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Abstract 

We present the outlines of a relatively new method for predictive inference. The method is 

closely related to standard non-parametric approaches, and can be regarded as an attempt to 

draw statistical conclusions while adding only a minimum of structural assumptions to data. The 

inferences have a frequentist nature, but are also justified from a Bayesian point of view, and could 

be regarded as a robust approach to some standard problems in statistics. This paper is mainly 

intended to highlight some recent results and to stimulate discussion on foundations of statistics 

and decision making, particularly on the apparent conflict between inferential methods based on all 

information available, including aspects that may justify the use of particular parametric models, 

and methods based only on available statistical data, for as far as that is possible. We briefly 

review some possible applications, with special attention to comparison of populations and Bayes’ 

problem. For many details we refer to other recent papers. In the final section we briefly discuss 

when it may be appropriate to apply this method, and we mention some topics for future research. 
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1 Introduction 

This paper introduces and reviews a method for predictive statistical inference, that is an attempt 

to learn about future observations from past observations while adding only few additional structural 

assumptions. The method is based on Hill’s assumption [15], which gives a direct conditional 

probability [10] for a future observable random quantity, conditioned on observed values of related 

random quantities. In fact, this conditional probability can be used as a predictive posterior probability 

in a general Bayesian framework [3, 12] since Hill [17] showed that there exists a (rather complicated) 

prior that leads exactly to this predictive posterior. With regard to the Bayesian approach it seems 

sufficient to remark that A(n) is a De Finetti coherent procedure [8, 16, 17, 18]. Our aim, however, 

is to present this method unrelated to any other inferential method, as a contribution to foundations 

of statistics. Some references given in the paper will serve as useful starting points for comparing our 

method to other inferential methods. 

Suppose our interest is in predictions related to a real-valued random quantity Xn+i, or several 

such random quantities X{, i > n + 1, on the basis of observed values of n such random quantities, 

ordered as < x^) < ••• < £(n)- In this paper we assume that ties do not exist (nor will do in 

future observations), for ease of presentation. Our results are easily generalized to allow ties [17]. The 

ordering of the first n observations is an essential assumption underlying Hill’s assumption A(n), we 

will discuss this later. Let us denote the intervals created by the n observations by 

h = fi = (Z(0>x((+1))> for Z = 1,... ,n — 1, and /„ = (x(„),oo). 

If we know that all random quantities are positive, the first interval will have 0 as left boundary, and 

for some inferences we need finite bounds for observations, in which case the interval /q (/n) will be 

assumed to have a finite left (right) boundary. 

The assumption A^ is that 

P(X{ G Ii) = —for / = 0,... ,n, 
n+1 

and for alH > 7i + 1. It should be remarked that A^ does not assume anything else, and is clearly 

a post-data assumption which is related to (finite) exchangeability (see De Finetti [8, ch. 11]). Hill 

[16] gives a detailed presentation and discussion of A^uy The random quantities Xi, i > n + 1, are 

not assumed to be conditionally independent. A simple example to appreciate the dependence related 

to A(n) is as follows: Suppose we have a single observation, x\, providing two intervals, /o,7i- The 

assumption now states that P(Xi E /q) = P{X{ < aq) = i for all z > 2. Let us consider A3, and 

in particular how probability statements about A3 change when learning A2. If we remain interested 

in the event A3 < x\, the probability P(A3 < aq) = ^ will change, assuming A(2), according to 

whether the observation A2 will be less than or greater than aq, P(As < 2q|A2 < oq) = | or 

P(As < 2q|A2 > aq) = respectively. This is related to the probability P(X^ < aq) = 5 without 
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conditioning on the as yet unknown X2 by the theorem of total probability: 

P(Xz<X\) = P(Xz < X\\X2 < X\)P(X2 < Xi) + P(Xz < X\\X2> X\)P(X2> X\) 
2 1111 

= -x-\-X — = —. 
3 2 3 2 2 

A direct consequence of A(2) is that these probabilities for X3 keep the same values if the unknown 

X2 is replaced by its observed value .T2, so P(X3 < x\\x2 < X\) = | and P(Xz < x\\x2 > xi) = ^. 

This simple example makes clear the learning process about X3, based on appropriate assumptions 

A(n), especially the change between statements based only on x\ or on x\ and X2 jointly. 

