
55

An algorithm for the solution of shortest path problems with positive

AND NEGATIVE ARC LENGTHS

B. Dorhout X)

M.M.G. Hunting 2)

Abstract:

One of the most successful methods for the one-to-all shortest path

problem in a directed graph is Dijkstra's method. If m is the number

of arcs and n is the number of nodes of the graph there are

implementations with worst case complexity 0(m + n log n) .

Unfortunately this method can only be applied on graphs with

nonnegative arc lengths, or costs, while sometimes, for instance if

traversing some arcs yields income and therefore has negative costs,

an algorithm for one-to-all shortest path problems with arbitrary arc

lengths is needed. In this paper a method is described for graphs with

arbitrary arc lengths. It can be considered as an extension of

Dijkstra's method, using this method in two ways: for the

transformation of the problem into a problem with only nonnegative arc

lengths and for the solution of this new problem. The transformation

is made through the solution of a linear assignment problem. If r is

the number of nodes which are tails of one or more arcs with negative

length, this assignment problem can be solved by applying Dijkstra's

method at most r times on small subproblems. So the worst case

complexity of the problem is 0((r +1) (m + n log n)) if the algorithm

described in this paper is applied. The numerical results suggest that

at the moment other existing methods solve these problems in shorter

computation times.

1)Universiteit Twente
faculteit Toegepaste Wiskunde
postbus 217
7500 AE Enschede
tel. 053-4893447

)idem, tel. 053-4893385

56

1. Introduction

We consider the problem of determining the shortest paths from one

arbitrary node of a digraph, 1 say, to all other nodes. It is assumed

that all arcs have a given length and that these paths exist.

In case the graph does not contain a negative cycle, i.e. a cycle for

which the sum of the arc lengths is negative, the solution of the

problem coincides with the optimal solution to a transshipment

problem, which asks to minimize the sum of the lengths of all paths

used to transport 1 unit of a good from node 1 to each other node. We

solve the original problem by first verifying that G does not contain

negative cycles and subsequently solving the transshipment problem by

reformulating that as a transportation problem in the classical way.

(See, e.g. Wagner (1975)). The basic variables in the optimal solution

of the transshipment problem represent a spanning tree of shortest

paths, rooted at node 1, which is an optimal solution to the original

problem.

If the graph contains a negative cycle the optimal solution to the

transportation problem differs from a solution to the original

problem. In this case the algorithm stops, and no solution is found.

We denote the graph by G = (N,A), where N = (l,...,n), and A is the

set of pairs (i,j), which define the arcs (i,j) of G, with given

lengths Cjj . If Xjj is the number of shortest paths that contain arc

(i,j), the transshipment problem (P) associated to the one to all

shortest path problem is to minimize

X X
1=1 j=2

°ij xij

subiect to
J n

X xik - n - i.
k-2

n n

X xii - X xjk - 1 ’
i=l J k=2 J

xij a °.

j = 2.n.

(i.j) e A.

(1)

(2)

(3)

(4)

Here, for ease of notation, summations over indices only concern pairs

that belong to A. Without loss of generality one may assume that there

are no arcs (i,n), i=l,...,n.

57

We describe how to solve (P) by applying a moderate number of times

Dijkstra's method (Dijkstra, 1959), which is suited only for the

solution of shortest path problems in a graph with nonnegative arc

lengths. In section 2 we transform (P) into a transportation problem

(P')- It is shown that by solving an assignment problem the objective

function of (P') can be changed into an objective function with only

nonnegative cost coefficients. This gives the optimal solution of (P')

if G does not contain negative cycles. In section 3 we describe phase

1 of our method, in which the assignment problem is solved and the

existence of negative cycles is detected. In section 4 we see that in

phase 2, executed only in absence of negative cycles, (P) can be

solved by using Dijkstra's method once. In section 5 we describe some

experimental results. These indicate that, in spite of the good

complexity of our method, other algorithms perform better at this

time.

2. Transformation of the problem

Problem (P) is transformed into a transportation problem (P') in the

following way. As an optimal solution to (P) is associated with a

spanning tree, the number of shortest paths arriving at node j,

j = 2,...,n, can never be greater than n - 1.
n

S° Z xii < n» j =2.n, holds, and redundant constraints
i-1

n

Z xij ^ n» j = 2.n may be added to the formulation of (P) .
i=l

Besides, an optimal solution to (P') is an optimal solution to the

original problem only if the 'smaller than' - signs hold. Then, after

introduction of nonnegative slack variables xi-j , defined as
n JJ

xjj = n - ^ Z xij » with cjj = 0, j = 2,...,n, and subsequent

substitution in (3), (P) is converted into a transportation problem in

the bipartite graph G' - (I,J,B), with I = {1, ... ,n} ,
n

J = {2, ... ,n) , and B = A U (J Thus (P') is:
j=2

58

minimize

(1')

subject to

n
X xn - - n + 1, i*=l,...,n

j-2

(5)

n

xii “ j-2.n (6)

xij ^ (i.j) e B, (7)

where now summations in (5) and (6) are taken over indices associated

with elements of B. These represent arcs (i,j) with i G I and j e J.

