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Abstract 

In this paper the basic theory of nonsymmetric correspondence analysis is pre¬ 
sented in a fairly straightforward fashion. In the Appendix the technique is 
illustrated in great numerical detail with a miniature example. A larger scale 
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INTRODUCTION 

In this paper, we present the basic of the theory behind NonSymmetric Cor¬ 
respondence Analysis (NSCA) as developed by Lauro and D’Ambra of the 
University of Naples. They devised techniques especially geared towards the 
analysis of dependence for contingency tables with few categorical variables 
having a moderate to large number of categories (e.g. Lauro and D’Ambra, 
1984; D’Ambra and Lauro, 1989, 1992). The explicit aim of their technique 
is to cater for the analysis of dependence for two or three categorical vari¬ 
ables, but extensions to more variables exist as well. NSCA is primarily an 

exploratory tool, but the basic measures of increase in predictability can be 
tested as well. 

The main purpose of the paper is to present the theory and background in 
a straightforward didactical manner. The original publications are primarily 
mathematical rather than conceptual, and not very oriented towards applica¬ 
tions. The technique will be illustrated with data describing the changes in 
the interaction between mother and her infant during the first six month of 
the infant’s life (Van den Boom, 1988; Van den Boom and Hoekstra, 1994). 
In the Appendix a detailed presentation is given of the type of information 
nonsymmetric correspondence analysis generates using a small data set about 
the predictive relationship of adult attachment classifications with respect to 
infant attachment classifications (Van Uzendoorn, 1995). 

GOODMAN AND KRUSKAL’S r 

The measure of predictability which lies at the heart of nonsymmetric corre¬ 
spondence analysis is Goodman and Kruskal’s r (Goodman and Kruskal 1954, 
p. 759), but Goodman and Kruskal indicate that the measure was suggested 
to them by W. Allen Wallis. Light and Margolin (1971) derived independently 
the intra-class correlation measure for categorical data, which can be shown 
to be the same as Goodman and Kruskal’s r. There exist two versions of r, 
viz. 77,, when predicting from rows to columns and ra when predicting from 
columns to rows. As in any table columns and rows can be interchanged we 
will only consider one situation, in particular prediction from columns to rows, 
and thus always use ra, but we will refer to it simply as r. 
Predictability 

We will indicate the rows variable (i.e. the criterion variable) with Y. The 
predictor variable will be indicated with Z. There are / rows, thus the number 
of categories of V is /, and there are J columns, and thus Z has J categories. 
Our basic data are relative frequencies ptj which estimate corresponding prob¬ 
abilities Pij(t = = !,...,/), and which may be collected in the 
matrix P with = 1* For simplicity, we will in the sequel refer to 
both as probabilities even though the observed proportions are only estimates 
of real probabilities. A value ptj thus indicates the probabihty that an ar¬ 
bitrary individual will be in row i and column j . The overall or marginal 
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probability of a row i is the probability that an individual is in row i irrespec¬ 
tive of the column he or she belongs to, and it is solely based on the marginal 
distribution of Y. It is equal to Pr[i] = pu = The relative sizes of the 
columns are the marginal probabilities Pr[;]= pj = The (conditional) 
probability of being row i given that the individual belongs to column j is 

Pij /P-j> set of all conditional probabilities in a column j will be called a 
column profile. As per column the elements of a profile sum to one, a column 
profile is the probability distribution for that column. If we sum the column 
profiles weighting each profile by its probability pj then 

(!) Y,Pj(—')=Pi (i=l,■■■,!), 
i=i \p>S 

so that we see that the marginal profile is the weighted average of the column 
profiles. If the column profiles are similar to the marginal profile then the 
distribution in a column does not deviate much from the overall distribution. 
If the difference is large, then some rows occur proportionally more often in 
this column than one would expect from the overall proportion of the row, and 
some rows will be lower then one would expect from the marginal distribution. 
Thus to investigate the degree of deviation from the marginal distribution, the 
column profiles have to be compared with the overall profile. The difference 
between a column profile and the marginal profile, or the difference profile, 
will be indicated by II,j, 

(2) H.j = Pr{i\j] - Pr[i] = ^ - p,. . 
Pj 

It is useful to have an overall measure which indicates the overall pre¬ 
dictability of the rows by the columns. A very common class of such measures 
are based on the proportional reduction of error, and they generally take the 
form of the reduction in error variance over a total error variance. In the 
present case we predict that an individual will be in a row i with probability 
Pi. if his or her column is unknown, but we predict Pij/p.j when we know 
that the column is j. Thus for each row-column combination the reduction in 
error of prediction due to the knowledge of an individual’s column is II,j. By 
squaring this and weighting each cell with p.j, i.e. the probability of belonging 
to column j, we obtain the expression for the ‘reduction of error’ variance or 
between-columns variance 

(3) 

(4) 

(5) 

V arbct ween 
» j 

where the half is needed to make it a proper variance (see Light and Margolin 
1971). The total error of prediction when the individual columns are unknown 
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can be derived as follows. Given that an individual is in a row, we predict 
with a probability pt that this row is i, and the probability that the prediction 
is correct is also p,., thus the probability of predicting that an individual is in 
row t and that this prediction is correct is pf . The total proportion of correct 
predictions is E. p? , and therefore the total proportional error of predictions 
is 1 — 53» p?.» multiplying by | gives again a proper variance. Combining this 
information, the measure for the proportional reduction of error in prediction 
or proportional increase in predictability becomes 

r 

This measure is known in the literature as Goodman and Kruskal’s r, and 
the tj are the contributions of the ji^-column to the value of r. Note that 
the contributions of the columns to r involve the weights p j. Thus, columns 
with deviating difference profiles contribute more to the measure of increase in 
predictability if there are many individuals in a column. These contributions 
to r can be used to assess whether a column is worth concentrating on, because 
only deviating columns which form a sizeable part of the population will have 
large contributions. 

When all column distributions are identical to overall distribution, then 
there is no relative increase in predictability, and thus r is zero (see also 
Lauro and D’Ambra 1984). Similarly, if knowing that an individual belongs 
to column j implies knowing which row he or she is in, then r is at its maximum 
value. 

Strength of dependence: r as intra-class coefficient 

Margolin and Light (1974) (see also Lauro and D’Ambra, 1984) discuss sev¬ 
eral other properties of r (which is also called the concentration coefficient, see 
Agresti, 1990, p. 24), and its differences with the Pearson’s mean-square con¬ 
tingency coefficient or inertia which is at the heart of regular correspondence 
analysis. Following Light and Margolin (1971), we now show in a different way 
that t can be seen as a ratio of the between-column variability and the total 
variability in the contingency table, and thus as an intra-class coefficient. 

