 

Vn (g(%) ~ g(x)) ^ N [o, [g'(70)]2ff^] • (20) 

Let g(70)= y^t, the MSE of F. Then its asymptotic variance follows from (20) 

and [g'(70)]2 = {t+^T ■ Let silo) = 1^7. the reliability of F. Then its asymp¬ 

totic variance follows from (20) and [g'(70)]2 = (i^) ■ Therefore the asymptotic 

variance of the estimated reliability is equal to that of the MSE of prediction. Let 

g(7o) = (^)1/2, the validity of F. Then its asymptotic variance follows from (20) 

and [g'(7o)l2 = ^ (y^)3- In many cases, the loadings are large or the number of 

variables is large in the sense that 70 > 2. This implies that (yy^) < (l+Ti) > 

so that the asymptotic variance of the estimated reliability is smaller than that of 

the estimated validity. 

Since all asymptotic variances are estimated with probability one by their sample 

analogs, Slutsky’s theorem (Serfling, 1980, p.19) implies that these can be used for 

empirical purposes. 

7. Monte Carlo Experiment 

An estimator which uniquely optimizes a continuous function of the parameters 

and the sample correlation coefficients, such as g, is a continuous function of the 

correlation coefficients (Jennrich, 1969). Furthermore; it is well-known that extreme 
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correlations require a large sample size for asymptotic normality (cf. Cramer, 1946, 

p.378). Hence, the possibility of drawing valid statistical inferences on the basis of 

asymptotic normality may be in danger when the population parameter vector is 

close to the boundary of the parameter set and the sample size is not large enough. 

This will be investigated by the following Monte Carlo experiment. 

The model was constructed by taking A0= (.40, .50, .60, .70)', and the diagonal 

matrix S', such that AoA^ + ^ is a correlations matrix according to Equation 

(2). Samples of size 20, 50, 100, and 200 were drawn from the N(o1\a\'o + <f'o) 

distribution. Per size 2000 samples were drawn and analyzed. Let 9i be the mean 

of parameter i and a the standard deviation over the 2000 points. From the 2000 

points per sample size, the mean, the probability of the Kolmogorov-Smirnov (KS) 

statistic, the normal 95% confidence interval [#, - 51.95996, 9i + 51.95996], and the 

2.5 and 97.5 percentile points were computed. These are given in Table 1. 

From Table 1 it can be observed that the probability of the KS statistic increases 

with the sample size, but that it is low for the MSE of prediction, the validity, and the 

reliability. Hence, the empirical distribution of the parameter estimates approaches 

the normal distribution with increasing sample size, but it is far from being normal 

for the MSE of prediction, the validity, and the reliability. For all sample sizes, the 

mean of the estimates for the loadings is fairly close to the corresponding population 

value. However, for sample sizes up to 100, the error variances are underestimated 

by the means. 

It can be observed that a large probability of the KS statistic occurs together 

with small differences between the two types of confidence intervals and vice versa. 

For sample sizes smaller than 200, the left point of the normal interval is larger 

than that of the percentile method. This implies that the parameter estimates are 

not normally distributed around their mean. Furthermore, the percentile intervals 

are subsets of the parameter set, whereas the normal confidence intervals are not. 

The latter is disturbing because it implies a positive mass of the distribution of a 

statistic out side the parameter set whereas from the algorithm we are completely 

sure that there is no. 

For the percentile method the occurrence of 2.5% times a unit loading coincides 
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Table 1: The mean, the probability of the Kolmogorov-Smirnov statistic, lower 
(N2.5) and upper (N97.5 ) points of confidence intervals from normality, lower 
(MC2.5) and upper (MC97.5) points of the Monte Carlo percentile confidence inter¬ 
vals, for the parameters (prnrt), MSE of prediction, the validity (val), the reliability 
(rel), based on 2000 estimates from samples of size 20, 50, 100, and 200 drawn from 
the N(o, \0\'n + &„) distribution, 

