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Inference as a dynamic concept map 

Sytse Knypstra * 

Abstract 

Many students find it hard to understand the fundamental concepts in inferential 
statistics. This becomes apparent when students are mixing up population parame¬ 
ters and their estimates. Reasons why inferential statistics is so hard to understand 
are given and concept maps are introduced as a way to facilitate understanding. 
Two computer programs are described: ‘Sila’, which supports teaching of inferential 
statistics by means of a dynamic concept map and ‘PQRS’, a probability calculator 
that can help studying distributions. 

Introduction 

Many students have difficulties in understanding concepts in classical inferential 
statistics. This becomes evident when they write down expressions like: 

• H0:xi= x2, 

• a 95% confidence interval (for x) is [p - 1.23; p + 1.23], 

• the probability that p lies in the interval [1.23; 4.56] is 95%, 
x 

• (if a is unknown): the test statistic is-—. 
er/Vn 

In these examples the student seems to be unable to distinguish between parame¬ 
ters (in non-Bayesian statistics considered as non-random quantities whose values 
are not known) and sample statistics (random variables whose outcome may vary 
from one sample to another, but which can be evaluated for the particular sample 
at hand). But also the interpretation of other concepts like ‘p-value’, ‘power’ and 
‘confidence interval’ provide serious problems for students. The fact that students 
find it hard to understand these concepts is widely acknowledged. 
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Lipson (1994) notes that the idea of a sampling distribution is generally poorly un¬ 
derstood. She ascribes this to the fact that it is “introduced using a deductive ap¬ 
proach based on probabihty theory”. Furthermore, “it is a theoretical development 
which is difficult to relate to the physical process of drawing a sample from a pop¬ 
ulation”. She argues that a theoretical explanation should be accompanied by an 
empirical argument. 
Hawkins et al. (1992) claim that the words ‘population’ and ‘sample’ in the frame¬ 
work of statistics have a very specific meaning that differs from the everyday usage 
of the words. This will cause confusion in students. The authors continue: 

Almost before the student has come to terms with that mental step, the 
realm of the random variable has been entered, where populations (and 
samples) are defined in terms of distributions, the population being de¬ 
scribed by its parameters and the sample by its statistics. Close on the 
heels of these concepts comes the idea of sampling distributions, being 
the derived distributions of statistics from repeated sampling from pop¬ 
ulation distributions. It is hardly surprising that students regularly con¬ 
fuse these three kinds of distribution, especially when their descriptors 
have so much in common, p and X to describe location, both being re¬ 
ferred to as means, and cr2 and s2 the variances of population and sam¬ 
ple, respectively. The nightmare really begins, however, with the intro¬ 
duction of the term standard error to represent the standard deviation 
of the sampling distribution. There is much to be said for a presenta¬ 
tion that colour-codes population, sample and sampling distributions, 
and which emphasizes the distinctive use of the terms ‘parameter’ and 
‘statistic’. 

In our opinion a key role is played by the concepts ‘distribution’ and ‘random vari¬ 
able’ which should be fully understood before advancing to inferential statistics. 
We completely agree with Hawkins et al. (1992) that the use of the word ‘mean’ for 
the expectation of a (population) distribution, the (stochastic) mean A of a sample 
and its outcome x is most confusing. Similarly terms like variance, standard de¬ 
viation and median are used in three different ways. Although textbooks tend to 
distinguish between ‘estimator’ and ‘estimate’, generally the same word is used for 
a confidence interval as a stochastic interval and for its outcome. We recommend to 
avoid expressions in which a random variable is linked with its outcome by means 

of the equal sign. Instead of ‘The test statistic is: = 1.23.’ we prefer: ‘The 
S/vn 

