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Abstract 

In this article the problem of the optimal selection and allocation 
of time points in repeated measures experiments is considered. 
D- optimal designs of linear regression models with a random 
intercept and first order autoregressive serial correlations are 
computed numerically and compared with designs having equally 
spaced time points. When the order of the polynomial is known 
and the serial correlations are not too small, the comparison 
shows that for any fixed number of repeated measures, a design 
with equally spaced time points is almost as efficient as the D- 
optimal design. When, however, there is no prior knowledge 
about the order of the underlying polynomial, the best choice in 
terms of efficiency is a D- optimal design for the highest possible 
relevant order of the polynomial. A design with equally spaced 
time points is the second best choice. 
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1. Introduction 

Planners of repeated measures experiments in social sciences often face 

the problem of an adequate selection and allocation of the repeated 

measurements in time. In most practical situations the number of repeated 

measurements and the selection of the time points at which the measurements 

are taken is done on a more or less ad-hoc basis, and in many repeated 

measures designs the time points are chosen to be equally spaced. 

A typical repeated measures experiment consists of one or more samples 

of subjects which are measured repeatedly at different time points. Lloyd et al. 

(1993), for example, reported a design where the rate of bone gain was 

investigated during early adolescence. Girls were randomized to ingest a daily 

calcium supplement or placebo over a two year period. Measurements on bone 

density, content and area were taken every 6 months. There may be serial 

correlations among the repeated measures and part of the total correlations 

between successive measurements may be explained by constant random 

variation among the girls. Another example from education is given by Tan 

(1994). Growth of ability of medical students during their academic career can 

be investigated with a random effects regression model. In such a model the 

random intercepts may be interpreted as the constant abilities of a random 

sample of students from a population at the beginning of their academic career, 

and stochastic variation within students results in serial correlation between 

pairs of repeated measures. 

A researcher using such designs would like to know how many times he 

will have to measure repeatedly over time, and still obtain efficient estimates of 

the regression parameters. Too many time points or too little time points would 

probably be a waste of money and not very efficient. A second question refers 

to the optimal allocation of these time points. Would a selection of time points 

at the beginning and at the end of the total time period be sufficient or would it 
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be more efficient to select equally spaced time points? 

The problem of optimal selection of the values of an independent variable 

for polynomial regression with uncorrelated data has been extensively studied 

in the literature on optimal designs. See Atkinson and Donev (1996) for a 

review. Bunke and Bunke (1986, p. 546), for example, give an overview of D- 

optimal designs for uncorrelated errors and Karlin and Studden (1966) and 

Chang an Lin (1997) investigated D- optimal designs for weighted polynomial 

regression. 

Not much research, however, has been done on the optimal allocation of 

the values of the independent variable in correlated data. Some work for linear 

models with multiple responses has been done by Krafft and Schaefer (1992) 

and Bischoff (1993). Kunert (1991) has investigated cross-over designs with two 

treatments and correlated errors. Their results, however, cannot be translated 

to repeated measures designs with serial or mixed correlation structures of the 

data. In general, an optimal design for correlated errors will depend on the 

correlation structure of the repeated measurements. Berger (1986) compared 

longitudinal designs with correlated errors and cross-sectional designs with 

uncorrelated errors and found that the number of polynomial parameters is 

crucial for the efficiency of these designs. 

The purpose of this study is to provide optimal designs for the mixed 

correlation structure of a random effects polynomial regression model. The 

results will give information about the optimal placement of time points in a 

repeated measures experiment. The question of the optimal number of time 

points will also be addressed. Solving these problems analytically is very 

difficult and therefore we choose to tackle these problems numerically. In the 

following section the random effects regression model will be presented and the 

optimal design problem for correlated data will be described. Then some useful 

properties will be discussed to simplify the numerical procedure and the 

interpretation of the results. Finally, results will be given for the uniform and 

serial correlation structure and a mixed correlation structure. 
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2. D- Optimal Design for the Random Effects Model 

