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An algorithm for the solution of shortest path problems with positive 

AND NEGATIVE ARC LENGTHS 

B. Dorhout X) 

M.M.G. Hunting 2) 

Abstract: 

One of the most successful methods for the one-to-all shortest path 

problem in a directed graph is Dijkstra's method. If m is the number 

of arcs and n is the number of nodes of the graph there are 

implementations with worst case complexity 0(m + n log n) . 

Unfortunately this method can only be applied on graphs with 

nonnegative arc lengths, or costs, while sometimes, for instance if 

traversing some arcs yields income and therefore has negative costs, 

an algorithm for one-to-all shortest path problems with arbitrary arc 

lengths is needed. In this paper a method is described for graphs with 

arbitrary arc lengths. It can be considered as an extension of 

Dijkstra's method, using this method in two ways: for the 

transformation of the problem into a problem with only nonnegative arc 

lengths and for the solution of this new problem. The transformation 

is made through the solution of a linear assignment problem. If r is 

the number of nodes which are tails of one or more arcs with negative 

length, this assignment problem can be solved by applying Dijkstra's 

method at most r times on small subproblems. So the worst case 

complexity of the problem is 0((r +1) (m + n log n)) if the algorithm 

described in this paper is applied. The numerical results suggest that 

at the moment other existing methods solve these problems in shorter 

computation times. 
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1. Introduction 

We consider the problem of determining the shortest paths from one 

arbitrary node of a digraph, 1 say, to all other nodes. It is assumed 

that all arcs have a given length and that these paths exist. 

In case the graph does not contain a negative cycle, i.e. a cycle for 

which the sum of the arc lengths is negative, the solution of the 

problem coincides with the optimal solution to a transshipment 

problem, which asks to minimize the sum of the lengths of all paths 

used to transport 1 unit of a good from node 1 to each other node. We 

solve the original problem by first verifying that G does not contain 

negative cycles and subsequently solving the transshipment problem by 

reformulating that as a transportation problem in the classical way. 

(See, e.g. Wagner (1975)). The basic variables in the optimal solution 

of the transshipment problem represent a spanning tree of shortest 

paths, rooted at node 1, which is an optimal solution to the original 

problem. 

If the graph contains a negative cycle the optimal solution to the 

transportation problem differs from a solution to the original 

problem. In this case the algorithm stops, and no solution is found. 

We denote the graph by G = (N,A), where N = (l,...,n), and A is the 

set of pairs (i,j), which define the arcs (i,j) of G, with given 

lengths Cjj . If Xjj is the number of shortest paths that contain arc 

(i,j), the transshipment problem (P) associated to the one to all 

shortest path problem is to minimize 

X X 
1=1 j=2 

°ij xij 

subiect to 
J n 

X xik - n - i. 
k-2 

n n 

X xii - X xjk - 1 ’ 
i=l J k=2 J 

xij a °. 

j = 2.n. 

(i.j) e A. 

(1) 

(2) 

(3) 

(4) 

Here, for ease of notation, summations over indices only concern pairs 

that belong to A. Without loss of generality one may assume that there 

are no arcs (i,n), i=l,...,n. 



57 

We describe how to solve (P) by applying a moderate number of times 

Dijkstra's method (Dijkstra, 1959), which is suited only for the 

solution of shortest path problems in a graph with nonnegative arc 

lengths. In section 2 we transform (P) into a transportation problem 

(P')- It is shown that by solving an assignment problem the objective 

function of (P') can be changed into an objective function with only 

nonnegative cost coefficients. This gives the optimal solution of (P') 

if G does not contain negative cycles. In section 3 we describe phase 

1 of our method, in which the assignment problem is solved and the 

existence of negative cycles is detected. In section 4 we see that in 

phase 2, executed only in absence of negative cycles, (P) can be 

solved by using Dijkstra's method once. In section 5 we describe some 

experimental results. These indicate that, in spite of the good 

complexity of our method, other algorithms perform better at this 

time. 

2. Transformation of the problem 

Problem (P) is transformed into a transportation problem (P') in the 

following way. As an optimal solution to (P) is associated with a 

spanning tree, the number of shortest paths arriving at node j, 

j = 2,...,n, can never be greater than n - 1. 
n 

S° Z xii < n» j =2.n, holds, and redundant constraints 
i-1 

n 

Z xij ^ n» j = 2.n may be added to the formulation of (P) . 
i=l 

Besides, an optimal solution to (P') is an optimal solution to the 

original problem only if the 'smaller than' - signs hold. Then, after 

introduction of nonnegative slack variables xi-j , defined as 
n JJ 

xjj = n - ^ Z xij » with cjj = 0, j = 2,...,n, and subsequent 

substitution in (3), (P) is converted into a transportation problem in 

the bipartite graph G' - (I,J,B), with I = {1, ... ,n} , 
n 

J = {2, ... ,n) , and B = A U (J Thus (P') is: 
j=2 
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minimize 

(1' ) 

subject to 

n 
X xn - - n + 1, i*=l,...,n 

j-2 

(5) 

n 

xii “ j-2.n (6) 

xij ^ (i.j) e B, (7) 

where now summations in (5) and (6) are taken over indices associated 

with elements of B. These represent arcs (i,j) with i G I and j e J. 