X — i/ft 

test statistic is: - , U0. Its outcome is 1.23.’ 
S/yn 

Concept maps 

One way to deal with the complexity of inferential statistics is to use a concept map. 
A concept map consists of boxes representing the concepts and arrows represent¬ 
ing their relations. A concept map shows the structure of a complex concept in a 
schematic, graphical way. A concept map is not uniquely defined, different authors 
may or may not agree on the (number of) relevant concepts and the links between 
them. 
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In a typical introductory course in statistics we consider the following concepts 
to be the most fundamental for inferential statistics: random variable, probabil¬ 
ity distribution, parameter, population, random sample and its realization, statistic 
and its realization. Other concepts, more specifically concerned with estimation, 
confidence intervals and testing hypotheses, are: (un)biasedness, null hypothesis, 
alternative hypothesis, level of significance a, critical value and critical region, p- 
value, power(-function). For the moment however we limit ourselves to the first 
mentioned generic inferential concepts and to the simation that one or more in¬ 
dependent populations are involved (the treatment of e.g. linear regression needs 
some adaptations). Figure 1 shows a first, tentative concept map describing them. 

Figure 1: Concept map of inferential statistics. 

Central to all other concepts in figure 1 is what we will call the distribution cluster. 
It consists of ^distribution [ , j parameteF] , | random vT] which stands for both 
random variable and random vector, depending on the univariate or multivariate 
character of the associated distribution, and | realization"! (outcome). The first two 
concepts are linked by a two-way arrow: a given probability distribution determines 
the value of its parameter(s) and, given the type of distribution, its parameter values 
completely specify the distribution. For each | distribution | a [ random vT| can be 
defined having this distribution, therefore also the link between these two concepts 
is two-way. The last two concepts in the distribution cluster are linked by a one-way 
arrow: from each j random vT] a | realization"! can be obtained. 
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Each of the three concepts | populatioiT] , | sample j and | statistic | is closely 
connected with the distribution cluster: each of them is linked with a distribution 
determined up to one or more parameters. The leftmost vertical arrow in figure 1 
represents the process of drawing a (random) sample from a population. The low¬ 
ermost horizontal arrow indicates the summarizing of the sample into a statistic. 
The dashed lines, together with [ inference^ indicate that a statement about a pop¬ 
ulation is made on the basis of the statistic’s outcome. 

How can concept maps help in teaching? They help to clarify the concepts and their 
(obscured) links. In inferential statistics a concept map can be used to show that 
a | statistic | is an instance of a | random variable |, which has a | distribution | 
depending on a parameteF] and hence that its outcome can be seen as drawn 
from this distribution. Concept maps also show in which context a word like ‘mean’ 
is used. 

The concept map of figure 1 is rather complex and therefore not suitable for educa- 
tional purposes. In a simplified version we consider the | distribution-cluster] as a 
well-known basic concept which may be omitted. Then only four boxes remain. In 
figure 2 this reduced concept map is shown, but some essential parts of the distri¬ 
bution cluster are transferred to the remaining boxes: ] population | now contains 
the parameter 0 and | sample | and | statistic] are each divided into two parts, a 
stochastic part and a realization part. 

Figure 2: Reduced concept map of inferential statistics. 

When dealing with one or more independent populations this reduced concept map 
is generic for estimation, testing hypotheses, and constructing confidence intervals. 
Its elements may be refined and further specified: 

• When referring to ‘a population’ we usually have one distribution in mind, e.g. 
a normal distribution with parameters p and cr2. But also more complicated 
cases fit into this framework. When discussing nonparametric statistics, F can 
be considered as the parameter of interest, where F represents the cumulative 
distribution function of some continuous or discrete distribution. When mak- 
ing inference on the basis of k independent populations each | population | 
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Figure 3: Initial screen after starting Sila. 

may be replaced by a number of boxes, one for each population from which 
samples are drawn. In each box the type of distribution is displayed, together 
with the parameter(s) about which inference is to be made. 

• [ Sample | should be similarly replaced by the same number of boxes. In the 
random variable section each of the observed variables are displayed, e.g. 
Xi,..., X9. In the realization section their outcomes are shown after taking 
a sample. 