De Finetti’s [8] representation theorem uses a similar setting to justify a Bayesian framework to 

learn about an underlying parameter, and a probability distribution for that parameter, but he relies 

on the assumption that indeed there is an infinite sequence of random quantities involved, whereas our 

interest here (as in many practical situations) is in a finite number of future observations. Even more, 

the Bayesian approach as justified by De Finetti’s [8] important results, explicitly needs a specified 

prior distribution, and together with the conditional independence of future observations (conditional 

on an unknown parameter) this adds quite a bit more structure to the data then we want and achieve. 

Our approach to Bayes’ problem in section 3 will make this difference clear, especially when compared 

to standard Bayesian inference [3]. Our approach seems suitable if there is hardly any knowledge 

about the random quantities of interest, other than the first n observations, or, which may be more 

realistic, if one explicitly does not want to use such information. This may occur, for example, if one 

wants to study the (often hidden) effect of additional structural assumptions underlying statistical 

models or methods. Inferences based on such restricted knowledge have been called low structure 

inferences [12, sect. 2.1.2] and black-box inferences [18]. 

The assumption A(n) is not sufficient to derive precise probability results for many problems of 

interest. However, it does provide bounds for probabilities and expectations, as presented in this paper, 

and this is essentially an application of De Finetti’s ’fundamental theorem of probability’ [8, sect. 3.10]. 

The bounds that we derive are imprecise probabilities and imprecise previsions (expectations) in the 

sense of Walley [22]. Adopting a subjective interpretation of probability and prevision, suppose that 

we are interested in an uncertain quantity A. In a subjective framework [22] that is a generalization 

of De Finetti’s theory [8], your lower prevision Ei(A) for A is the supremum of all ’prices’ you want 

to pay to get the uncertain quantity A, and your upper prevision EU(A) for A is the infimum of all 

’prices’ for which you want to sell A (some unit of linear utility is needed for the prices, see Walley 

[22, sect. 2.2]). If one is not familiar with these concepts, Ei(A) and EU(A) can be considered as lower 

and upper bounds for the expected value of A. Imprecise probabilities are simply imprecise previsions 

for events, so with A an indicator function that is 1 if the event occurs and 0 else. We denote a lower 

probability for A by Pi(A) and an upper probability for A by PU(A). 

The results in this paper also have another possible interpretation (and justification), as bounds 

of confidence statements in a nonparametric predictive frequentist setting, see Geisser [12, sect. 2.1.2] 
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for more details about basic results related to this interpretation. Most statistical concepts exploit 

(finite) exchangeability or stronger assumptions, and agree with the A(„)-type assumptions before 

data are actually observed. Once data are observed, however, an assumed parametric model in effect 

introduces dependence between the numerical information from the data, and information about 

the ranks of possible future data related to the current data. This then undermines the validity 

of predictive statements as purely based on exchangeability. This dependence between numerical 

information and ranks is explicitly absent when using a nonparametric method, and is excellently 

shown by our inferences based on alone. If good reasons for a certain (family of) parametric 

model(s) are present, indeed one may want to use such for inferences. However, if it is purely done 

for mathematical convenience or necessity, one should be careful as the model assumed cancels out 

the weak exchangeability assumption after the data are observed, and what is the justification of the 

model? Often, in case of few data many models seem justifiable, whereas in case of many data no 

simple model seems to fit anymore. In the mean time, A(„)-based inferences are entirely flexible, valid 

for few data, although high imprecision may be the fair price of only little information, and valid 

for many data as its assymptotics are obviously closely related to those of the empirical distribution 

function. The strength of the assumption A(nj can best be indicated by citing the final paragraph of 

Hill [16]: ‘Let me conclude by observing that A(„) is supported by all of the serious approaches to 

statistical inference. It is Bayesian, fiducial, and even a confidence/tolerance procedure. It is simple, 

coherent, and plausible. It can even be argued, I believe, that A{„) constitutes the fundamental 

solution to the problem of induction’. 

In section 2 and 3 we present some results for two fundamental problems in statistics, comparison 

of two populations and Bayes’ problem. For more detailed presentation of these results we refer to 

recent papers, the goal of this contribution is to briefly present possible inferences and stimulate 

further discussion of foundations of statistics. Some further recent results and additional aspects of 

interest are briefly discussed in section 4. 