This conversion is made in order to apply the well known reduction

property, which says that the optimal solution of a transportation

problem does not change if in the objective function all cL^ are

replaced by c^ - Pi " » where pA and are constants which only

depend on i and j respectively.

Problem (P') is nondegenerate, as it is impossible to express 0 as the

sum of less than all right hand sides of (5) and (6) . Each optimal

solution to (P) coincides with an optimal solution to (P') from which

the xjj-variables, all with positive values, are removed. Only if a

negative cycle exists, there is a difference between the outcomes of

(P) and (P'). In that case (P) does not have an optimal solution, as

(2), (3), (4) allow feasible solutions with arbitrarily low values of

(1), whereas (P') clearly only has solutions with bounded values.

Problem (P) is solved in the following way: In order to determine

whether G contains negative cycles we solve the linear assignment

problem, (P"), in the graph G" = (I',J,B'):

minimize

(8)

59

subject to
n

- I xii “ - 1. i - 2.n,
j-2
n

I xij - 1. j " 2.n,
i-2

(9)

(10)

'ij i 0, (i,j) e B', (11)
where I' = {i| i - 2.n) and B’- {(l,j)|i e I'; j e J, (i,j) e B).

As G" is the subgraph of G', induced by it contains all cycles

of G' , and these are uniquely associated with all cycles in G. So if

the optimal value of the objective function of (P") is negative,

thenG' and so G contains at least one negative cycle, and the

algorithm is stopped. Otherwise we use the optimal solution of the

dual problem (D") of (P"), which is obtained as a by-product of the

algorithm for solving (P"). (D") is the problem to

maximize

n n

- I “j. + I Vj (12)
i-2 j-2

subject to

- U£ + vj < Cij, (i,j) e B'. (13)

We denote the optimal solutions of (P") and (D") by x and (u,v)

respectively. As G does not contain a negative cycle the optimal

solution to (P") is xjj = 1, j = 2, ... ,n, and thus, by complementary

slackness, -uj + vj = cjj = j = 2.n. So, if we define

ui = - min (c^j - vj)» problem (P') may be solved with c^j in (1')

j-i-n
replaced with Cjj = Cjj + u^ - vj • ^ut i-n optimal solution to (P')

the values of x^j for i ^ j are equal to the values of Xjj in the

optimal solution to (P). So the optimal solution to (P) is obtained by

determining the shortest path spanning tree in G, with arc lengths c^j

which are nonnegative, by (13) and the definition of ux. This is done

by Dijkstra's algorithm.

60

3. Phase 1: Solution of an assignment problem

It is possible to solve assignment problem (P") by the algorithm

described in Dorhout (1977). A short description and a FORTRAN

subroutine for this algorithm can also be found in Burkard and Derigs

(1980). It is an improved version of an algorithm published by

Tomizawa (1971). We give a short description of this iterative

algorithm for the present special case.

The idea of the algorithm is to solve subsequently for p = 2, ... , n

the problems (Pp):

X cij xii (14)
(i.j)sBp

subject to
n

- X Xii - - 1. i " 2.P. <15>

j-2
n
X Xji < 1, j - 2,...,n, (16)
i-2

xij & 0, (i.j) e , (17)

where r - {i|i - 2.p), {(i,j)|i e 1^; j e J, (i,j) e B),

and c^^ > 0 for all (i,j) € B'. j p

We call arcs (i,j) with x^j = 1 assigned, and its end nodes i and j

matched. Other nodes are free. With each solution of a problem (Pp)

the number of assignments x-jj = 1 increases with one. Finally the

solution to (Pn) coincides with the optimal solution to (P"). The

optimal solution to (Pp) is derived from the optimal solution to

(Pp_l) by applying Dijkstra's method for finding a shortest

alternating path from node p e Ip to the nearest free node in J. It

consists of alternating forward, not assigned arcs, and backward,

assigned arcs. The optimal solution to (Pp) is obtained by assigning

all forward arcs, and deleting the assignments of the backward arcs in

the shortest path. As arc lengths we use c-jj = c^j + - vj , with

Up = - min (Cpj ” vj)> and all other u^ and vj taken from the optimal

solution to (Dp.^), the dual problem to (Pp-l) ■ So all c^j > 0, and

61

for each i € there is one assigned arc with cy - 0, by

complementary slackness. (Pp) can be solved by setting up - - min cpj,

j-1...n J’
vj - 0, j-1.n, and, if up - - cp^, xpi,. - 1.