• In the random variable section of | statistical the summarizing function, e.g. 
X = g(Xi.Xg) can be written. Its realization section will contain the out¬ 
come after taking a sample. In the case of confidence intervals two summariz¬ 
ing functions and two outcomes have to be specified, one for each endpoint. 

• Inference"! may contain the sort of inference (estimation, testing hypotheses, 
constructing confidence intervals) and the parameter(function) or hypotheses 
of interest. 

Specifying or changing the contents of one box immediately changes the contents 
of other boxes. Especially these changes show how the various components of a 
concept map interact. 
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Figure 4: Sila after specifying population, goal and sample size. 

Sila, a dynamical concept map 

A concept map, if drawn on paper, is static in its nature. It shows neither the 
effects of drawing samples, nor the effects of specification or change in its boxes. 
A dynamical concept map should show how the contents of each box are updated 
if some element is changed or if a sample is drawn. A dynamical concept map 
should enhance the student’s understanding of the inferential process because the 
consequences of a change in certain characteristics and of drawing a random sample 
are made visible. 

The computer program ‘Sila’ (Statistical inference laboratory) was developed with 
the aim of offering students such a dynamic concept map. The concept boxes were 
implemented as windows, thus allowing for sizing/zooming, dragging, putting them 
on top or in the background. A copy of the initial screen, which is in fact a direct 
translation of figure 2, is shown in figure 3. 

A window’s contents can be specified or changed through the menu or by clicking 
on ‘sensitive’ portions of the text. Sample outcomes can be entered simply by typing 
them in or by letting the computer draw them at random from the specified popu- 
lation(s). There are in fact two modes of operation: either an inferential problem is 
supplied by the user or the problem is chosen from a file of predefined problems. 
Such a file can be created by the teacher using Sila. In the first case the user is 
free to choose all its characteristics whereas in the second case each choice has to 
match the predefined characteristics. Context sensitive help is supplied as well as 
feedback when erroneous choices are made. 



77 

■ -m«[ 
Problem £opul«ion ^oa! Jamplc Zx&suc J_ao\i gtyndow Help 

The Dutch cheese maker 

A cheese maker wants to 
know whether he 
systematically cuts too 
much cheese or not. 

t ach time a custamcr orders 
a pound of cheese ( !»U0 «). 
he writes down the weight of 
the cheese he cuts. 

In this way he collects nine 
values. 
We assume these values 
are the outcomes ol a 
random sample from a 
normal distribution. 

Test the null hypothesis that I 
the expected weight of one 
''pound" of cheese is SflO g 
against the alternative 
hypothesis that in fact it is 
more. Take alpha 0.85. 

Determine at feast 10 points | 
of the power curve. 

jAfmdow Jnput 

P-value = 0.173 

500 510 

power at p= 51(1 equals: 0.233 

ITCTRgffggM— 1 1 l| 

X,.....*, n = 9 
* 'ij 

|X-50IJ|/|SWn| 

outcome 

511.5 487.5 564.5 551.2 458.3 
522,7 585.8 481.5 516.9 

outcome 
1.00 

Which conclusion do you draw on the basis of this sample? 

Figure 5: Power(function) in Sila. 

Figure 4 shows the screen after a problem has been loaded from a file and the 
user has entered the type of population distribution (normal), the type of inference 
(testing hypotheses), the null- and alternative hypothesis and the sample size. 

Figure 5 shows the same problem when the user has drawn a sample and addition¬ 
ally specified the test statistic and the level of significance. In the ‘Analysis' window 
the graph of the test statistic’s distribution is displayed under the null-hypothesis 
and under a specified parameter value of the alternative hypothesis, thus showing 
the probability of a type II error and the power. After entering successively sev¬ 
eral parameter values the contour of the power function becomes visible. Students 
especially appreciate this part of Sila. 