n statistic Aj A2 A4 Vfii ^22 ^33 ^44 MSE val rel 

20 pmrt 
mean 
N2.5 
N97.5 
MC2.5 
MC97.5 

Pks 

.40 

.40 
-.13 

.94 
-.19 
.93 
.01 

.50 

.50 
-.02 

1.02 
-.10 
1.00 

.03 

.60 

.60 

.12 
1.09 

.05 
1.00 

.00 

.70 

.69 

.22 
1.15 

.17 
1.00 

.00 

.84 

.76 

.33 
1.20 

.12 
1.00 

.00 

.75 

.68 

.18 
1.18 

.00 
1.00 

.00 

.64 

.58 

.03 
1.12 

.00 

.99 

.00 

.51 

.47 
-.12 
1.06 

.00 

.97 

.00 

.33 

.16 
-.10 
.41 
.00 

.43 

.00 

.82 

.91 

.77 
1.06 

.75 
1.00 

.00 

.67 

.84 

.59 
1.10 

.57 
1.00 

.00 

50 pmrt 
mean 
N2.5 
N97.5 
MC2.5 
MC97.5 

.40 

.40 

.08 

.72 

.07 

.69 

.51 

.50 

.50 

.20 

.80 

.19 

.79 

.80 

.60 

.60 

.30 

.90 

.28 

.90 

.31 

.70 

.70 

.40 
1.01 

.39 
1.00 

.09 

.84 .75 

.82 .73 

.56 .42 
1.07 1.03 

.52 .37 

.99 

.00 
.96 
.00 

.64 

.61 

.25 

.98 

.19 

.92 

.00 

.51 

.48 

.06 

.90 

.00 

.85 

.00 

.33 

.26 

.05 

.47 

.00 

.82 

.86 

.74 

.98 

.74 
.45 1.00 1.00 
.00 .00 .00 

.67 

.74 

.53 

.95 

.55 

100 pmrt 
mean 
N2.5 
N97.5 
MC2.5 

.40 

.40 

.17 

.62 

.17 

.50 

.50 

.29 

.71 

.28 

.60 

.60 

.39 

.81 

.38 

.70 

.71 

.49 

.84 

.83 

.65 
.92 1.01 
.49 .62 

.75 

.74 

.53 

.95 

.50 

.64 

.63 

.37 

.88 

.35 

.51 

.49 

.19 

.79 

.13 
MC97.5 .62 .70 .81 .93 .97 .92 .86 .76 

.87 .76 .46 .39 .00 .00 .00 .00 

.33 

.29 

.15 

.44 

.11 

.42 

.00 

.82 

.84 

.76 

.93 

.76 

.94 

.00 

.67 

.71 

.56 

.85 

.58 

.88 

.00 

200 pmrt 
mean 
N2.5 
N97.5 
MC2.5 
MC97.5 

.40 .50 .60 

.40 .50 .60 

.24 .35 .45 

.56 .65 .75 

.23 .35 .44 

.56 .65 .74 

.65 .90 .71 

.70 .84 

.70 .83 

.55 .71 

.85 .96 

.55 .69 

.85 .94 

.41 .02 

.75 .64 

.74 .64 

.60 .46 

.89 .81 

.58 .44 

.88 .80 

.06 .16 

.51 .33 

.50 .31 

.29 .22 

.71 .41 

.27 .21 

.70 .41 

.06 .01 

.82 .67 

.83 .69 

.77 .59 

.89 .78 

.77 .59 

.89 .78 

.04 .01 
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with the occurrence of 2.5% times a corresponding zero error variance, 2.5% times 

a zero MSE of prediction, and 2.5% times of unit validity. In this sense the per¬ 

centile point method yields inferences which are logically consistent. The results 

demonstrate that this does not hold for the normal intervals. In particular, for the 

sample size equal to 50 one would reject with 95% certainty from the normal con¬ 

fidence interval that the MSE of prediction is positive, but one cannot reject the 

false hypothesis that \i0 is smaller than unity. Consequently, Equation (2) can only 

hold if '044„ = 0, which implies the observability of the factor. Furthermore, from 

the percentile points, one can not reject the false hypotheses that A4o equals unity, 

!/,44o equals zero, the MSE of prediction equals zero, and the validity equals unity. 