2 Comparing Populations 

In this section we consider an elementary problem in statistics: comparison of real-valued random 

quantities corresponding to two independent populations [4]. An often used approach is to test equality 

of parameters of assumed parametric models, or, in nonparametric approaches, to use the ranks of the 

observations (e.g. Wilcoxon’s test) and base inferences on limit properties for statistics, with vague 

justifications for applications to finite (often small) numbers of data. 

We compare real-valued random quantities, Xt and Yj from the first and second population, re¬ 

spectively, by making predictive inferences for Xn+i and Ym+i given observations xi < ... < xn and 

y\ < ■ ■ ■ < Vm, where the assumed orderings are without loss of generality. As before, we assume that 

there are no ties for ease of presentation. A natural way to model preference for Xn+\ to Ym+i is by the 
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lower prevision Ei(X,l+l - Ym+1) > 0, which means that we would want to get Xn+l -Ym+1 for free, or 

even perhaps for a positive price. Another way to model such preference is by E[(Xn+1) > Eu(Ym+l), 

which implies Ei(Xn+1 - ym+i) > 0 but is stronger than that. This second way of modelling prefer¬ 

ence has the advantage that we can analyse the populations on their own, which especially simplifies 

matters when dealing with independent populations, and this will be the first method presented in 

this section. Next to this, we can also use imprecise probabilities for the event X„+i > ym+i, which 

is presented as the second method in this section. 

For the first method presented in this section we must restrict the values that the random quantities 

can have to < Xi < rx, i = 1,... ,n + 1, and ly < Yj < ry. j = 1,..., m -(- 1, with real-valued 

ri,ry assumed to be known. Based on observations xi < ... < xn and y\ < ... < ym, the 

appropriate assumptions A(n) and A(m) give predictive probabilities for X„+l and Ym+l, as presented 

in section 1. Using these predictive probabilities, the lower prevision for Xn+i is easily derived by 

putting the mass ^ as far as possible to the left in each interval, leading to 

El(Xn+1) = ~^ + ±x^j. 

Analogously, the upper prevision is derived by putting the mass to the extreme right per interval, 

Similarly, we get 

B,(ym+l) = ^TT^ + £^) 

and 

Strong preference for Xn+1 when compared to Ym+l can be modelled by Ei(Xn+1) > Eu{Ym+l), 

which leads to a sufficient condition for strong preference for Xn+i to Ym+i given by 

(-.+&-) ■ 

Analogously, a sufficient condition for strong preference for y^+i to A„+i is given by 

For all other situations we do not explicitly say which of the two next observations is preferred. If 
n n n n 

m = n these sufficient conditions are T, xi~ T, Vj > fy-4 and Y. Vi ~ Y, xi > rx~ ly, respectively, 
*=i f=l j=l i=i 
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leaving the cases with ly — rx < xi~ Vj ^ ry ~ lx without explicitly stated preference for either 
*—i j'=i 

group. One may suggest that the situation Eu(Xn+i) > Eu(Ym+\) > Ei(Xn+i) > Ei(Ym+i) models a 

weaker form of preference for Xn+i, which can also be analysed easily. 

It is clear that we need the restriction to bounded real-valued random quantities. If lx = —oo, 

the lower prevision for Xn+\ would also be —oo, while for rx = oo the upper prevision would be 

oo. Without these bounds we would never be able to express strong preference using these imprecise 

previsions. However, it seems that for practical applications one is usually able to state bounds for 

the observations, and one can easily study the effect of the choice of bounds on the final inference (see 

example 1 in this section). 

Next we consider comparison between two groups based on imprecise probabilities, where it is 

not necessary to state bounds for the random quantities. For ease of notation we define xq = —oo. 