This conversion is made in order to apply the well known reduction 

property, which says that the optimal solution of a transportation 

problem does not change if in the objective function all cL^ are 

replaced by c^ - Pi " » where pA and are constants which only 

depend on i and j respectively. 

Problem (P') is nondegenerate, as it is impossible to express 0 as the 

sum of less than all right hand sides of (5) and (6) . Each optimal 

solution to (P) coincides with an optimal solution to (P') from which 

the xjj-variables, all with positive values, are removed. Only if a 

negative cycle exists, there is a difference between the outcomes of 

(P) and (P'). In that case (P) does not have an optimal solution, as 

(2), (3), (4) allow feasible solutions with arbitrarily low values of 

(1), whereas (P') clearly only has solutions with bounded values. 

Problem (P) is solved in the following way: In order to determine 

whether G contains negative cycles we solve the linear assignment 

problem, (P"), in the graph G" = (I',J,B'): 

minimize 

(8) 
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subject to 
n 

- I xii “ - 1. i - 2.n, 
j-2 
n 

I xij - 1. j " 2.n, 
i-2 

(9) 

(10) 

'ij i 0, (i,j) e B', (11) 
where I' = {i| i - 2.n) and B’- {(l,j)|i e I'; j e J, (i,j) e B). 

As G" is the subgraph of G', induced by it contains all cycles 

of G' , and these are uniquely associated with all cycles in G. So if 

the optimal value of the objective function of (P") is negative, 

thenG' and so G contains at least one negative cycle, and the 

algorithm is stopped. Otherwise we use the optimal solution of the 

dual problem (D") of (P"), which is obtained as a by-product of the 

algorithm for solving (P"). (D") is the problem to 

maximize 

n n 

- I “j. + I Vj (12) 
i-2 j-2 

subject to 

- U£ + vj < Cij, (i,j) e B'. (13) 

We denote the optimal solutions of (P") and (D") by x and (u,v) 

respectively. As G does not contain a negative cycle the optimal 

solution to (P") is xjj = 1, j = 2, ... ,n, and thus, by complementary 

slackness, -uj + vj = cjj = j = 2.n. So, if we define 

ui = - min (c^j - vj)» problem (P') may be solved with c^j in (1') 

j-i-n 
replaced with Cjj = Cjj + u^ - vj • ^ut i-n optimal solution to (P') 

the values of x^j for i ^ j are equal to the values of Xjj in the 

optimal solution to (P). So the optimal solution to (P) is obtained by 

determining the shortest path spanning tree in G, with arc lengths c^j 

which are nonnegative, by (13) and the definition of ux. This is done 

by Dijkstra's algorithm. 
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3. Phase 1: Solution of an assignment problem 

It is possible to solve assignment problem (P") by the algorithm 

described in Dorhout (1977). A short description and a FORTRAN 

subroutine for this algorithm can also be found in Burkard and Derigs 

(1980). It is an improved version of an algorithm published by 

Tomizawa (1971). We give a short description of this iterative 

algorithm for the present special case. 

The idea of the algorithm is to solve subsequently for p = 2, ... , n 

the problems (Pp): 

X cij xii (14) 
(i.j)sBp 

subject to 
n 

- X Xii - - 1. i " 2.P. <15> 

j-2 
n 
X Xji < 1, j - 2,...,n, (16) 
i-2 

xij & 0, (i.j) e , (17) 

where r - {i|i - 2.p), {(i,j)|i e 1^; j e J, (i,j) e B), 

and c^^ > 0 for all (i,j) € B'. j p 

We call arcs (i,j) with x^j = 1 assigned, and its end nodes i and j 

matched. Other nodes are free. With each solution of a problem (Pp) 

the number of assignments x-jj = 1 increases with one. Finally the 

solution to (Pn) coincides with the optimal solution to (P"). The 

optimal solution to (Pp) is derived from the optimal solution to 

(Pp_l) by applying Dijkstra's method for finding a shortest 

alternating path from node p e Ip to the nearest free node in J. It 

consists of alternating forward, not assigned arcs, and backward, 

assigned arcs. The optimal solution to (Pp) is obtained by assigning 

all forward arcs, and deleting the assignments of the backward arcs in 

the shortest path. As arc lengths we use c-jj = c^j + - vj , with 

Up = - min (Cpj ” vj)> and all other u^ and vj taken from the optimal 

solution to (Dp.^), the dual problem to (Pp-l) ■ So all c^j > 0, and 
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for each i € there is one assigned arc with cy - 0, by 

complementary slackness. (Pp) can be solved by setting up - - min cpj, 

j-1...n J’ 
vj - 0, j-1.n, and, if up - - cp^, xpi,. - 1. 