Whereas regression analysis assumes that both the criterion and the predic¬ 
tor are continuous, analysis of variance treats the dependence of a continuous 
criterion on a categorical predictor. The improvement of knowledge about the 
criterion based on the values of the predictor is measured by evaluating the 
relative size of the variance between the categories of Y with that of the total 
variance of Y. To transfer this view to the case of two categorical variables, 
one has to decide how to measure variation. For this purpose, as worked out 
by Light & Margolin (1971) who called their approach CATegorical ANAlysis 
of variance (catana), one should not use the usual formula for the variance 
based on squared deviations from a mean, but a formula, which apparently 
goes back to Huygens, based on the squared differences between all different 
pairs of observations (see Gini, 1912; e.g. cited in Light & Margolin, 1971, and 
D’Ambra & Lauro, 1989). In particular, one can define the difference between 
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two categorical observations as 0 if they are in the same category and 1 if 
they are in different categories. Using this definition of difference, the (total) 
variability of y, Vartot can be expressed as 

(7) Vartot = \ - Pi.) = ^ - y P'2) • 

Using the same measure of variation for each column and adding all columns 
gives the within variability of the set of columns. 

(8) 

Subtracting the Varw,th,n from Vartot the desired between variability Uarbeitueen 
becomes 

(9) VaTMween = ^ - Ep?. j - 

which equation is identical to equation (3). The desired intra-class coefficient 
for measuring the dependence between Y and X is then Varbetween/Vo-f'tot- 
And thus we end up again with Goodman and Kruskal’s r. 

Sensitivity of r 

As Agresti (1990, p. 25) indicates there are some problems with the sensitivity 
of r to different probability distributions. 

“[a] difficulty with [r] is in determining how large a value consti¬ 
tutes a “strong” association. When the response variable has sev¬ 
eral possible categorizations, these measures tend to take smaller 
values as the number of categories increases. For instance, for 
r the variation measure is the probability that two independent 
observations occur in different categories. Often this probability 
approaches 1.0 for both the conditioned and marginal distributions 
as the number of response categories grows larger, in which case r 
decreases towards 0.” 

Such considerations should be kept in mind when one is using r in an analysis. 
However, there is some guidance to be had from an asymptotic test of r against 
independence. In particular, U2 = (N - !)(/ - l)r is under the null hypothe¬ 
sis of independence asymptotically chi-square distributed with (/ - 1)(J - 1) 
degrees of freedom, assuming the observations in the cells are independent 
(Light and Margolin 1971). This at least gives some protection against em¬ 
barking on a detailed analysis of the interaction when there is none. As Light 
and Margolin (1971, p. 540) and Bishop, Fienberg, and Holland (1975, p. 392) 
indicate, there might be a statistically significant association in large data sets, 
which only involves a very small amount of explained variation. Thus, if the 
values of r are low but significant the predictability or dependence structure 
should be analysed further. Of course, this does not mean that a meaningful 



62 

result will necessarily obtain. However, nonsignificance indicates that there is 
no point to such an analysis. 

NONSYMMETRIC CORRESPONDENCE 
ANALYSIS 

The two primary purposes of nonsymmetric correspondence analysis in 
the present setting are (1) to find a reordering of the rows and columns of the 
contingency table to bring its structure to light and (2) to construct a display 
in a lower dimensional space which portrays the principal dependence of the 
rows (criterion variable) Y on the columns (predictor variable) Z in such a 
way that most of the relationship between the two variables is in the display. 

In the required display we will portray the rows and columns, and the way 
they are arranged in the graph will be in accordance with the changes in pre¬ 
dictability that are of prime interest. Thus the graph needs to be constructed 
in such a way that it becomes obvious which column distributions deviate con¬ 
siderably from the overall or marginal distribution, and which columns have 
more or less the same distribution as the overall one. Nonsymmetric corre¬ 
spondence analysis will provide the appropriate coordinates for the rows (Y,), 
and those for the columns (Zj). In this section we derive these coordinates 
and show some of their most important properties. 
Co-ordinates for rows and columns 

To find a representation for the increase in predictability in such a way that 
most of the explained variability is concentrated in a low-dimensional Eu¬ 
clidean space (i.e. a space with the standard Euclidean distance function), 
the numerator of r will be decomposed, which is the absolute rather than the 
relative increase in predictability. To see how one can arrive at such a low¬ 
dimensional representation, we consider the numerator of equation (6) in the 
form 

(!0) = ZZp.^, 
* j 

so that it is seen that NT is the weighted Euclidean norm (or variance) of 
II = (n,j) with the probability that an individual belongs to column j’, p.j, 
as weights. Marcotorchino (e.g. 1984) refers to this numerator as the ’’Light- 
Margolin Haldane’s criterion”. Note that it is 2xVarb€tween of equation (3). In 
order to find the (full) rank SQ representation of the columns and the rows, we 
can fruitfully make use of a generalisation of the singular value decomposition 
(svd; Eckart and Young 1936). In a similar manner, Greenacre (1984, p. 39) 
describes a form of generalised svd for ordinary correspondence analysis using 
weighted metrics for both rows and columns. A variant of that generahsation 
for nonsymmetric correspondence analysis, referred to here as gsvd, has the 
following form. 

So 

n = Z A.a.b; , 
a=l 

(ii) 
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where the scalar Aa is the singular value, and the a,, the ba are orthonormal 
singular vectors in an unweighted and weighted metric, respectively, i.e. 

1 

(12) ^2 aiaaia' = 0 if s ^ a7, and = 1 if a = $' , 
»=i 

and 
j 

(13) ^ P jbjabjai = 0 if a / a', and = 1 if a = a' . 
j=l 

The difference with the correspondence analysis generalisation is that the 
weighted metric is only used for the columns and not for the rows. One effect 
of this is that rows with small proportions will have little influence on the 
analysis in contrast with ordinary correspondence analysis. Note that the II,j, 
i.e the changes in prediction probabilities, are approximated by the singular 
value decomposition, and not the original probabilities . 

Low-rank approximation of li. Similarly to the svd, the best rank 5 ap¬ 
proximation of II, say n(5), can be obtained from the gsvd of II by summing 
only the first 5 terms of equation (11), 

(14) n(S) = ^A.,a,b:- 
8— 1 

Such an approximation leads to the so-called reconstruction formula 

S 

(15) Kj(S) = Pi-Pi + P-i J2 . 
8=1 

which gives the approximated values of the probabilities obtained from the 
rank-5 approximation. One way of looking at this formula is to say that the 
approximated value is based on its value under the model of independence 
plus the weighted approximate change in prediction probability. 