Let y? = ( , yl2 , yi3.y^) be a vector of q measurements of subject i 

and ti = ( tii > ^2 , ti3 , ... , ti,) be the corresponding set of time points. The 

natural setting for most time-structured data is in continuous time and the 

discrete measurements yt are assumed to come from an underlying continuous 

time stochastic process. The class of balanced linear regression models with 

random effects is given by: 

L = *P, + ^ > (1) 

where X is a q x p matrix of explanatory variables of rank p. For a polynomial 

regression the matrix X will consists of polynomial coefficients based on tt. The 

p x 1 vector (3; is a vector of random regression coefficients with mean P and 

covariance matrix W. The random vector e, has mean zero and a q x q 

covariance matrix i|;. The covariance matrix »|/ usually consists of variances and 

covariances due to within individual dependencies and variances of the 

independent measurement errors with mean zero and constant variances. 

It is well known that the best linear unbiased estimator of P is the so- 

called general Gauss-Markov estimator with variance-covariance matrix equal 

to: 

Var(j3) = W + (X‘ ilT1 X)'1. (2) 

An experimental design x is an element of the design space Tn 

representing all possible assigments of n between and within subject 

measurements in the discrete time space. In general, a design x will not only 

affect the design matrix X_ , but will also affect the variance-covariance 

matrices ijr, and Wr . 

One of the most commonly used criteria for choosing a design x e T„ is 
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the D-optimality criterion. A design t* is D-optimal if: 

Det[W. + (X\.r'x- Xx.) '] < Det[Wt + X) ‘] , (3) 

for all designs x e Tn. 

Because a D- optimal design depends on the correlations among distinct 

time-points, we will use the term ' Dq - optimal' design to indicate a D-optimal 

design for q > p not necessarily distinct time points. Thus, a design xq' is Dq - 

optimal if: 

Dct[Wx. + (XVrV Xx.yl] < Det[Wt + (X'x i|j 't Xt)- (4) 

for all designs xq e Tq ,i.e. for a fixed number of time points q. Note that a Dp - 

optimal design is the same as a D- optimal design. 

In this article we will confine ourselves to regression models with random 

intercepts and a first order autoregressive serial correlation structure, i.e. an 

AR(1) structure. To be specific, we suppose that the covariances in v|; between 

measurements at two adjacent time points ttJ and tlf are Cov( , ylf) = 

a2 p^"J ^ , where 0 < p < 1. Moreover, the random intercepts lead to a uniform 

correlation matrix W with constant off-diagonal elements. First we consider the 

serial and the uniform correlation structure separately, then we will describe 

how the combination of these two correlation matrices will affect the optimal 

design. It is very difficult to optimize the determinant functions in (3) and (4) 

analytically and we therefore computed the optimal values numerically. In the 

next section some useful properties are discussed that will simplify the 

numerical procedure and the interpretation of the results. 
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3. Some Useful Properties 

Invariance with respect to non-degenerate linear transformations 

Bunke and Bunke (1986, theorem 8.34) show that without loss of 

generality the design range for tLj can be restricted to the interval -1 < ty < 1. 

Symmetry 

For every t from design space restricted by -1 < < 1 , the 

Det(Wr + (X,.' ty,1 X,)'1) function is symmetric around the line ttJ = 0, provided 

that the number of repeated measures q is at least equal to the number of 

regression parameters p. Numerical computations showed that for this 

determinant function the optimal solutions always contained the boundary 

values tn = -1 and t^ = 1. Moreover, the designing of a repeated measures 

experiment in practice usually requires fixing the first and last time points tn 

and tup respectively. Therefore we will only search for optimal solutions that 

include the boundary values £a = -1 and tlq = 1. This means that to find an 

optimal design for q repeated measures numerically, we only need to vary [Vi (q- 

2)\ design points within the interval -1 < tu < 1, where [x] denotes the smallest 

integer greater than or equal to x. 