Figure 6 shows a problem involving two populations and thus two samples. It shows 
the way parameter functions and statistics are edited using a formula editor. The 
problem in this figure was taken from Moore & McCabe (1989). 

PQRS 

The program PQRS (Probabilities, Quantiles and Random Samples) was developed 
as a tool with Sila that would make statistical tables obsolete. It can also be used 
independently from Sila. For some 25 discrete and continuous distributions (a.o. 
the non-central chi-square, t and F- distributions) PQRS renders: 

• a graph of the probability density function or probability mass function, 
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Figure 6: Formula editor in Sila. 

• a graph of the cumulative distribution function, 

• probabilities P(X < value), P(X > value) and - if nonzero - 
P(X = value), all in their natural position relative to the graph, 

• quantiles (the application of the inverse cumulative distribution function) for 
a given value between 0 and 1, also in their natural position relative to the 
graph, 

• random samples which can be saved to a file, 

• formulas for the density function, the expectation and variance and the mo¬ 
ment generating function. 

Great care has been given to a clear design of the user interface. PQRS not only 
makes tables obsolete, but it also gives the students a good idea of the shape and 
other characteristics of probability distributions. Figure 7 shows a window with 
PQRS running. 

Evaluation 

Sila and PQRS are not meant to replace traditional teaching of statistics, but should 
be used to illustrate certain concepts in the classroom or to let the students work 
out problems in a hands-on computer session. Sila and PQRS are used by students 
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Figure 7: PQRS running. 

in econometrics at the University of Groningen in their first year’s course of statis¬ 
tics. During four weeks a one hour session is held each week in which the students 
have to solve a number of problems with the aid of Sila and PQRS. Sila appears 
to be a valuable tool in teaching the fundamental concepts of statistics when ac¬ 
companied by special instructions and questions. These are necessary to make the 
students aware of otherwise unnoticed aspects. Our positive experience with Sila is 
confirmed by the results of evaluations. The most recent evaluation states that: 

• Sila is easy to use (93% of the students), 

• Sila has enhanced the students’ understanding of inference (67%), 

• Some students (10%) feel that feedback comes too soon; in that case they are 
not forced to think but can use a trial and error strategy in handling a problem. 

Some remarks and technical details 

Both Sila and PQRS run under Windows 95 and Windows NT 4.0. Sila also runs 
under Windows 3.1. Sila was programmed using Turbo (Borland) Pascal for Windows 
whereas PQRS was programmed using Delphi 3.0. A conversion of Sila using Delphi 
is planned. The distributions in both programs are laid down in a system of Turbo 
Pascal/Delphi objects (cf. Knypstra (1997)). Some algorithms were used from Press 
et al. (1989); the random number generator was taken from L’Ecuyer (1988) and 
many algorithms for drawing samples from non-uniform distributions were found 
in Devroye (1986). 
One of the possible choices for a population distribution in Sila is a self-defined 
discrete distribution, which could in fact be a random sample from some other 
distribution. By drawing many samples with replacement from such a ‘population’ 
the principles of bootstrapping can be taught. 

A student’s version of ‘Sila’ and a complete version of PQRS can be downloaded 
from the WWW pages: http://www.eco. rug.nl/medewerk/knypstra/sila.html 
and http://www.eco.rug.nl/medewerk/knypstra/pq rs.html. 
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Recommendations 

• Teachers, textbooks and software should use different words for different con¬ 
cepts, e.g. ‘expected value’ or ‘expectation’ when referring to a population or 
distribution, ‘sample mean’ for X and ‘outcome of the sample mean’ for x. 
Random variables and their realizations should be clearly distinguished. This 
also applies to a confidence interval vs. the outcome of a confidence interval. 

• The concepts of random variable and probability distribution should by thor¬ 
oughly understood by students before advancing to inferential statistics. 

• Sila and PQRS should be used to help students understand inferential statistics 
and probability distributions. 
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