Biplot representations of the two-rank approximation 

In order to display a low rank approximation of 11 we will use biplots (Gabriel 
1971) rather than the more common correspondence analysis plots. In the 
standard plots in correspondence analysis, we have both an isometric (or met¬ 
ric preserving) representation of the rows and an isometric representation of 
the columns (Gabriel and Odoroff 1990), but we do not have a correct repre¬ 
sentation of the row-column relations. With metric preserving we mean that 
the Euclidean distances in the biplot are correctly represented. In the biplot 
representation, we have a correct representation of the row-column relationship 
combined with either an isometric representation of the rows, or an isometric 
representation of the columns. As, in contrast to ordinary correspondence 

analysis, NSCA aims to portray the way the columns predict the rows rather 
than representing the symmetric relationship between rows and columns, in 
NSCA column-isometric biplots should be used. 

The appropriate factorisation of derived from the GSVD (11) is called 
the two-dimensional isometric factorisation of the columns, and takes the fol¬ 
lowing form, 
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2 2 

(16) n,_,(2) = X](a„)(A,&ja) = J2 y<’zi’ ■ 

a=l 3=1 

In Greenacre’s (1993, pp. 60, 61) terminology, the rows have standard coor¬ 
dinates - yls, and the columns have principal coordinates - zJ3. In the biplot, 
the row points and the column points are defined by the coordinates 

Y, = (a, 1,0,2) and Zy = (Xsbju X,bj2), 

respectively. 
Transition formulae and barycentric properties. The biplot can be given a 

barycentric interpretation using the so-called transition formulae, as is com¬ 
monly done in ordinary correspondence analysis, especially in the original 
French literature (see e.g. Benzecri, 1973). In particular, the transition for¬ 
mula for the column coordinates as function of those of the rows is 

The barycentric (or weighted mean or centroid) interpretation rests on the 
fact that the coordinates of a column j, Zja — \9bja, are at the centroids 
of the coordinates of the rows, j/l3 = a,fl, with weights equal to the (t, j)th 
element of the difference profile. In nonsymmetric correspondence analysis, 
the barycentric property for the row coordinates a3 is not very useful because 
the associated biplots only portray the changes in prediction probabilities for 
the rows given the columns and not vice versa. 

The barycentric property is such that when two column points Zj and 
Zj> are located in different parts of the biplot the weights of the Y, must be 
different. However, it is not necessarily true that when two column points are 
close together in a plane the weight distributions of the rows are comparable, 
because a centroid can arise from different distributions of weights for the 
row points Y,. The uncertainty about the weight distributions introduces an 
undesirable uncertainty in the interpretation. It seems that the standard biplot 
interpretation based on inner products, is more convenient and more precise. 
In this interpretation, the size of the difference of a row * in column j, H. j, is 
approximated by the inner product between ys and zs (see equation (16)). If 
||0Z|| indicates the length of the vector OZ from the origin to a point Z, then 

the approximated value of H.y, Hij, is equal to ||OZj||||0YI"||, where Y” is the 

orthogonal projection of Y, onto the axis (OZj). n,j is thus proportional to 

the length of OY", and it is positive if the angle (0Yi",0~Zj) is acute (the 
vectors have the same direction), negative in the case of an obtuse angle, and 
null if the angle is orthogonal. A positive value indicates that a row has a 
higher value for the column than its marginal value, and a negative value 
indicates a comparatively smaller value. 

Distances 

In a geometric context, one of the aims of nonsymmetric correspondence anal¬ 
ysis is to portray the difference (or centred) profiles of the columns in a 
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(weighted) Euclidean space, the column space. Of prime interest is thus how 
the difference between columns j and j', is represented in the column space. 
The squared distance between the difference profiles of j and j' is defined as 

= x:iin.j-n,y||2. 
i 

By using the full-rank decomposition of II,y from equation (11) we get 

(18) djj1 — ^ ^ ^s^s1 {bja ^j's) (bja' ^j's1') ^ ^ 
asf i 

and due to the orthonormality of a., (see equation (12)) 

(*9) 4- = £ - A.*y.)2 = £ 
a a 

This expression is the squared Euclidean distance between the columns j and 
j' in the column space. Thus the differences between the difference profiles 
are represented in the full dimensional column space as distances between the 
points which represent these columns. The squared distance of a column j to 
the origin of the column space follows from 

(20) 4o = £(p.j/p.j - p..)2 = £ (-Mj,)2 = £ 4 ■ 

In a lower dimensional representation the distances between the points are 
smaller than the real distances, and they are only approximations to the true 
distajices in the full dimensional space (see also Greenacre 1993, p. 42, 43) 

Even though one could derive expressions for the distance between two 
rows i and i' based upon differences in the Euclidean space of the rows, they 
are not very relevant in the present context, because in the biplot used to 
display the results of a nonsymmetric correspondence analysis, the Euclidean 
space of the rows is not represented (see also Greenacre 1993, Module 9). 

Measures of fit 

In the section Predictability, we discussed the partitioning of r into the contri¬ 
butions to r of each column, Tj. Similarly, one can partition only the numer¬ 
ator of r, which leads to the same proportional contributions of the columns. 

(21) Nr ££p.J(nu)2 = £ p.j £ n 
2 
ij = £JV 

We can also derive the contribution of each column to the s^-coordinate 
axis, using equation (11). 
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nt = EEp,^.,)2 = EEp.CEw-)2 
* J « j 3 

(22) = YlY,PiY,J2x^'a^a”'bJsi>j>'■ 
i j 3 s' 

Using first the orthonormality of as (see equation (12)), and then the weighted 
orthonormality of bs (see equation (13)) we get 

(23) iVr = Y1 Pi Y.(X°bi’')2 = S Piz% = S fP-Jzj») = S A»- 
j S j 9 11 \ j / 9 

From equation (23) we see that 

(24) (p.;4)/a2 

is the proportional contribution of the column to the sth coordinate axis, 
or more general to the increase in predictability. One can also derive from 
equations (21) and (22) how much the axes in an approximation contribute to 
the NTj for each column 

(25) (£p,4)/JV 
a 

If the contribution is close to one, no further axes are necessary to represent 
the profile of column j. Columns for whom the contributions are close to zero, 
are not well represented by the axes. 

Similar expressions could be derived for the rows, but for the rows the 
contribution of the axes to the increase in predictability is a much more inter¬ 
esting quantity. This can also be derived from equation (22), but by starting 
with the weighted orthonormality of the b,. 