Efficiency 

Suppose we have a total of n measurements. Suppose further that we 

have q repeated measures and mq subjects, such that n = q x mq . Diggle et al. 

(1995, p. 60) mention that for the uniform correlation structure the addition of 

one repeated measure within a subject would convey less information on [i than 

the addition of an independent measurement of a new subject. In this paper we 

show numerically that this statement also applies to mixed uniform and AR(1) 

correlation structures. As a consequence, a D- optimal design for a model with p 

parameters implies q - p repeated measures and mp = nip different subjects. 

When, however, q > p, then the design will not be D- optimal, but it may be Dq- 

optimal. Obviously the underlying model is not identified when q < p. 
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It can be deduced that the efficiency measure used by Bischoff (1995), 

among others, can be expressed as: 

eff(r) 
% Det((Vy + (*/ i|it ' Xt) T1) U 

mp Det(( Wx. + (xy +/' xy 'y')_ 
(5) 

Atkinson and Donev (1992, p. 116) indicate that the eff (t) is proportional to the 

design size, irrespective of the number of regression parameters in the model. 

So, for example, two replicates of a design for which eff (x) = 0.5 would be as 

efficient as one replicate of the optimum design. 

Properties for p -values close to their boundaries. 

1. lim eff(t ) = £ . 
p--i q 

If the correlation between successive responses approaches 1, then the 

addition of a measurement within a subject does not affect the amount of 

information on the parameters. It follows, that close to p = 1 the 

determinant functions in equation (5) remain constant. Hence, equation 

(5) will then reduce to eff(r ) = m'i = h 
Wp q 

2. If Tq’ is a Dq -optimal design, i.e. a D - optimal design for q > p not 

necessarily distinct time points, then lim eff(t') = 1 . 
p—0 q 

This property can be understood as follows. In the uncorrelated situation, 

the Dp- optimal design is the same as the Dq- optimal design. Thus the 

ratio between the determinant in the numerator and the determinant in 

the denominator of equation (5) to the power (1 / p) is equal to q / p. 

Hence, lim eff(T ') = x ^- = 1 . See the appendix for more details. 
p-*o i mp p 
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In the next section D -optimal designs and Dq -optimal designs with a fixed 

number of not necessarily distinct q repeated measures for the random 

intercept model without serial correlation, for the fixed effects model with serial 

correlation, and for a combination of random intercept model with serial 

correlation will be presented. 

4. D- Optimal Designs and Dq- Optimal Designs 

The variance-covariance matrix of the parameter estimators of the 

random effects regression model with serial correlations is VT = 

WT + (X'r This general form of the covariance matrix can be reduced to 

special cases by assuming that the matrices Wc and v)it1 have special 

structures. 

Case 1: The model where W r = I and i); r'1 = / 

This is the correlation structure of a fixed effects regression model with 

uncorrelated errors. For these models Bunke and Bunke (1986, p. 546) show 

that D- optimal designs can directly be characterized as the roots of special 

polynomials. 

Table 1 

D- Optimal Designs for Case 1 and Case 2 

Degree D- Optimal Design 

1st fjj — -1 — +1 

2nd <,! = -1 fa = 0 fl3 = +1 

3rd fa = -1 1# = -0.44 ta = 0.44 = +1 
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The optimal allocation of the independent variables for (p-1) degree polynomials 

are the roots of the following polynomial: 

(1_J:2)^ ^ l(j° ’ (6) 

where Ppml is the (p-1) -st Legendre polynomial. D- optimal designs can be found 

in Bunke and Bunke (1986, p. 546) and are presented in Table 1. 

Case 2: The model where WT = U, with U being a uniform matrix, and 

In this special case, the D-optimal allocation is the same as that of the 

uncorrelated case. This fact follows directly from corollary 3.1 of Bischoff (1995, 

pp. 391), and the ordinary least squares is fully efficient in this case. See also 

Diggle et al. (1995, p. 60). In Table 1 the optimal allocation of time points for 

such covariance matrices are given. It should be emphasized that the total 

number of observations n are equally divided over the optimal time points. 