The optimal up- and vj- values for (Dp) are easily derived from the

associated optimal values for (Dp.p) and the distance labels.

It is not necessary to solve all n-1 shortest path problems: If

R — {i 6 N\(l)|3 j 6 N, (i,j) 6 A: cpj < 0}, the set of nodes which

are tails of one or more arcs with negative length, and r - |R|, then

only r times applying Dijkstra's algorithm is sufficient. For after

renumbering nodes 2 to n in such a way that the first n-r nodes in I’

are not in R, the n-r first iterations consist of simply assigning

(i.i), i-1.n-r. As the complexity of an efficient implementation

of Dijkstra's method by Fredman and Tarjan (1987) is 0(m + n log n),

with m - |A|, the complexity of phase 1 is 0(r (m + n log n)).

4. Phase 2: A single execution of Dijkstra's procedure

Consider the optimal solutions to (P") and (D"). If the optimal

solution to (D") is up = vp = up = vp, i = 2, ... ,n, then this

solution, supplemented with up - - min (cpj - vj) , is a feasible
j-1-..n

solution to (D'), the dual problem of (P'). Now the complementary

slackness property holds with respect to the optimal solution xpp - 1,

i = 2.n, xpj = 0, (i,j) 6 A, to (P"), and consequently also with

respect to this solution, multiplied by (n-1). This latter solution

satisfies (5) for i — 2, ... ,n. The optimal solution to (P') is found

by sending 1 supplementary unit from node 1 to all n-1 nodes of J

over the arcs of B. This can be done because all forward arcs of A

have infinite capacity and all backward arcs (i,i) have capacity

n-1. But this solution gives the same shortest path spanning tree as

the optimal solution to (P) with all cpj replaced with cpj + up — vj .

After the application of Dijkstra's method in this phase the total

complexity of our problem is 0((r + l)(m + n log n)).

62

5. Computer experiments

Cherkassky et al. (1996) did an extensive computational study of

one-to-all shortest paths algorithms. All of these algorithms have

been implemented by them and are tested on several sets of randomly

generated graphs. They are available on the Internet (1). One of these

algorithms is DIKF, an implementation of Dijkstra's algorithm that

uses Fibonacci heaps as proposed by Fredman and Tarjan (1987). In the

implementation of our method we used DIKF for solving phase 1 and 2.

We denote this implementation of our method by DIJK.

The results of the study by Cherkassky et al. showed that the

algorithm called G0R1 was the fastest one in their test set. G0R1 is a

modification of a topological ordering algorithm designed by Goldberg

and Radzik (1993). We used this algorithm for comparing the

performance of our algorithm. For that purpose we also used a variant

of the Bel Iman—Fo r d-Mo ore algorithm, due to Bellman (1958), Ford

(1962) and Moore (1959), and denoted as BFP by Cherkassky et al. Both

G0R1 and BFP have a time bound of 0(nm) , which is almost always worse

than 0((r + l)(m + n log n)).

The first tests with our method were very disappointing, since G0R1

and BFP were much faster in solving the shortest path problems we

generated. We decided to use a different approach for solving the

assignment problem in phase 1, and for that purpose we used the cost

scaling algorithm CSA designed by Goldberg and Kennedy (1995). This

algorithm has the nice feature that it provides also an optimal dual

solution to the assignment problem, which we need in phase 2.

(Actually, CSA returns non-integers Uj. and vj such that

cij + «£ - vj < £, where e - l/(2n+l). Using an 0(m) algorithm of Dial

(1969) and Wagner (1976) one obtains an integer dual solution, as

explained by Goldberg and Tarjan (1990). In all our experiments,

however, rounding down the values of u^ and vj was sufficient.) We

used Goldberg and Kennedy 's implementation which is available on the

Internet (1) , and by SCAL we denote the method that solves shortest

path problems by using CSA in phase 1 and DIKF in phase 2.

63

DIJK, G0R1 and BFP are strongly polynomial time bounded algorithms,

SCAL is not. If the interval from which the arc lengths are selected

grows, SCAL will take more time to solve the problem.

Three problem types were used for comparing DIJK, SCAL, G0R1 and BFP.

The first type of problems, Rand-Mix, consists of graphs with both

positive and negative arc lengths. They were generated by first

assigning a shortest path from the source to each node, and then

randomly assigning the other arcs without generating negative cycles.

The fraction of negative arcs is about 30% and r - n. The second

type of problems, Frac-Five, is generated in the same way, but r is

kept at 5 % of n. The third type of problems, Acyc-Neg, consists of

acyclic graphs with negative arc lengths, and r - n. They were

generated by using the generator SPACYC, designed by Cherkassky et al.

The arc lengths for Rand-Mix and Frac-Five problems are selected from

the interval [-10 000, 10 000], and from the interval [-10 000, 0] for

Acyc-Neg problems .