Furthermore, we introduce Zj, as the number of observed ?/-values per interval bounded by consecutive 

x-values, so 

zi = <Vj< Xi+i, j = i = 0,... ,n — 1, 

and 

Zn = #{yj\Xn < Vj < oo}- 

We derive lower and upper probabilities for the event Xn+i > Ym+i by looking at extreme positions 

of these random quantities given the predictive probabilities for the intervals [4]. The lower probability 

Pi(Xn+i > Fm+i) is derived by putting the probability mass within each interval for Xn+i at the 

infimum of the values per interval (—oo for the first interval), and the mass within each interval 

for Ym+i at the supremum of the values per interval (oo for the last interval). It is clear that without 

additional assumptions nothing further can be said about the actual distribution of the probability 

mass per interval, and thus no tighter bounds can be achieved. The lower probability for the event 

Xn+i > Ym+i is (taking into account that P(Ym+i < —oo) = 0): 

l n~[ 

Pl(Xn+l > Ym+1) = („+1)(m + 1) 

The upper probability Pu(Xn+\ > Tm+i) is derived by putting the probability mass within 

each interval for Xn+i at the supremum of the values per interval (oo for the last interval), and the mass 

^4-y within each interval for Ym+] at the infimum of the values per interval (—oo for the first interval). 

The upper probability for the event Xn+\ > ym+i is (taking into account that P(ym+i < oo) = 1): 

Pu(*n+1 > IWl) = (n+-i^m + 1) |n + m + 1 + g(n - ^ J - 

These imprecise probabilities can be used for predictive comparisons between the two populations. 

For example, one could say that one prefers Xn+i to ym+i if the lower probability for the event 
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7^n+i > ^m+i exceeds a certain value 1 — a, while 37n+i Is preferred to A'n+i if the lower probability 

for the event Ym+i > Xn+l exceeds the same 1 - a, where (assuming that P(Xn+1 = ym+)) = 0) we 

can use P[(Ym+\ > Xn+\) = 1 — Pu(Xn+i > Ym^i) (this follows from the underlying symmetry). To 

choose sample sizes when using such a form of preference one may be able to use the fact that the 

imprecision A, defined as the difference between the upper and lower probability for an event, does 

not depend on the data otherwise than through n and m, 

A(X„+1 > ym+1) = pu(xn+1 > ym+i) -P,(xn+1 > Ym+1) = 
(n + l)(m + 1) 

If we choose a value of a to express strong preference related to lower probabilities, then Xn+i is 

preferred if Pi(Xn+l > ym+i) > 1 - a and ym+i is preferred if Pi(Ym+i > Xn+{) > 1 - a. Therefore, 

an obvious necessary condition for strong preference of either Xn+i or yOT+i is 

Pl{-^n+l Ym^i ) + Pl{Ym+l > ^n+l) >1 — 0:. 

So 

p,(^n+i > ym+i) + P,(ym+1 > Xn+1) = 1 - A(X„+1 > ym+1) = -—~—- > 1 - a 
(n + l)(m + 1) 

is a necessary condition (obviously not sufficient). For example, with m = n we would need to take 

at least 
v/1 — a 

n > -7=- . 
1 - y/T^a 

For a: = 0.1, 0.05, 0.01 this implies that we can only have strong preference for either Xn+i or Yn+\ 

if n is at least 19, 39, 199, respectively. 

In this second method the observed values X{ and yj have not been used explicitly, only the ordering 

of these observations plays a role. As such this approach is closely related to standard non-parametric 

approaches based on ranks. 

We end this section with an example to illustrate this approach. A further related example is 

included in the discussion in section 4. 

Example 1: 

The following data are presented by Sternberg, Van Kammen and Bunney [21]. In their study, 25 

hospitalized schizophrenic patients were treated with antipsychotic medication, and after a period 

of time were classified as psychotic or nonpsychotic by hospital staff. From each patient samples of 

cerebrospinal fluid were taken and assayed for the dopamine 6-hydroxylase activity. The data are 

given in Table 1 (the units are nmol/(ml)(h)/(mg) of protein). Interest is in the difference between 

the two groups of patients. 

There are 15 observations for patients who were judged nonpsychotic (let us denote these as X- 

variables), and 10 for patients judged psychotic (T). There is actually one tie in the X observations, 
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but this does not complicate our analysis (one could imagine them as being very close, but not tied). 