Thus, for a fixed effects regression model, where a third degree polynomial is 

assumed to give an adequate description of the repeated measures, an optimal 

design would allocate n/4 th of the observations at the time points ta= -1, 

ta = -.44, ti3 = .44 and £i4 = 1, respectively. 

Case 3: The fixed effects model with serial correlations where W, = I and 

This case is more complicated because the correlations depend on the 

design and the selected time points q. Figure 1 through 3 give the Dq -optimal 

allocation of time points as a function of the correlations p for q ^ p. The size of 

the correlation p in Figures 1 through 3 is the correlation between two 

responses at a scaled time distance of 1, that is: p = Corr (y^, yy. ), for lfy. - 

= 1. It should be emphasized that a scaled distance of 1 means that tif and ttj 

span half of the complete time point scale. 
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q=2 repeated treasures 9-3 repeated treasures 

q=4 repeated treasures q=5 repeated neasures 

q=6 repeated neasures 

Figure 1: Dq- optimal designs for fixed effects models with serial 

correlations and a first order (p = 2) polynomial 
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q=3 repeated measures q-4 repeated measures 

Figure 2: Dq- optimal designs for fixed effects models with serial 

correlations and a second order (p = 3) polynomial 
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q=4 repeated rreasures repeated rreasires 

q=6 repeated rreasures 

Figure 3: Dq- optimal designs for fixed effects models with serial 

correlations and a third order (p = 4) polynomial 
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In Figure 1 the Dq- optimal designs for a p = 2 polynomial and q repeated 

measures are given as a function of the correlation 0 < p < 1. It can be seen 

that the optimal design points converge to the optimal design points presented 

in Table 1 as the correlation p —* 0. A similar effect can be found in Figures 2 

and 3 for a second (p = 3) degree and a third (p = 4) degree polynomial. It 

should be emphasized that Dq -optimal designs need not be symmetric. For 

example, the Db -optimal design for a p= 4 order polynomial and q = 5 

repeated measures is not symmetric. Obviously, if the allocation at the points 

{(-1, -b, a, b, 1), for a, 6 > 0, and a < b) is Z)5 -optimal, then {(-1, -b, -a, b, 1)) is 

also Z)5 -optimal. 

Case 4: The random effects model with serial correlations, where 

Vr = f Wr + X*r MV1 X,)1. 

The Dq- optimal designs for this general case with a combination of 

random intercept and serial correlations, resembles that of only the serial 

correlation structure. Only extremely unrealistic large uniform correlations ( a 

factor 1010 larger than p) or very small p values (< 1010) will affect the Dq- 

optimal design in favour of the uniform correlation structure case. For most 

practical situations it can be concluded that the optimal allocation in the 

general case resembles that of the fixed effects model with serial correlations. 

Therefore these results will not be given separately. 

5. Efficiency of Designs with Equally Spaced Time Points 

In many practical situations, researchers plan their design by adopting 

equally spaced time points. In this section the effect of such equally spaced time 

points on the efficiency of the parameter estimators will be considered. 

Regardless of the underlying regression model, the asymptotic property 

lim eff(T) = - holds for every design. Table 2 shows some limiting efficiencies 
p-i , q 
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as a function of the number of repeated measures q and the number of 

polynomial parameters p, where pig. 

Table 2 

Efficiency of Experimental Designs for p 1 

Number of repeated measures 

Degree 2 3 4 5 6 

1st 1 0.67 0.50 0.40 0.33 

2nd 1 0.75 0.60 0.50 

3rd 1 0.8 0.67 

In Figure 4 efficiencies of both Dq optimal designs and designs with equally 

spaced time points are given for p < q as a function of p. Figure 4 shows that 

the loss of information due to more repeated measures than necessary, cannot 

be compensated by optimizing the design. For correlations close to 1, p < q and 

q >2, a Dq -optimal design is about as efficient as a design with q equally 

spaced time points. In fact, for first and second order polynomials and 

correlations p > .01, the differences between the efficiency of a design with 

equally spaced time points and the Dq - optimal design is less than .01 for all 

displayed values. For a third degree polynomial, however, the differences 

become quite large. 