At least these inferences are logically consistent. From the results where the sam¬ 

ple size equals 200 it can be seen that the danger of not rejecting false hypotheses 

is less severe. However, when the sample size is 100, from the normal confidence 

intervals one cannot reject the false hypothesis that ?/>44o = 1. Additionally, from 

the KS statistic the hypothesis that the statistics are normally distributed must be 

rejected. From the percentile points the false hypothesis ipiio = 1 is rejected. 

7. Bootstrapping 

The Bootstrap can be seen as a Monte Carlo estimation method of the empirical 

distribution of the statistics (Efron, 1979). It is based on the empirical data at 

hand. In particular, for the purpose of confidence interval estimation, 2000 indepen¬ 

dent samples of size n were drawn from the original with replacement (Hall, 1986b; 

Efron, 1987). Running the algorithm with each of these independent correlations 

matrices as input gives an estimate of the empirical distribution of the statistics. 

Non-symmetric confidence intervals of size 95% around the bootstrap mean can be 

constructed from the empirical distribution by the percentile method as was done 

in the Monte Carlo experiment. 

Experience with empirical sets of data reveals that it is extremely difficult to 

forecast, given a fixed sample size, the closeness of the distribution of the statistics 

to the normal distribution. In addition, to the best knowledge of the author, the 

accuracy (or rate) of the convergence to the normal distribution is analytically un¬ 

known (except for certain specialized univariate cases (e.g. Hall, 1988b)). We may, 
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Table 2: The least squares parameter estimate, lower (AN2.5) and upper (AN97.5) 
points of confidence intervals from asymptotic normality, Bootstrap mean (BSmean), 
lower (BS2.5) and upper (BS97.5) points of Bootstrap %95 percentile confidence 
intervals, the probability of the Kolmogorov-Smirnov statistic (KSprob), from the 
88 x 5 test score data (Efron fe Tibshirani, 1993, p.62)._ 
parameter estimate AN2.5 AN97.5 BSmean BS2.5 BS97.5 KSprob 

A 
A 
A 
A 
A 

MSB 
val 
rel 

.61 

.69 

.91 

.76 

.71 

.62 

.53 

.16 

.42 

.50 

.10 

.95 

.90 

.44 

.56 

.86 

.66 

.59 

.41 

.35 

.06 

.27 

.32 

.06 

.74 

.85 

.79 

.82 

.97 

.86 

.83 

.84 

.71 

.27 

.57 

.67 

.14 
1.15 
.95 

.61 

.68 

.91 

.76 

.71 

.62 

.53 

.16 

.42 

.49 

.10 

.95 

.90 

.41 

.54 

.85 

.66 

.57 

.40 

.35 

.05 

.28 

.32 

.05 

.92 

.85 

.77 

.80 

.97 

.85 

.82 

.83 

.71 

.28 

.57 

.68 

.15 

.98 

.95 

.00 

.01 

.12 

.02 

.02 

.85 

.71 

.41 

.27 

.44 

.02 

.03 

.02 

however, use the bootstrap estimate of the empirical distribution of the statistics 

to test for normality, to construct nonnormal confidence intervals, and to obtain 

logically consistent statistical inferences. This will be illustrated by the analysis of 

three empirical applications. 

Efron and Tibshirani (1993, p.62) reported scores for 88 college students who 

took tests in: “Mechanics”, “Vectors”, “Algebra”, “Analysis”, and “Statistics”. 

These data were analyzed by several authors (Beran &: Srivastava, 1985; Efron &: 

Tibshirani, 1993). The sample correlations between the observable variables are 

in the [.39, .71] interval. The results from least squares single factor analysis are 

given in Table 2. From the probability of the KS statistic it can be observed that 

the empirical distribution of six out of 13 statistics do not differ significantly from 

normality at the 95% level. From the interval based on the asymptotic normality 

one cannot reject the hypothesis that the error variances and the MSB of prediction 

are positive. However, from the same analysis, the hypothesis that the validity is 

smaller than unity cannot be rejected. This logical inconsistency does not arise 

from statistical inferences based on percentile confidence intervals. In particular, 

from the latter it cannot be rejected that the error variances are positive, the MSB 
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Table 3: The least squares parameter estimate, lower (AN2.5) and upper (AN97.5) 
points of confidence intervals from asymptotic normality, Bootstrap mean (BSmean), 
lower (BS2.5) and upper (BS97.5) points of Bootstrap %95 percentile confidence 
intervals, the probability of the Kolmogorov-Smirnov statistic (KSprob), from the 
62 x 3 Earthquakes data (Fuller, 1987, p.57)._ 
parameter estimate AN2.5 AN97.5 BSmean BS2.5 BS97.5 KSprob 