(26) Nt EE(W = £BW = £ E^.p..)2 

From equation (26) we see that the proportional contribution of the sth- 
coordinate axis to the increase in predictability of a row i is equal to 

(27) Kyl/'Zx.y?,. 
9 

One could sum these quantities over the axes actually present in the approx¬ 
imation to establish how well the overall increase in predictability for a row, 

i-e- EsC'^&a)2* 1S approximated by the reduced number of axes. 
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Categorical multiple regression 

Most really interesting theoretical prediction questions involve not just a single 
but several independent variables. When all variables are continuous such 
problems are typically tackled with multiple regression and the purpose of this 
section is to show that nonsymmetric correspondence analysis has a similar 
extension to more categorical variables. We will demonstrate this for two 
predictors. 

The parallelism between ordinary and categorical multiple regression, fol¬ 
lows most easily from the formulas for building the J?2 in a hierarchical regres¬ 
sion. Suppose that I is the dependent variable and J and K the predictors, 
then the hierarchical formula is 

(28) rMuZ = r)\JkK - r/J + r/K'|j(1 “ r/./) 

where is partial correlation between I and K given J. This partial 
correlation indicates which proportion of the variance of I which has not yet 
been explained by J is explained by K. Thus the second term on the right 
of equation (28) expresses the increase in predictability by knowing K given 
that one already knows how much J explains. 

As indicated by D’Ambra and Lauro (1989,1992; see also Gray & Williams, 
1975, much later published as Gray & Williams, 1981) the parallel expression 
can be developed for r: 

(29) TMul = rI\J&K = Tu T//C| j(l - Tu) 

with the same type of interpretation. It is instructive to look at the numerators 
for the three quantities in equation( 29). For the prediction of / by J we get 
the equation 

(30) 

Thus the tjj is based on the 7 x J margin of the I x JK table, and therefore 
we might call r/j the marginal r. The partial r to determine the increase in 
predictability if we add another predictor K was given by Gray and Williams 
(1975; 1981, see also D’Ambra and Lauro, 1992) has as its numerator 

(31) IV, tik\j = £ 
Pijk _ Pii 

p.ik p.j. 

thus in the partial r each column jk of the I x JK table is compared to the 
centroid of stratum j, or the margin of the conditional marginal distribution 
given j. Finally the multiple r has as its numerator 

(32) Nt,^k = £ £ £ V,k (Pf- - P..) , 
i J k \PJk / 

so that each column is compared with the overall margin independent of the 
structure defined on the columns. In other words, the multiple r is exactly 
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the same as the r for the unstructured table, but of course only knowing 
the multiple r does not help in assessing the relative importance of the two 
predictors. 

Extensions 

The basic techniques presented here have been extended in many ways by 
Lauro, D’Ambra and their coworkers by considering other variants such as 
multiple NSCA (Lauro and D’Ambra, 1984; Sicilian©, Lauro, Mooijaart, 1990), 
NSCA for three-way tables (D’Ambra and Lauro 1989; Lombardo, Carlier, & 
D’Ambra, 1996), and partial NSCA (D’Ambra and Lauro, 1992). Statistical 
aspects such as asymptotic properties have been studied by Sicilian© (1990). 
Relationships with loglinear and other methods for categorical data have been 
investigated by D’Ambra and Lauro (1992) and Lauro and Sicilian© (1989). 
For a recent review see Balbi (in press). 

Software 

Unfortunately, nonsymmetric correspondence analysis is not yet included in 
any major software package. However, the basic algorithm is fairly similar 
to that of correspondence analysis, and not too difficult to implement in a 
matrix-based language like Matlab, and for such a program the S-plus (Becker, 
Chambers, and Wilks 1988) source available from the second author may 
serve as a model. Alternatively, one may download an executable fortran 

program asymtab available at the Website of The Three-Mode Company, 

http://www.fsw.leidenuniv.nl/~kroonenb/genprogs/programs.htTn1, from which 
a postscript version of this paper can be downloaded, as well. In the original 
papers by Lauro and D’Ambra (1984) and D’Ambra and Lauro (1989) detailed 
computational information can be found. 

Application: Mother-Infant Interactions over Time 

In this section data collected by Van den Boom (1988) will be analysed to 
illustrate some of the basic properties of nonsymmetric correspondence anal¬ 
ysis. An earlier analysis of these same data was presented in Carlier and 
Kroonenberg (1996) illustrating three-mode correspondence analysis based on 
the Lancaster additive decomposition of interaction without using a depen¬ 
dence structure. The example is a three-mode one with one response and two 
predictor variables, illustrating the multiple regression variant of nonsymmet¬ 
ric correspondence analysis. A much simpler two-mode example is treated in 
the Appendix in much more numerical detail. 

1 This program also can homogenise the margins of a contingency table (see e.g. Fienberg, 

1971) and computes the symmetric and skew-symmetric part if the table is square (e.g. 
Constantine & Gower, 1978) 
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Data 

In her study of (Dutch) irritable infants, Van den Boom (1988; Van den Boom 
and Hoeksma, 1994) collected data of 30 infant-mother pairs during the first 
six months of life (for a discussion of irritability, see Van den Boom, 1988, 
p. 70fF.). Each month, each mother-infant pair was observed at home in 
two sessions of forty minutes which were video-taped. The video tapes were 
coded by trained observers, and each six seconds the most salient behaviour 
of both the infant and the mother was coded, for instance, infant cried and 
mother soothed. The original 14 categories for infant behaviour were reduced 
for this analysis to 7 categories and those of the mother to 6 categories. For 
each month and each mother-infant pair a 7 by 6 co-occurrence matrix was 
constructed from the categorical longitudinal sequences. Subsequently, the 
matrices were aggregated over mother-infant pairs, so that statements could 
be made about mother-infant interaction irrespective of the individual pairs. 
In order to avoid confusion with statements about the mother, the infant will 
always be referred to as ‘he’. 

The seven infant categories were crying, exploring, sucking, smiling and 
similar positive social behaviour, inactivity, i.e the infant does not do any¬ 
thing in particular, looking at the mother, and vocalising. The six mother 
behaviours were soothing, looking at the infant, stimulating, offering, contact 
seeking or maintaining with the infant, and other, i.e. behaviour not directed 
at the infant. 

Thus the data set under consideration forms a 6 (mother behaviours) by 
7 (infant behaviours) by 6 (months) three-way contingency table, which is 
reshaped for the present analysis as a 6 by 7 X 6 two-way table. The underlying 
structure for this table is such that there is one response variable (Mother 
behaviour) and two predictor variables (Infant Behaviour and Time). 