In Figure 5 the efficiencies from Figure 4 are displayed again only for 

very small correlations 0 < p < .01. As can be seen from Figure 5 the Dq - 

optimal design is a little more efficient than the design with equally spaced 

time points. Moreover, the efficiency of the Dq -optimal design converges to 1 as 

p —» 0. 
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fixed effects models with serial correlations (p < 0.01) 
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The D- optimal design for second order polynomials is equally spaced 

when p = q. Figure 5 also shows that the Dq- optimal design of a third order 

polynomial is more efficient than its equally spaced counterpart. Nevertheless, 

for each q > p, the difference between both designs remains less than .1. 

It should be emphasized, that although p < .01 in Figure 5, the 

correlation between responses in adjacent time points could become quite large. 

For example, if the distance between adjacent time points and tif is .1 and p = 

.001, then the correlation Corr (yu , ylf) = .0011 = .5. 

In conclusion, the most optimal case is the case where the number of 

polynomial parameters is equal to the number of time points, i.e. p = q, and 

planners of repeated measures should choose q as close as possible to the true 

number p. 

6. Robustness against an incorrect Order of the Polynomial 

In the previous sections Dq- optimal designs were computed for a known 

underlying polynomial. The problem of not exactly knowing the degree of the 

polynomial is considered in this section. 

Suppose, for example, that t* is a D-optimal design for a third degree 

(p = 4) polynomial. If the correct degree of the polynomial is one, i.e. with p = 2 

polynomial parameters, and a researcher wrongly adopts x for the fit of a third 

degree polynomial with p = 4 parameters, then the estimators may not be 

efficient. In fact, the efficiency effix* ) of the D- optimal design will approach 

p / q = 2 I A when p approaches one. Moreover, eff(x’) will not converge to 1 as p 

goes to zero, because x* is not D- optimal for p = 2 parameters. 

Suppose that a researcher plans a longitudinal design to investigate 

growth of knowledge during the academic career of the students. From 

literature it is known that a polynomial with at most p= 4 parameters suffices 

to describe growth of knowledge. Thus, to be on the save side, the researcher 

should plan f/=4 repeated measurements. This would give an optimal design for 
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p= 4 polynomial parameters. What will happen, however, when the correct 

number of parameters is not p= 4, but p< 4, instead? The answer to this 

question can be found by determining the relative efficiencies of all D4- optimal 

designs for each of the presumed orders with p= 2, 3, or 4 with respect to the 

efficiencies of the D- optimal design of the true underlying order of the 

polynomial. Figures 6 and 7 display these relative efficiencies of D4- optimal 

designs for incorrectly chosen polynomial models with p= 2, 3, or 4 parameters 

with respect to the true order of the polynomial. In these figures the relative 

efficiency of a design with equally spaced time points is also displayed. 

Figure 6 shows that, for p- values close to one, the efficiencies of the D4- 

optimal designs for almost all presumed orders are more or less the same. 

Again, this result is to be understood from the fact that the efficiency of each 

design converges to p / q as p goes to one. The D4- optimal design with respect 

to the third order polynomial is an exception. If the model is correct, then the 

efficiency is equal to one. Figure 7 shows the same results for very small 

values of p. It can be seen that the D4- optimal design for very small values of p 

based on a third order polynomial would be the best choice. The design with 

equally spaced time points would generally be the second best choice. 