A! 
A2 

A3 
Vh 
^2 

V’s 
MSB 
val 
rel 

.88 

.84 

.92 

.23 

.30 

.15 

.08 

.96 

.92 

.80 

.73 

.85 

.08 

.12 

.03 

.04 

.70 

.88 

.96 

.95 

.99 

.37 

.48 

.28 

.12 
1.22 
.96 

.88 

.84 

.92 

.23 

.29 

.15 

.07 

.96 

.93 

.77 

.71 

.84 

.09 

.12 

.02 

.02 

.93 

.87 

.95 

.94 

.99 

.40 

.49 

.29 

.13 

.99 

.98 

.00 

.00 

.10 

.01 

.15 

.29 

.01 

.00 

.01 

of prediction is small but positive, and the validity is large but smaller than unity. 

This suggests the statistical inference that the factor is unobservable with a small 

amount of prediction error. 

Fuller (1987, p.57) reported scores from the measures “Surface Wave”, “Body 

Wave”, “Trace” of 62 Alaskan earthquakes. The sample correlations between the 

observable variables are in the [.74, .81] interval. The results of the analyses are 

given in Table 3. From the probability of the KS statistic it can be observed that 

the empirical distribution of seven out of nine statistics differs significantly from 

normality. From the confidence intervals based on normahty one cannot reject the 

hypotheses that the error variances as well as the MSB of prediction are positive. 

However, from the same analysis the hypothesis that the validity equals unity cannot 

be rejected. This logical inconsistency does not arise from statistical inferences based 

on the percentile confidence intervals. In particular, from the latter one would 

statistically infer that the error variances are positive, the MSB of prediction is 

small but positive, and that the validity is large but smaller than unity. 

Fuller (1987, p.65) reported 37 measures from “Aerial Photography”, “Satel¬ 

lite Imagery”, and “Personal Interview” of the area corn. The sample correlations 

between the observable variables are in the [.83, .99] interval. The results of the anal¬ 

yses are given in Table 4. From the probability of the KS statistic the hypothesis 

that the statistics are normally distributed must be rejected. The estimated param- 
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Table 4: The least squares parameter estimate, lower (AN2.5) and upper (AN97.5) 
points of confidence intervals from asymptotic normality, Bootstrap mean (BSmean), 
lower (BS2.5) and upper (BS97.5) points of Bootstrap %95 percentile confidence 
intervals, the probability of the Kolmogorov-Smirnov statistic (KSprob), from the 
Corn area determination data (Fuller, 1987, p.65). _ 
parameter estimate AN2.5 AN97.5 BSmean BS2.5 BS97.5 KSprob 

Ai 

A2 

-^3 

^2 

’/'a 
MSB 
val 
rel 

.99 

.83 

.99 

.01 

.31 

.02 

.01 
1.00 
.99 

.98 

.72 

.98 
-.02 
.11 

-.01 
-.00 

.28 

.98 

1.01 

.95 
1.00 
.03 
.50 
.05 
.02 
1.71 
1.00 

.99 

.83 

.99 

.01 

.31 

.02 

.00 
1.00 

1.00 

.98 

.68 

.98 

.00 

.15 

.00 

.00 

1.00 
.99 

1.00 
.92 
1.00 
.04 
.54 
.04 
.01 

1.00 
1.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

eter vector is extremely close to the boundary of the parameter set and the sample 

size is “small”. Because several confidence intervals based on asymptotic normal¬ 

ity are partially outside the parameter set and the non-normality of the statistics, 

it seems better to base the statistical inferences on the bootstrap estimates. From 

these it can be statistically inferred that the error variances of “Aerial Photography” 

and “Personal Interview” are zero, whereas that of “Satellite Imagery” is positive. 