Basic results 

The multiple r for predicting the mother behaviour from the monthly infant 
behaviours is .062, but as argued above the overall size of r is difficult to 
interpret. Its significant asymptotic chi square is 44344 with 205 degrees of 
freedom. The (again significant) marginal rs are .055 and .008 for infant 
behaviour and time as predictors, respectively, while the parallel partial rs are 
also .055 and .008, respectively. The equality indicates that the predictors have 
virtually independent contributions towards the predictability of the mother 
behaviour, and that one could examine the two marginal tables separately. 
However, in this particular case we will not do this, and prefer to look directly 
at the complete picture. Looking at the partial rs, it can be seen that the 
r for predicting mother behaviour from infant behaviour is much larger than 
that for predicting the mother behaviour from the age of the infant. This 
indicates that the stimulus-response situation is fairly clear cut, in the sense 
that certain infant behaviour calls forth particular responses from the mother, 
and that there are general changes in the mother behaviour (certain behaviours 
become relatively more frequent and other less frequent) but that these general 
time trends are not as strong. 

The infant categories (i.e. columns) which contribute most towards the 
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increase in predictability of the mother behaviour are crying of the infant in 
each of the six months (8%, 11%, 6%, 7%, 5%, 5%, respectively), in other words 
if we know that the infant is crying in the first month of life, we can predict 
the mother behaviour 8% better than we could from the marginal distribution 
alone. Thus when an infant cries he calls forth a maternal response pattern 
deviating from the average one. Other types of infant behaviour which show 
increases in predictability are smiling in most months, exploring in the last 
two months, and sucking in the last month. 

The overall or marginal distribution of mother behaviour is as follows. 
During the time the mother is with her infant she spends 37% looking at her 
infant, 20% offering objects, 18% doing not-infant-related things, 11% contact 
maintaining or seeking, 9% stimulating the infant, and 5% soothing. It is with 
this distribution that the conditional distributions (given an infant behaviour) 

are compared. 

Nonsymmetric correspondence analysis - NSC A 

Given .hat there are 6 rows and 42 columns, there are maximum of ") dimen¬ 
sions in the NSCA. The first three dimensions explain 47%, 26%, and 21% 
of the within-column variability (see equation (3)), leaving only 6% for the 
remaining two dimensions. Thus we can describe what is going on between 
infant and mother with three dimensions to a good degree of approximation. 
The nature of the interaction could be presented with tables of the coordinates 
but it is far more insightful to use a (three-dimensional) biplot for this. The 
first graph (Fig. 1) shows the first dimension against the third, and the second 
graph (Fig. 2) shows the second dimension against the third. These particular 
graphs were chosen because they make the inspection and interpretation the 

easiest. 
The main conclusion from Figure 1 (concentrating on the first dimension) 

is that if an infant cries, whether he is one month or six months old, the mother 
soothes. To be more precise, over and above a general low tendency to sooth 
as is evident from the marginal distribution, the mother soothes intensively 
when her infant cries, as is to be expected. Other mother behaviours are less 
likely than average as is shown by their being on the opposite side of the first 
dimension compared to crying. With respect to the time trend, there seems to 
be a tendency to sooth less in the last two months, but the effect is fairly small 
certainly looking at the month-by-month variability. The third dimension is 
will be discussed together with the second. 
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Figure 1 Van den Boom data: Nonsymmetric Correspondence Analysis Biplot 
(Dimension 1 versus Dimension 3). 
Legend: Infant behaviours [italics) in standard coordinates; Mother behaviours 
(capitals) in principal coordinates. The trajectories start at month 1 and 
end at month 6. 

Figure 2 is far more complex. First of all, it illustrates the increases in 
predictability for the non-soothing behaviours given the infant is doing some¬ 
thing else then crying. The general patterns are that if the infant is inactive 
the mother tends to look more and seek more contact than average. When 
the infant smiles or vocalises the mother stimulates more and offers more ob¬ 
jects, while when the infant looks or explores the mother reacts more or less in 
an average way, i.e. primarily looking, offering and doing non-infant-related 
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things. This figure also shows what the general time trend is. As the infant 
gets older the mother tends to do more non-infant-related things, nearly in¬ 

dependent of what the infant does. This follows from two patterns: (1) all 
time arrows for infant behaviours end up pointing more towards Other mother 
behaviour and (2) they all point away from the mother behaviours they are 
most associated with. One may interpret this that as the infant gets older the 

mother leaves the infant more and more to his own devices even if she is in 
his neighbourhood. 

DIMENSION 2 

Figure 2 Van den Boom data: Nonsymmetric Correspondence Analysis Biplot 
(Dimension 2 versus Dimension 3). 
Legend'. Infant behaviours (italics) in standard coordinates; Mother behaviours 
(capitals) in principal coordinates. The trajectories start at month 1 and 
end at month 6. 
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Discussion and Conclusions 

In this paper we have presented the basic theory of nonsymmetric correspon¬ 
dence analysis (NSCA) using relatively simple mathematics. The technique 
Can fulfill several functions depending on the way one desires to present the 
information on the difference profiles, i.e. the differences between the condi¬ 
tional and marginal distributions. Even in those cases where one does not 
want to make use of the full graphical capabilities of the technique via biplots, 
nonsymmetric correspondence analysis can still serve to find meaningful pat¬ 
terns in prediction. One may also use a feature not shown in this paper, i.e. 
arranging the columns and rows of the table with difference profiles into an 
optimal order using the coordinates from the singular value decomposition. In 
which way in any particular situation nonsymmetric correspondence analysis 
can best be used depends on the detail with which one wants to inspect the 
data. For concentrating on the larger scale patterns the biplots seem ideal, 
however if one wants to inspect each and every detail the full difference profiles 
are obviously better, but even in that case the analysis can help to organise 
the inspection via rearranging the table. 

One of the attractive aspects of NSCA is that its results can be presented in 
a format which can be easily understood by even statistically unsophisticated 
persons, both via rearranged tables and graphical displays. For the biplots, 
probably all that needs to be explained is the concept of a projection (dropping 
a perpendicular line from a point onto a line), and the idea that the increase 
in predictability for rows in a particular column can be read from the relative 
positions of their projections on the column vectors. The most difficult aspect 
of interpreting the biplots is that a row point located relatively far away from 
a column vector with a large projection on the column vector, still has a 
strong increase in predictability for that column. Another problem may occur 
when a two-dimensional representation does not account for a large part of 
the deviations from the overall or marginal distribution. Three-dimensional 
graphs can be constructed, but they are always more difficult to read than a 
two-dimensional one, unless the points nicely align along the axes (as was the 
case for the Van den Boom data). The number of categories in a table can 
be fairly large without making the biplot unreadable, especially when there 
are clear-cut patterns. However, there is clearly a limitation to the number of 
categories that can be displayed simultaneously. When one wants to look at 
situations with more than two predictors each of which has a sizeable number 
of categories the displays may become rather cluttered and one might have to 
take special measures to maintain readability of the graph. 