The optimal up- and vj- values for (Dp) are easily derived from the 

associated optimal values for (Dp.p) and the distance labels. 

It is not necessary to solve all n-1 shortest path problems: If 

R — {i 6 N\(l)|3 j 6 N, (i,j) 6 A: cpj < 0}, the set of nodes which 

are tails of one or more arcs with negative length, and r - |R|, then 

only r times applying Dijkstra's algorithm is sufficient. For after 

renumbering nodes 2 to n in such a way that the first n-r nodes in I’ 

are not in R, the n-r first iterations consist of simply assigning 

(i.i), i-1.n-r. As the complexity of an efficient implementation 

of Dijkstra's method by Fredman and Tarjan (1987) is 0(m + n log n), 

with m - |A|, the complexity of phase 1 is 0(r (m + n log n)). 

4. Phase 2: A single execution of Dijkstra's procedure 

Consider the optimal solutions to (P") and (D"). If the optimal 

solution to (D") is up = vp = up = vp, i = 2, ... ,n, then this 

solution, supplemented with up - - min (cpj - vj) , is a feasible 
j-1-..n 

solution to (D'), the dual problem of (P'). Now the complementary 

slackness property holds with respect to the optimal solution xpp - 1, 

i = 2.n, xpj = 0, (i,j) 6 A, to (P"), and consequently also with 

respect to this solution, multiplied by (n-1). This latter solution 

satisfies (5) for i — 2, ... ,n. The optimal solution to (P') is found 

by sending 1 supplementary unit from node 1 to all n-1 nodes of J 

over the arcs of B. This can be done because all forward arcs of A 

have infinite capacity and all backward arcs (i,i) have capacity 

n-1. But this solution gives the same shortest path spanning tree as 

the optimal solution to (P) with all cpj replaced with cpj + up — vj . 

After the application of Dijkstra's method in this phase the total 

complexity of our problem is 0((r + l)(m + n log n)). 
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5. Computer experiments 

Cherkassky et al. (1996) did an extensive computational study of 

one-to-all shortest paths algorithms. All of these algorithms have 

been implemented by them and are tested on several sets of randomly 

generated graphs. They are available on the Internet (1). One of these 

algorithms is DIKF, an implementation of Dijkstra's algorithm that 

uses Fibonacci heaps as proposed by Fredman and Tarjan (1987). In the 

implementation of our method we used DIKF for solving phase 1 and 2. 

We denote this implementation of our method by DIJK. 

The results of the study by Cherkassky et al. showed that the 

algorithm called G0R1 was the fastest one in their test set. G0R1 is a 

modification of a topological ordering algorithm designed by Goldberg 

and Radzik (1993). We used this algorithm for comparing the 

performance of our algorithm. For that purpose we also used a variant 

of the Bel Iman—Fo r d-Mo ore algorithm, due to Bellman (1958), Ford 

(1962) and Moore (1959), and denoted as BFP by Cherkassky et al. Both 

G0R1 and BFP have a time bound of 0(nm) , which is almost always worse 

than 0((r + l)(m + n log n)). 

The first tests with our method were very disappointing, since G0R1 

and BFP were much faster in solving the shortest path problems we 

generated. We decided to use a different approach for solving the 

assignment problem in phase 1, and for that purpose we used the cost 

scaling algorithm CSA designed by Goldberg and Kennedy (1995). This 

algorithm has the nice feature that it provides also an optimal dual 

solution to the assignment problem, which we need in phase 2. 

(Actually, CSA returns non-integers Uj. and vj such that 

cij + «£ - vj < £, where e - l/(2n+l). Using an 0(m) algorithm of Dial 

(1969) and Wagner (1976) one obtains an integer dual solution, as 

explained by Goldberg and Tarjan (1990). In all our experiments, 

however, rounding down the values of u^ and vj was sufficient.) We 

used Goldberg and Kennedy 's implementation which is available on the 

Internet (1) , and by SCAL we denote the method that solves shortest 

path problems by using CSA in phase 1 and DIKF in phase 2. 
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DIJK, G0R1 and BFP are strongly polynomial time bounded algorithms, 

SCAL is not. If the interval from which the arc lengths are selected 

grows, SCAL will take more time to solve the problem. 