7. Discussion 

It should be emphasized that the results on the optimal allocation and 

selection of time points are restricted to a mixed effects balanced regression 

model with only a random intercept. MoreoVer, the results are limited to a 

polynomial description of the time-structured data and the number and specific 

time points are assumed to be the same for each subject. However, the same 

methodology for finding optimal designs can be applied to models with other 

forms of the variance-covariance matrix of the parameter estimators. This may 

be done in future research. 

The general conclusion of this paper is that, regardless the underlying 

polynomial regression model, the number of repeated measures should be 
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chosen as close as possible to the number of regression parameters p. If the 

underlying order of the polynomial is known and the serial correlations p's are 

not too small, the most optimal allocation of time points in practice is equally 

spacing. Thus, if the researcher knows the correct number p of polynomial 

parameters for the description of the time-structured data, an approximate 

optimal design would be a design with q = p equally spaced repeated 

measurements. A comparable result was encountered by Berger (1986). He 

pointed out that a longitudinal design with correlations p > 0 is not always 

more efficient than a cross-sectional design, i.e. a design where the correlations 

p are all zero. If p < q, and the correlations p are not too large, then a cross- 

sectional design is more efficient than a longitudinal design. However, if p = q, 

then a longitudinal design is always more efficient than a cross-sectional 

design. Berger (1986) computed the efficiencies for designs with equally spaced 

time points. In this paper a similar result was found for Dq- optimal designs. In 

fact, Figure 6 shows that if p is larger than, say 0.001, the efficiencies of Dq- 

optimal designs are almost equal to the efficiencies of designs with equally 

spaced time points. Figure 7 shows that for p-values smaller than 0.001, the 

Dq- optimal designs are a little more efficient than designs with equally spaced 

time points. 

The fact that optimal designs for the random effects model with serial 

correlations resemble the optimal designs for the fixed effects model with serial 

correlations, seems to be odd at first sight. One could argue that in many 

practical situations, the effect of serial correlation may be dominated by the 

combination of random effects and measurement error. Thus, if the specification 

and fit of a random* effects regression model is of interest, one can often neglect 

the existing serial correlations. These seemingly contradictory observations can 

be explained by the fact that in our case the optimal design changes with p. For 

example, suppose that the underlying model is a first order polynomial with p = 

.01. Figure 1 shows that the distance between the first two successive responses 

decreases with p. The results show that a Z)6 -optimal allocation is about (-1, -.8, 

-.6, .6, .8, 1). Hence, the correlation between the responses at point -1 and point 

-.8 respectively is equal to .01 2 =.4, which can not be neglected. 

Finally, in time-structured data the measurements are often chosen at 
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equally spaced time points. This choice is usually based on a intuitive notion 

that the time dependent process will probably be covered best. The results in 

this paper show that such a procedure may also lead to efficient estimates of 

the polynomial parameters. 
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Appendix 

If zq' is a Dq -optimal design for model (l)-(2) with p polynomial parameters, i.e. 

a D - optimal design for q > p not necessarily distinct time points, then 

lim eff(t') = 1 , where eff(x) is defined in equation (5). 
p-o q 

Proof: 

Let n be the total number of measurements, mp and mq be the number of 

distinct subjects, such that n = p x mp = q n mq for q > p, and 

let x ■ and y. be the design matrices of a D - optimal design and a D - 

optimal design, respectively. Then for the uncorrelated situation, a Dp- 

optimal design is the same as a Dq- optimal design. Hence: 

Det[m X\. *•] = Det[m Y\. T-] 
r p p n 1 1 

or: 

mp Det[Jf V Xx.] = mp Deify;. K •]. 
PP 9 <i 

The efficiency of tq* converges to: 

lim eff(x’ ) 
p-o 

m [Deify', y.il- 

mp petfjy;. Xx.]\ 
V. P P ) 

mp 

= 1 . 

Note that this results also holds for the uniform correlation structure, because 

an optimal design for the uniform correlation structure is equal to that of the 

uncorrelated case (Bischoff, 1995, corollary 3.1). 
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