Nonsymmetric correspondence analysis is different from regular correspon¬ 
dence analysis and the two techniques can lead to different results. This in 
itself is not surprising as the data design in both cases is different. The depen¬ 
dence structure is directly modelled in NSCA as it is a categorical equivalent 
of regression analysis for continuous data. On the other hand, regular corre¬ 
spondence analysis is concerned with the interdependence of row and column 
variables. Notwithstanding this fundamental difference in some cases due to 
the specific data structure, the displays of regular correspondence analysis and 
those of nonsymmetric correspondence analysis may be comparable, but this 
still does not make the techniques interchangeable. One (side) effect of the 
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different deviations analysed, is that NSC A does not suffer from the undue 
influence of rows with small marginal row totals, as correspondence analysis 
does. 

Correspondence analysis has been applied to arbitrary rectangular data 
matrices with non-negative entries. Technically, NSC A could be used in a 
similar fashion, but its interpretation leans heavily on the possibility of in¬ 
terpreting profiles of proportions and distributions of differences between pro¬ 
portions. It depends entirely on the kind of (nonnegative) numbers at hand 
whether a sensible interpretation can be found if one does not start with fre¬ 
quencies or proportions. 
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A.l Data and Proportions 

The data are derived from Van IJzendoorn (1995) and refer to the relation¬ 
ship between the attachment classification of the infant as assessed with the 
Strange Situation and that of the mother as assessed with the Adult Attach¬ 
ment Interview. The substantive details can be found in the original publica¬ 
tion and its references. No really substantive interpretations will be given in 
this Appendix. It is intended to show the numeric information supplied by a 
nonsymmetric correspondence analysis, and its statistical interpretation. 

Table A.l Input frequency table with marginal proportions 

Attachment Classification Mother 

Classif. | 1 2 3 4 Row | 

Infant I Ds F E U Marginl p(i.) 

1 A I 62 
2 B | 24 

3 C | 3 

4 D I 19 

I 
ColMarginl 108 

29 14 11 

210 14 39 

9 10 6 

26 10 62 

274 48 118 

1161 .212 

2871 .524 

281 .051 

117| .214 

I 
548| 

p(.j) | .197 .500 .088 .215 | 1.000 

The row marginal proportions indicate the relative frequency with which 
infants are classified into one of the four attachment categories and together 
they form the overall distribution with which the conditional distributions (i.e. 
given one knows the mother category) are compared. The column marginal 
proportions indicate the relative frequency with which mothers are classified 
in each of the categories. The near equality of the row and column margins is 
of considerable theoretical interest and is not an artifact of the data collection. 

Table A.2 Column profiles Pij/p.j 

Attachment Classification Mother 

Classaf.1 1 2 

Infant I Ds F 

1 A | .574 .106 

2 B I .222 .766 

3 C I .028 .033 

4 D | .176 .095 

ColMarginl 108 274 

3 4 | 

E U | p(i.) 

.292 .093 I .212 

.292 .331 I .524 

.208 .051 | .051 

.208 .525 I .214 

48 118 | 1.000 
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The column profiles are the conditional distributions of the infant cate¬ 
gories given the classification of the mother. Comparing the conditional dis¬ 
tributions with the marginal one shows that there is considerable predictive 
value in knowing the mother category, as all distributions deviate strongly 
from the marginal distribution. 

Table A.3 Centred column profiles (jPij/p.j) — Pi. 

Attachment Classification Mother 

Classif. I 1234| 

Infant I Ds F E U | p(i.) 

1 A | .362 -.106 .080 -.118 I .212 

2 B | -.302 .243 -.232 -.193 I .524 

3 C I -.023 -.018 .157 .000 I .051 

4 D | -.038 -.119 -.005 .312 I .214 

ColMarginI 108 274 48 118 I 1.000 

The centred column profiles are the differences between the column pro¬ 
files and the marginal profile, and they are at the heart of nonsymmetric 
correspondence analysis. They indicate the extent to which cells in a profile 
have a higher (lower) proportion than the marginal proportion, and as such 
they indicate the increase (decrease) in the gain in predictability given the 
column category. Thus once we know a mother has a Ds classification this 
increasing the probability that she has an A infant with .362, and it decreases 
the probability of a B infant with -.302. The proportions of C and D in¬ 
fants are the same as those in the marginal distribution, i.e. equal to the case 
where we did not know the mother classification. This table clearly shows that 
for each mother category the probability of one particular infant category is 
greatly enhanced (Ds —♦ A; F —► B; (E —> C); U —> D) be it that E-C link 
is not very strong. In fact, there is more clearly an indication of a decrease 
in predictability: if the mother has an E classification then a B infant is less 
likely than one would have guessed from the marginal distribution. 

A.2 Analysis of r 

tau (Rows dependent) = .199. 

Asymptotic approximate chi square = 326.514 with df = 9 

The r value is not in itself very interpretable, as explained in the text, but 

the asymptotic chi square is very large compared to the number of degrees of 
freedom, and therefore clearly significant. In other words, there is ‘permission’ 
to interpret the results. 

Table A.4 Proportional contribution to r of each column 

I Ds F E U 

---—-- 

1 | .351 .336 .059 .254 
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The r indicates the increase in predictability. Looking at the conditional 
distributions we see from the proportional contributions that Ds, F, and U 
have more or less similar contributions. However, knowing E does not increase 
the predictability much. There are two reasons for this: (1) the conditional 
distribution does not deviate as much from the marginal distributions as the 
other conditional distributions and (2) there are relatively few E classifications 
compared to the other classifications. 

Table A.5 Proportional contribution to r of each row 

I A B C D 
-+- 

1 I .279 .478 .019 .225 

These quantities can be used to assess to what extent it helps knowing 
the mother classification in improving the prediction of the infant classifica¬ 
tion. Knowing the mother classification clearly improves the prediction for the 
B category, but not much for the C category. Both the smaller number of C 
children and the small values in the centred profiles contribute the latter effect. 