Consequently, the hypotheses of zero MSB of prediction and unit validity cannot be 

rejected. Hence, we would statistically infer that the factor is observable. 

8. Conclusions and discussion 

The condition that three loadings are bounded away from zero for the population 

vector and its estimate both being internal points of the parameter set, is necessary 

and sufficient for the regularity conditions of asymptotic normality to hold. In 

particular, the model is identified and the Jacobian matrix as well as the asymptotic 

variance matrix are well-conditioned. Least squares factor analysis is a practically 

feasible method for bootstrap (Monte Carlo) estimation, even when the population 

parameter is close to the boundary of the parameter set. Furthermore, bootstrap 

estimation makes it possible to test the normality of the empirical distribution of 

the statistics, to obtain non-normal confidence intervals within the parameter set, 

and to draw logically consistent statistical inferences. 
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A result from the Monte Carlo experiment is that the mean tends to underesti¬ 

mate the MSE of prediction, and tends to overestimate the validity and the relia¬ 

bility. Obviously a quick glance on the definitions reveals that the overestimation 

is a consequence of the underestimation of the error variances. Underestimation 

is a well-known phenomenon for estimates which depend on a first order Taylor 

expansion such as those from the delta theorem (Hall, 1986a; Efron, 1992). 

Several bootstrap methods have been proposed in the literature. In particular, 

the bias corrected bootstrap yields second order correct confidence intervals (Efron, 

1987), but requires a least favorable distribution. The latter is absent in the cur¬ 

rent context. Moreover, its optimality properties depend on the estimation of the 

acceleration constant which is mathematically as well as practically complicated. 

The iterated bootstrap (Beran & Ducharme, 1991), where resamples are resampled, 

seems currently computationally too expensive for iterative estimation. Further¬ 

more, the percentile-f bootstrap method is second order correct, but requires the 

statistic to be studentized to have a symmetric distribution and to have a stable 

estimated variance (Hall, 1988a). Ichikawa and Konishi (1995), however, conclude 

for maximum likelihood estimation that the symmetry requirement is often not met 

in practice. Furthermore, the stability of the estimated variances depends on the 

accuracy of estimates for f20, A0, and f>0. In particular, it should be noted that 

fl0 is a rather intricate function of the first, second, and fourth order multivariate 

moments (see e.g. Hsu, 1949; Browne & Shapiro, 1986), and that stable estimates of 

higher order moments require the sample size to be “large” (cf. Kendall & Stuart, 

1977, p.249). 

Efron (1981) concluded from an extensive comparison between genuinely non- 

parametric methods of correlation estimation that the bootstrap performs best. 

Furthermore, under the assumption of finite fourth order moments, the bootstrap 

estimates the distribution of a statistic with probability one so that the percentile 

method yields asymptotically correct confidence intervals with probability one (e.g. 

Bickel & Freedman, 1981; Beran & Srivastava, 1985). Hence, the confidence intervals 

from asymptotic normality and percentile bootstrapping are asymptotically equal. 

Furthermore, the percentile bootstrap has the built in property to correct for non- 
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normality of the empirical distribution. To base such corrections on Edgeworth or 

Cornish-Fisher expansions would be analytically tedious (Hall, 1983;1986a;1988b), 

and may lead to overcorrection when the sample size is not sufficiently large (Hall, 

1986a). 

Some remarks to the large sample concept of asymptotic efficiency seem in order, 

since it is well-known that least squares estimation is not asymptotically efficient. 

The asymptotic efficiency completely depends on the asymptotic normality. Obvi¬ 

ously, in the current context, where the statistics are continuous functions of the 

sample correlations, accurate convergence to the normal distribution may require 

the sample size to be “large” (e.g. Browne, 1982), in particular when the popula¬ 

tion vector is close to the boundary of the parameter set. Obviously, testing the 

normabty of the empirical distribution of the statistics is helpful in reducing the 

uncertainty whether the sample size is sufficiently “large”. 
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