Three problem types were used for comparing DIJK, SCAL, G0R1 and BFP. 

The first type of problems, Rand-Mix, consists of graphs with both 

positive and negative arc lengths. They were generated by first 

assigning a shortest path from the source to each node, and then 

randomly assigning the other arcs without generating negative cycles. 

The fraction of negative arcs is about 30% and r - n. The second 

type of problems, Frac-Five, is generated in the same way, but r is 

kept at 5 % of n. The third type of problems, Acyc-Neg, consists of 

acyclic graphs with negative arc lengths, and r - n. They were 

generated by using the generator SPACYC, designed by Cherkassky et al. 

The arc lengths for Rand-Mix and Frac-Five problems are selected from 

the interval [-10 000, 10 000], and from the interval [-10 000, 0] for 

Acyc-Neg problems . 

Tables 1, 2 and 3 summarize the results of our experiments, for which 

a HP 9000 series 300/800 computer was used. In each table entry the 

running time in seconds is given above and (in parentheses) the number 

of scan operations per node below (except for SCAL where we applied 

Dijkstra's algorithm only in phase 2 on a graph with nonnegative arc 

lengths, and thus the number of scan operations per node is exactly 

one). The running time is the user CPU time and excludes the input and 

output times. For each problem instance we did three runs and took the 

average over those three runs. The running times of the different runs 

did not fluctuate much. 
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Table 1. Random-mix data. 

nodes/arcs DIJK G0R1 BFP SCAL 

2000 73.18 0.21 0.09 4.90 

40000 (156.5) (4.1) (2.2) 

4000 256.19 0.52 0.23 11.26 

80000 (238.6) (4.4) (2.4) 

8000 1063.80 1.12 0.53 26.48 

160000 (423.5) (4.5) (2.6) 

Table 2. Frac-Five data. 

nodes/arcs DIJK GORl BFP SCAL 

2000 4.43 0.22 0.09 3.00 

40000 (11.8) (4.0) (2.0) 

4000 14.21 0.54 0.23 6.57 

80000 (16.5) (4.4) (2.2) 

8000 50.50 1.34 0.50 14.13 

160000 (25.0) (4.7) (2.2) 
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nodes/arcs DIJK G0R1 BFP SCAL 

2000 56.86 0.13 8.98 5.50 

40000 (120.9) (2.0) (298.4) 

4000 208.58 0.25 36.48 12.08 

80000 (193.0) (2.0) (588.3) 

8000 771.17 0.50 148.26 28.65 

60000 (307.9) (2.0) (1160.1) 

In SCAL almost 95% of the user CPO time was spent In phase 1, in DIJK 

more than 99%, except for the Frac-Five problems where DIJK spent 

around 95% of the user CPU time in phase 1. 

From the tables we see that DIJK performs less well than expected. 

SCAL already is a great improvement compared to DIJK, but is still 

much slower than G0R1. To us the problems of type Random—Mix seem more 

difficult to solve than those of type Acyc-Neg, but BFP performs much 

better on the first two types of problems (even better than GOR1). We 

like to remark that although the number of scan operations per node 

used by DIJK is smaller than those used by BFP in the case of 

Acyc-Neg, DIJK takes much more time to solve the problem. The results 

of tables 1 and 2 indicate that the running times of DIJK are more 

dependent on r than those of SCAN. 

6. Conclusion 

We have described a solution method for the one to all shortest path 

problem in a graph with arbitrary arc lengths which also detects 

negative cycles. This is done in two phases, by transforming the 

problem into a problem with only nonnegative arc lengths, followed by 

applying Dijkstra's method to this new problem. In phase 1 a linear 

assignment problem is solved. If this is done by a shortest augmenting 
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path method, one needs to solve shortest path problems with 

nonnegative arc lengths a moderate number of times. As a consequence 

the efficiency of the algorithm depends in both phases on the 

implementation of Dijkstra's method. Different implementations can be 

applied for dense graphs and for sparse graphs. Therefore the worst 

case complexity of our algorithm is at least as good as the 0(mn) 

worst case complexity of all presently published algorithms, such as 

Bellman - Ford - Moore's algorithm (Ford and Fulkerson, 1962) or its 

improved version by Goldberg and Radzik (Goldberg and Radzik, 1993). 

In spite of this theoretical advantage, our current implementation of 

DIJK is not yet competitive with other algorithms for the shortest 

path problem. Exploitation of the property that (in the ordinary case 

of absence of negative cycles) the optimal solution is known, will 

probably improve the efficiency of DIJK. A substantial improvement of 

running time should be possible if one pays more attention to a 

careful implementation of phase 1. 
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