X 0.0104 0.0105 0.0112 0.0116 0.0130 0.0145 0.0154 0.0156 0.0170 0.0180 

0.0200 0.0200 0.0210 0.0230 0.0252 

Y 0.0150 0.0204 0.0208 0.0222 0.0226 0.0245 0.0270 0.0275 0.0306 0.0320 

Table 1: Dopamine b-hydroxylase activity data 

We apply the methods of this section to derive predictive inferences for Xiq and Yii, making the 

necessary assumptions. For the first method we need to assume bounds for the possible values 

of results according to methods X and Y, for the moment say lx < X{ < rx and ly < Yj < ry. The 

imprecise previsions for X\§ and Yu based on these data and bounds are 

Ei(Xl6) = 4 ('* +0-2464) 
ID 

Eu(Xx6) = 4^ + 0-2464) 

Ei(Yn) = 4 (^ + °'2426) 

Eu(Yn) = 1K+0-2426). 

These would strongly suggest that Y\\ exceeds Xie, so Ei(Yn) > Eu(X\q), if llrx — 16/y < 1.1712. 

We cannot judge on the bounds without further knowledge about the actual situation and the meaning 

of the figures, but for example if the only acceptable lower bound would be ly = 0, then for all upper 

bounds rx < 0.1064, Yu would indeed be suggested to exceed XlG on the basis of these data, according 

to the imprecise previsions method. 

Straightforward application of the second method leads to imprecise probabilities 

Pi(Xi6 > Yn) = 0.1136 

Pu(Xie > Yn) = 0.2614, 

so Pi(Yn > Xie) = 1 — 0.2614 = 0.7386 and Pu(Yn > Xie) = 1 — 0.1136 = 0.8864. The exact impli¬ 

cations of these values should not be suggested by the statistician, but should be discussed with the 

topic experts. However, especially the combination of both methods in this example gives strong sup¬ 

port to the claim that the next Y measurement will give a higher result than the next X measurement. 

3 Bayes’ Problem 

In this section we briefly consider another fundamental problem in statistics [5]: You want to assess 

the probability that an event will occur, and you have information concerning past occurrences in 
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similar situations- Pearson [19, 20] called this ’the fundamental problem of practical statistics’, and 

the problem has a long history ([22, note 1 to sect. 5.3, p. 521]; for a detailed overview of early work 

on this problem, up to and including Pearson, we refer to Dale [9]). One of the earliest contributions 

to this problem is the paper by Bayes [1], Coolen [5] presents a new solution to the problem derived 

by combining Hill’s assumption 4(„) [15] with a less restrictive version of Bayes’ postulate, and this 

solution is briefly reviewed in this section. 

Bayes’ solution to the fundamental problem is based on the following postulate. Suppose an 

experiment consists of repeatedly throwing balls on a square table, such that the landing place of a 

ball is uniformly distributed over the table. Attention is restricted to the position of the ball projected 

on a single side of the table, say the x-axis. The position of the first ball on this x-axis plays an 

important role, for all other balls interest is in whether or not they land to the left of the first ball. 

Refer to the event that a ball lands to the left of the first ball as a success. It is easily seen that the 

uniformity assumption can be replaced by any other distribution, but this should still be equal for all 

balls, including the first ball that determines the probability of a success for the other balls. 

Given the number of successes for a certain number of balls, the problem of interest is to say 

something about the probability of a success for a future ball, or more generally to say something 

about the number of successes for several future balls. When thinking about Bayes’ postulate as a 

suitable process determining successes or failures in trials, it seems unrealistic that a probability of 

success in a trial is determined by a first similar trial (the position of the first ball). Our approach 

replaces Bayes’ first ball by the assumption that there is some point S on the x-axis such that a 

ball to the left of S is called a success, without any further assumptions about 5, and there is no 

explicit interest in S itself. Remark that the use of the first ball in Bayes’ postulate is directly related 

to the role of a parameter and prior distribution in Bayesian statistical inference, where learning 

from observed trials is dealt with by changing beliefs, as represented by probability distributions for 

the parameter (prior changes to posterior), so in effect for the location of the first ball. With such 

a posterior distribution for the location of the first ball, all sorts of inferences for future trials are 

possible via conditioning on the position of the first ball. However, we step aside from this approach 

by suggesting that the position of this (hypothetical) first ball is not of interest apart from linking 

data to future observations, and our main result is that we base such a link on the assumption A(„) 

without needing this first ball. This also has the effect that Bayes’ implicit assumption that all balls 

land on the table by the same process is replaced by the weaker assumption A(n), according to which 

these processes might be quite different in nature, but which represents that we currently have a lack 

of further detailed knowledge about processes per ball. 