Table A.6 Analysis of Variance (Light & Margolin) 

MS(Total) MS(Between) MS(Within) 

Row dependent .3164 .0629 .2534 

The partitioning of the total variance in a between and within part shows 
again a rather low value for the between variability, but here the same is 
true as with r that it is difficult to make a statement about the absolute 
values. Note that r = MS(Between)/MS(Total) = .0629/.3164 = .199. Giving 
a clear interpretation of t as a proportion explained variance, and stressing 
the analogue with analysis of variance. 

A.3 Results from Non-symmetric correspondence analysis 

As mentioned above the centred profiles are at the core of nonsymmetric corre¬ 
spondence analysis. The idea behind the technique is that we want to portray 
similarity between the centred profiles for column categories by normal (Eu¬ 
clidean) distances in a graph. Moreover, we would like to compare the centred 
profiles with the marginal profile, and we would like to assess which row cate¬ 
gories have gained in predictability by knowing the column category. All this 
can be derived from a biplot of the rows and columns of the centred profiles. 
The required coordinates follow from a (generalised) singular value decompo¬ 
sition of centred profiles. 
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Table A.7 Singular values and Principal Inertias (Eigenvalues) 

No. Singular Principal Proportion Cumulative 

Value Inertia Proportion 

1 .29562 

2 .18847 

3 .05460 

.08739 .694 

.03552 .282 

.00298 .024 

.694 

.976 

1.000 

Total inertia .12589 

[= 2 * MS(Between) = Sum squared singular values] 

As the minimum of the number of rows and the number of columns is 4, 
there are at most 3 dimensions or axes. The first two dimension take already 
98% of the variability, and thus a two-dimensional graph shows virtually all 
there is to see. Later we will indicate what is contained in the remaining 
dimension. Note that the inertia is equal to the square of the singular value 
(e.g. .295622 = .08739) 

Table A.8 Standard row coordinates 

I 1 2 

1 A | -.464 .671 

2 B | .826 .094 

3 C | -.046 -.029 

4 D | -.316 -.735 

Standard coordinates (mathematically: left singular values) have lengths 
equal to 1, and thus squaring the entries in a column and adding them gives 
a value equal to 1. To make it a proper length the square root of this value 
should be taken, but that value is, of course, also 1. One may also calculate 
the standard coordinates for the columns (right singular vectors), but these 
are only used for calculating the principal coordinates. 

Table A.9 Principal coordinates for columns 

I 1 2 Length Marg.Prop. 

1 Ds 

2 F 

3 E 

4 U 

-.404 .243 .472 

.288 .040 .291 

-.234 .031 .236 

-.203 -.327 .385 

.197 

.500 

.088 

.215 

Length .087 .036 

Principal coordinates have lengths equal to the singular values. Thus 
squaring the entries (say, of the first column), weighting them with their 
marginal proportion and adding them gives the inertia (.197 * —.4042 + .500 * 
.2882 + .088 * —.2342 + .215 * —.2032 = .087). The lengths of the vectors for the 
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mother classifications in the biplot tire given under the column headings length, 
e.g. for the Ds category the length is computed as - .4042 + ,2432) = .472. 

A.4 Biplot 

Figure A.l Biplot of the Child and Mother Categories 

(Child categories in standard coordinates; Mother categories in principal co¬ 
ordinates) 

Dimension 1 (Horizontal) Versus Dimension 2 (Vertical) 

-+-+-+-+-+-+ 

-.50 -.25 .00 .25 .50 .75 

As the biplot is based on two of the three dimension there is a bit of dis¬ 
tortion but not very much as it contains 98% of the variability. The origin of 
the plot represent the marginal distribution and the (Euclidean) distance of 
column with respect to the origin indicates the extent to which a column devi¬ 
ates from the marginal distribution, similarly, distances between the column 
points indicate the extent to which their conditional distributions are similar. 

The patterns we discerned in the table of the centred profiles are faithfully 
represented here in the plot. Thus the Ds classification of the mother increases 
the proportion of A infants in the conditional distribution, F does the same 
for B and U for D. The way to see this is by projecting the row point onto the 
vector connecting the origin with the column point. If the inner product, i.e. 
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product of the length of column vector times the length of the projection of 
the row vector is large and positive, there is a large increase in prediction for 
the row category; this is the case for all pairs mentioned above. If it is large 
and negative there is a large decrease in the prediction for that row category, 
e.g. for B if the mother has a Ds classification. The mother E and infant C 
classification is the smallest in accordance with what we have said above. 

A.5 Supplementary information 

Most analyses are not complete without an analysis of the residuals to assess 
how faithful the results reflect the original data and to assess whether there 
are any problems with specific aspects of the analysis. 

Table A. 10 Implied centred column profiles and residuals 

Implied Centred Profiles Residuals 

I 1 
I Ds 

1 A | .351 

2 B | -.311 

3 C | .011 

4 D | -.051 

2 3 4 

FEU 

.107 .130 -.125 

.242 -.191 -.199 

.014 .010 .019 

.120 .051 .305 

II 1 2 
II Ds F 

•++- 

|| .011 .001 

I | .009 .001 

II -.034 -.004 

II .013 .001 

3 4 | 

E U | 

.050 .007 | 

.041 .006 | 

.147 -.019 I 

.056 .007 | 

Using the two dimensions the centred profiles have been recalculated from 
the coordinates. One might call these the fitted or implied values based on 
the model used. When they are subtracted from the original centred profiles 
to form the residuals we can investigate the discrepancies between the two- 
dimensional solution and the full three-dimensional one. 

In this case we see that the residuals are small as was to be expected 
given that the two dimensions took care of 98% of the variability. The largest 
discrepancies can be found for the distribution of mothers with an E classifica¬ 
tion. The positive value .147 indicates that the predictability of C is higher for 
these mothers than one could read from the two-dimensional graph. The third 
dimension will thus serve to lift the vector of E and the point C out of the 
plane. Apart from this relationship there are no further serious discrepancies 

to be seen. 

Table A. 11 Proportional contribution of columns to axes (absolute contribu¬ 
tions sum to eigenvalues) 

I 1 2 

1 Ds I .369 .328 

2 F | .474 .022 

3 E | .055 .002 

4 U I .102 .648 
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The above proportional contributions show which columns, thus which 
mother classifications, contribute most to which axes. The Ds and F classi¬ 
fication do so for the first and U and Ds for the second, while E does not 
contribute at all. In a two-dimensional graph this information can easily be 
seen, for higher dimensional graphs this can be more problematic. 