Assume an imaginary experiment, playing a role similar to Bayes’ postulate, with balls thrown 

on a table, and only consider the projected position on the x-axis. Consider the size of the table 

and the place of origin to be unknown, and no knowledge is assumed about the distributions of the 

places where balls land on the table. For simplicity, assume that the x-axis represents the set of real 
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numbers, 2R. Different throws of balls are referred to as trials, in the same sense as De Finetti [8, 

sect. 1.5]: ’Trials of a phenomenon; one may allude to some exterior analogy, but one does not mean 

to assume anything which would imply either equal probability, or independence, or anything else of 

probabilistic relevance’. 

Let the position on the x-axis of the zth ball be given by the real-valued random quantity X{. Let 

S € IR and the ith trial is said to be a success if X* < S and a failure if Xt > S. Introduce the random 

quantities St as the indicator functions of the events Xt < 5, so 5, = 1 iff X{ < S, and S* = 0 iff 

Xi > S. Further, let = ^2 S[. a random quantity that counts successes. It should be emphasized 
l—i 

that it is explicitly not assumed that P(Si = l) = 6 for all i. If this would be the case, then obviously 

one would be able to learn about 9 from the number of observations smaller than S. We refer to 

Hill [16] for further comparison with De Finetti’s representation theorem, it is especially the absence 

here of information on the weighting distribution (prior or posterior) in the representation theorem 

that does not allow us to assume conditional independence for our finite (usually small) numbers of 

observations. 

Suppose that you are interested in the number of successes in m future trials, given the num¬ 

ber of successes in n past trials, so given Y” = s you are interested in Y™+™. Realized random 

quantities (although we do not get the explicit numerical values) nq,... ,£„ can be related to future 

random quantities Xn+i,... ,Xn+m via Hill’s assumption as presented in section 1. In fact, 

when interested in m future observations (remember that these are not conditionally independent), a 

similar assumption needs to be made for each future observation consecutively, so one needs to assume 

v4(n),..., v4(n+m_i). Hill [15] shows that the assumption implies for all k < n, so assuming 

A(n+m_1) is sufficient, but we explicitly mention all assumptions involved for a clear presentation. 

In effect, the assumptions A(n),..., i4(n+m_1) imply that all orderings of the X{,i = 1,..., n-fm, are 

equally likely, not only before any observations are made, but also with some observed Xi values fixed 

all possible orderings with regard to the other Xi's varying remain equally likely. On the basis of these 

assumptions only, the best we can do is deriving upper and lower bounds for £ Rt \ Y" = s), 

where Rt = {rq,... ,?q} with 1 < £ < m + 1 and 0 < zq < rq < ... < ?q < m. These bounds, which 

are upper and lower probabilities [22] and denoted by Pu and P/, respectively, are determined by 

counting. The upper probability is derived by counting the number of orderings for which Y^J71 6 Rt 

is possible after observing Y” = .«?, the lower probability by counting the number of orderings for 

which Ynn+m £ Rt is necessary after observing Y" = s [5]. Counting is more complicated here than 

for precise probabilities, as upper probabilities are not additive but sub-additive [22, sect. 1.6]. 

Defining ^ + = 0, a general form for the upper bound derived in this way is [5] 

p.K:r I ^ 7’) - (• +r)] (” - T.: -'■} 
In this sum the jth term is the number of orderings according to which s successes in the first n 
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observations can be followed by rj successes but (if j > 2) not by r,_i in the next m observations. A 

simple result (and consequence of coherence) is 

W+T e fit | V)" =«) = i - pu(Y£r e R11 y," = a), 

so it is sufficient to determine only the upper bounds and give the related results. Some special cases 

are 

(" \r 
W+r = n|}? = s) = ~(s 

PuK+? e Rt | YT = 0) 

1 /s + rA/n — s + m — riN 1X1 
n + m\ ’ 

s + ri/ 

1 f n m — r\ 

n 
("D 

which equals 1 if ri = 0, and 

Pu (y„'Vrefi(|r1" = „) = -4y(n + ri) 

which equals 1 if = m. 

If attention is restricted to only a single future observation, we have 

and 

afCi1 = 11 >? = *) = 

W31 = 11 yr = s) = 

n + 1 

s + 1 

n + 1 

As an indication of the numerical values of our imprecise probabilities we give the lower and upper 

probabilities for the case n = ra = 2 in table 2. 

vi 
x 6 s = 0 s = 1 3 = 2 

Rt Pi Pu Pi Pu Rt 

0 

1 

2 

0,1 

0,2 

1,2 

3 

0 

0 

5 

3 

0 

6 

3 

1 

6 

6 

3 

1 

1 

1 

3 

2 

3 

3 

4 

3 

5 

5 

5 

0 

0 

3 

0 

3 

5 

1 

3 

6 

3 

6 

6 

Table 2: Bayes’ problem, results for n = 2,m = 2 

Finally, a few results [5] related to these upper probabilities are worth to be mentioned. For all 

1 < mi < m — 1 we have 

PuK+r =r\Yln = s) = 

min(mi ,r) 

II PuK+r = j | y" =«) x (y"+™+1 =r-j | y;+m> =s + j), 
1=0 
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which is a convolution property, that also relates to the theorem of total probability. The same result 

holds for lower probabilities. If we consider the ratio of upper probabilities for equals 71m 

versus 72m (both assumed to be integers), for 71,72 G [0,1], given the same values n and s, then 

the limiting value of this ratio for m —► 00 equals the likelihood ratio for 71 versus 72, if the data 

were interpreted as s successes in n independent observations, all with identical binomial distributions 

with success parameter 71 or 72, respectively. Remark that, in taking the limit for m —> 00, we need 

to assume j4(n), .«4(n+1),..., for the relation to infinite exchangeability we refer to Hill [16]. Finally, 

all predictive probabilities for this setting, related to Bayesian methods with attempts to choose 

non-informative priors, fall in between our upper and lower probabilities, including Laplace’s rule of 

succession P^1 = 1 | K," = s) = [9], 

4 Discussion 

Many often applied inferential methods assume that random quantities per population are condition¬ 

ally independent and identically distributed (did). This assumption is hard to justify in practice, in 

fact hardly ever attention is paid to it. It may well be that there are relevant covariates that are 

different for members of the same population, and therefore affect the random quantities of interest, 

but which values we do not know. De Finetti [8, ch. 11] makes it perfectly clear that the weaker 

assumption of (finite) exchangeability is the natural assumption to start many statistical analyses. 

Exchangeability can be assumed even if the populations are non-homogeneous, but we simply do not 

know any other relevant characteristics of the individuals than the random quantity of interest. Since 

many populations in problems of applied statistics are non-homogeneous, the ciid assumption may 

often be too strong. Hill [15, 16, 17] discusses relations between and exchangeability, and essen¬ 

tially one should be happy to use inferences based on A(n) whenever an exchangeability assumption 

prior to observing data is not strongly suggested to be inappropriate by the data, or by information 

related to the data. For example, if there seems to be a clear effect from the time order in which 

the data became available, then inferences as presented and discussed in this paper are likely to be 

considered inappropriate, which for example occurs clearly in time series data. In such situations, it 

seems obvious that one has to choose for more detailed modelling, where subjective elements seem 

unavoidable, although these are often hidden beneath a layer of mathematically convenient formulae. 

If one would like to use a highly flexible and powerful subjective framework for inferences, one may 

want to consider applying Bayes linear methods [14] which have the advantage that all structural 

judgements on which models are based have to be added explicitly. 

Inferences based on can be used next to other inferences, based on stronger assumptions, 

simply as a robustness study and to analyse the effect of the assumptions underlying more complex 

mathematical models. One may want to use ,4(n)-based inferences on their own, as for example sug¬ 

gested in the sections above, especially when there is very little (prior) knowledge about the random 
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quantities of interest, or when one explicitly does not want to use any knowledge next to observed 

values of such random quantities. A nice discussion on exchangeability, strongly related to this aspect, 

is provided by Gelman, ft (iL, [13, sect. 5.2], and also example 2 can be useful to understand when 

our inferences may be regarded to be useful or not [4], 

Example 2: 

We use data on birthweights for 12 male and 12 female babies as presented by Dobson [11, p. 14], see 

table 3. 