Table A. 12 Proportional contribution of the two axes to the column contribu¬ 
tions to tau 

112 3 4 

1 I .993 1.000 .658 .997 

Table A.4 showed how much each column contributed to the overall in¬ 
crease in predictability r, indicated by Tj. The numbers above indicate how 
well the two axes together succeeded in reproducing this contribution. Thus 
all contributions to the increase in predictability are accounted for by the two 
axes, except for the E mothers. 

Table A. 13 Proportional contribution of axes to the increase in predictability 
of the rows 

I 1 2 Total 

1 A | .537 .455 

2 B I .992 .005 

3 C I .075 .012 

4 D | .309 .680 

.993 

.997 

.087 

.988 

The final table shows how well we are able to predict the increase of pre¬ 
dictability for each row and which dimensions are responsible. The most 
obvious tilings to note is that the A, B and D categories are catered for, but 
the increase in predictability of the C category is not really included in the 
two-dimensional analysis. 

A.6 Final remarks 

The message from this small table is really too simple for all the calculations 
carried out here. The amount of newly calculated numbers far exceeds the 
original ones. However, the expose above is primarily meant to illustrate the 
flow of the analysis and its assessment, entirely in accordance with the function 
of a tutorial. 

Notwithstanding one can say that the proposed approach towards this 
small table gives insight in the relations in the table. However, for this example 
the centred profiles in principle already show all there is to tell. 



82 

References 

Agresti, A. (1990). Categorical data analysis. New York: Wiley. 
Balbi, S. (1997). Graphical displays in Non-Symmetric Correspondence 

Analysis. In Michael Greenacre and Jorg Blasius (Eds.), Visualization of cat¬ 
egorical data (pp.##). London: Academic Press. 

Becker, R.A., Chambers, J.M., and Wilks, A.R. (1988). The new S 
language. Pacific Grove, CA: Wadsworth & Brooks/Cole. 

Benzecri, J.P. (1973). L’Analyse des donnees. Vol. II, L’Analyse des 
correspondances [Data analysis. Vol. II, correspondence analysis]. Paris: 
Dunod. 

Bishop, Y.M.M., Fienberg, S.E., and Holland, P.W. (1975). Discrete 
multivariate analysis. Cambridge, MA: The MIT Press. 

Carlier, A. and Kroonenberg, P.M. (1996). Decompositions and biplots 
in three-way correspondence analysis. Psychometrika, 61, 355-373. 

Constantine, A.G. and Gower, J.C. (1978). Graphical representation of 
asymmetry. Applied Statistics, 27, 297-304. 

D’Ambra, L. and Lauro, N.C. (1989). Non symmetrical analysis of three- 
way contingency tables. In R. Coppi and S. Bolasco (Eds.), Multiway data 
analysis (pp. 301-315). Amsterdam: Elsevier. 

D’Ambra, L. and Lauro, N.C. (1992). Non symmetrical exploratory data 
analysis. Statistica Applicata, 4, 511-529. 

Eckart, C. and Young, G. (1936), The approximation of one matrix by 
another of lower rank. Psychometrika, 1, 211-218. 

Fienberg, S.E. (1970). A statistical technique for historians: Standard¬ 
izing tables of counts. Journal of Interdisciplinary History, 1, 305-315. 

Gabriel, K.R. (1971). The biplot graphic display with application to 
principal component analysis, Biometrika, 58, 453-467. 

Gabriel, K.R. and Charles L. Odoroff (1990). Biplots in biomedical re¬ 
search. Statistics in Medicine, 9, 469-485. 

Gini, C.W. (1912). Variabilita e mutabilita, contribute alio studio delle 
di distribuzioni e relazioni statistiche. Studio-Economico-Giuridici della R. 
Universitd di Cagliari. 

Goodman, L.A., and Kruskal, W.H. (1954). Measures of association 
for cross classifications, Journal of the American Statistical Association, 49, 
732-764. 

Greenacre, M.J. (1984). Theory and applications of correspondence anal¬ 
ysis. London: Academic Press. 

Greenacre, M.J. (1993). Correspondence analysis in practice. London: 
Academic Press. 

Lauro, N. C. and D’Ambra, L. (1984). L’Analyse non symetrique des 
correspondances [Nonsymmetric correspondence analysis]. In E. Diday et al. 
(Eds.), Data Analysis and Informatics ///(pp. 433-446). Amsterdam: Else¬ 
vier. 

Lauro, N.C. and Sicilian©, R. (1989), Exploratory methods and modelling 
for contingency tables analysis: An integrated approach. Statistica Applicata, 
1, 5-32. 



83 

Light, R.J. and Margolin, B.H. (1971). An analysis of variance for cate¬ 
gorical data, Journal of the American Statistical Association, 66, 534-544. 

Lombardo, R., Carlier, A. & D’Ambra, L.(1996). Decomposition models 
for dependence analysis in three-way contingency tables. Methodologica, 
59-80. 

Marcotorchino, F. (1984). Utilisation des Comparaisons par Paires en 
Statistique des Contingences: Partie I, Partie II [Use of Paired Comparisons 
in the Statistical Analysis of Contingency Tables], Unpublished Technical Re¬ 
ports No F 069, No. F 071, Etude du Centre Scientifique, IBM-France. 

Margolin, B.H. and Light, R.J. (1974). An analysis of variance for cat¬ 
egorical data, II: Small sample comparisons with Chi Square and other com¬ 
petitors, Journal of the American Statistical Association, 69, 755-764. 

Sicihano, R. (1990). Asymptotic distribution of eigenvalues and statisti¬ 
cal tests in non symmetric correspondence analysis. Statistica Applicata, 2-3, 
259-276. 

Sicilian©, R., Lauro, N.C. and Mooijaart, A. (1990). Exploratory ap¬ 
proach and maximum likelihood estimation of models for non symmetrical 
analysis of two-way multiple contingency tables. In K. Momirovic and V. 
Mildner (Eds.), COMPSTAT 1990 (pp. 157-162). Heidelberg: Physica Ver- 
lag. 

Van den Boom, D.C. (1988). Neonatal irritability and the development 
of attachment: Observation and intervention. Unpublished doctoral thesis, 
Department of Psychology, Leiden University. 

Van den Boom, D.C. and Hoeksma, J.B. (1994). The effect of infant irri¬ 
tability on mother-infant interaction: A growth-curve analysis. Developmental 
Psychology, 30, 581-590 (Correction: 1995, 31, 197). 

Van IJzendoorn, M.H. (1995). Adult attachment representations, parental 
responsiveness, and infant attachment. A meta-analysis on the predictive va¬ 
lidity of the Adult Attachment Interview. Psychological Bulletin, 117, 387-403. 

ontvangen: 15-02-1998 
geaccepteerd: 09-04-1998 