Male (*) 2625 2628 2795 2847 2925 2968 

2975 3163 3176 3292 3421 3473 

Female (Y) 2412 2539 2729 2754 2817 2875 

2935 2991 3126 3210 3231 3317 

Table 3: Ordered birthweights (g) 

Next to this information, the original data also provided estimated gestational ages for each baby, 

and there seemed to be a trend of increasing birthweight with gestational age, so this can be treated as 

an important covariate. For our method, let us just consider the birthweights without the additional 

information of the estimated gestational ages. Since we know that this is a significant covariate that 

is not equal for all babies, an assumption of identical distributions for the weights of all boys will be 

hard to justify. But. if we do not know the actual values of this covariate per baby, we can assume 

exchangeability of the weights of 13 male babies, and exchangeability of the weights of 13 female 

babies, before 12 weights of each actually become available. Under these assumptions, let us see what 

our methods, as presented in section 2, tell us about the weights A43 of the next boy and Y13 of the 

next girl to be weighted. 

For the imprecise previsions method we assume again that there are bounds known for the possible 

values, using the first method of section 2, we get 

Ei(Xn) = 1(1,+ 36288) 

Eu{Xx3) = ^(rx + 36288) 

Ei(Yi3) = — {ly + 34936) 

Eu(Yi3) = ^(ry + 34936). 

These imprecise previsions would strongly suggest that X13 is greater than Vis, so Ei(Xl3) > EU(Y13), 

if ry — lx < 1352. The difference between the maximum and minimum observed weights is 1061, but 

probably in this case the experts would not want to assess bounds that are less than 1352 g. apart. 
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Suppose that bounds lx = ly = 800 and rx = ry = 5000 would be acceptable, then these data do not 

strongly indicate a heigher weight for the next boy than for the next girl. 

The second method of section 2 gives imprecise probabilities 

Pi(Xl3>Y13) = = 0.509 
lo9 

Pu(Xl3>Y13) = ^ = 0.657. 

These numbers do not indicate that the data provide very strong evidence for X13 > Y13. However, if 

we were offered to buy a bet that pays 1 if Xu > Yu and 0 else, we would be willing to buy it for a 

price even slightly greater than 0.5, whereas we would only want to buy a similar bet on Y13 >^13 

for prices up to 1 — 0.657 = 0.343. Combining the imprecise previsions and imprecise probabilities we 

could conclude that there is some evidence in favour of Xu > Y13, but the evidence is not very strong. 

There is an important remark to be made about this example, which may help to understand 

the low structure assumption used in this paper. Based on this assumption, we put a probability 

mass ^3 between consecutive observations when we actually have the values. For the predictive dis¬ 

tribution for Xu, the weight of the next boy, our inferences imply that the probability for the event 

2625 < Xu < 2628 is assumed to be It is quite likely that one objects to this inference, thinking 

that one’s actual betting behaviour would not be reflected by this number. This is precisely the situ¬ 

ation where one feels unhappy with the bet after seeing the data, and obviously this is related to the 

presence of some knowledge of birthweights. The essential argument of our approach is that inferences 

are based on the data only, and it indicates how we can learn from the data. As mentioned before, 

this feature is excellently discussed by Hill [15, 16, 17], see also the papers by Coolen, et al., [4, 5, 6, 7] 

for further discussions. If one objects to this example, then delete the nature of the numbers or think 

of some situation where one would really not have more information than the data only (for example 

weights of green (X) and yellow (Y) creatures on the planet Mars). 

The inferential method presented and discussed in this paper needs to be developed further before 

it can actually be applied to interesting practical problems, which would be the only way to allow 

fair comparison to other approaches. Some further recent work is reported in Coolen and Newby [6] 

and Coolen and Schrijner [7]. Next to that, research is continuing on related methods for ranking 

and selection of populations, for multinomial inferences (with numbers of categories either known or 

unknown) and for censored data. Berliner and Hill [2] considered right-censored data in the same 

context, but as they do not allow imprecision their approach relies on additional assumptions. A main 

challenge is research into related methods for multidimensional random quantities, Hill [17] briefly 

outlines one possible approach, but further research is needed. Generally, comparison of our results 

so far to other methods is useful, as well via analytical methods as by means of simulations studies, 

or ideally in relation to simple practical applications. 
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