Tables 1, 2 and 3 summarize the results of our experiments, for which

a HP 9000 series 300/800 computer was used. In each table entry the

running time in seconds is given above and (in parentheses) the number

of scan operations per node below (except for SCAL where we applied

Dijkstra's algorithm only in phase 2 on a graph with nonnegative arc

lengths, and thus the number of scan operations per node is exactly

one). The running time is the user CPU time and excludes the input and

output times. For each problem instance we did three runs and took the

average over those three runs. The running times of the different runs

did not fluctuate much.

64

Table 1. Random-mix data.

nodes/arcs DIJK G0R1 BFP SCAL

2000 73.18 0.21 0.09 4.90

40000 (156.5) (4.1) (2.2)

4000 256.19 0.52 0.23 11.26

80000 (238.6) (4.4) (2.4)

8000 1063.80 1.12 0.53 26.48

160000 (423.5) (4.5) (2.6)

Table 2. Frac-Five data.

nodes/arcs DIJK GORl BFP SCAL

2000 4.43 0.22 0.09 3.00

40000 (11.8) (4.0) (2.0)

4000 14.21 0.54 0.23 6.57

80000 (16.5) (4.4) (2.2)

8000 50.50 1.34 0.50 14.13

160000 (25.0) (4.7) (2.2)

Table 3. Acyc-Neg data.

65

nodes/arcs DIJK G0R1 BFP SCAL

2000 56.86 0.13 8.98 5.50

40000 (120.9) (2.0) (298.4)

4000 208.58 0.25 36.48 12.08

80000 (193.0) (2.0) (588.3)

8000 771.17 0.50 148.26 28.65

60000 (307.9) (2.0) (1160.1)

In SCAL almost 95% of the user CPO time was spent In phase 1, in DIJK

more than 99%, except for the Frac-Five problems where DIJK spent

around 95% of the user CPU time in phase 1.

From the tables we see that DIJK performs less well than expected.

SCAL already is a great improvement compared to DIJK, but is still

much slower than G0R1. To us the problems of type Random—Mix seem more

difficult to solve than those of type Acyc-Neg, but BFP performs much

better on the first two types of problems (even better than GOR1). We

like to remark that although the number of scan operations per node

used by DIJK is smaller than those used by BFP in the case of

Acyc-Neg, DIJK takes much more time to solve the problem. The results

of tables 1 and 2 indicate that the running times of DIJK are more

dependent on r than those of SCAN.

6. Conclusion

We have described a solution method for the one to all shortest path

problem in a graph with arbitrary arc lengths which also detects

negative cycles. This is done in two phases, by transforming the

problem into a problem with only nonnegative arc lengths, followed by

applying Dijkstra's method to this new problem. In phase 1 a linear

assignment problem is solved. If this is done by a shortest augmenting

66

path method, one needs to solve shortest path problems with

nonnegative arc lengths a moderate number of times. As a consequence

the efficiency of the algorithm depends in both phases on the

implementation of Dijkstra's method. Different implementations can be

applied for dense graphs and for sparse graphs. Therefore the worst

case complexity of our algorithm is at least as good as the 0(mn)

worst case complexity of all presently published algorithms, such as

Bellman - Ford - Moore's algorithm (Ford and Fulkerson, 1962) or its

improved version by Goldberg and Radzik (Goldberg and Radzik, 1993).

In spite of this theoretical advantage, our current implementation of

DIJK is not yet competitive with other algorithms for the shortest

path problem. Exploitation of the property that (in the ordinary case

of absence of negative cycles) the optimal solution is known, will

probably improve the efficiency of DIJK. A substantial improvement of

running time should be possible if one pays more attention to a

careful implementation of phase 1.

References:

R.E. Bellman (1958), "On a routing problem", Quart. Appl. Math. 16,

p. 87 - 90.

R.E. Burkard and U. Derigs (1980), "Assignment and Matching Problems:

Solution Methods with FORTRAN-Programs", Springer, Berlin.

B.V. Cherkassky, A.V. Goldberg and T. Radzik (1996), "Shortest paths

algorithms: Theory and experimental evaluation", Math. Programming

73, p. 129 - 174.

R.B. Dial (1969), "Algorithm 360: Shortest path forest with topological

ordering", Comm. ACM 12, p. 632 - 633.

E.W. Dijkstra (1959), "A note on two problems in connection with

graphs", Numerische Mathematik 1, p. 269 - 271.

B. Dorhout (1977), "Experiments with some algorithms for the linear

assignment problem", Report BW 39, Stichting Mathematisch Centrum,

Amsterdam.

L. R. Ford Jr. and D.R. Fulkerson (1962), "Flows in Networks",

Princeton Univ. Press, Princeton, NJ.

M. L. Fredman and R.E. Tarjan (1987), "Fibonacci heaps and their uses

67

in improved network optimization algorithms", J. ACM 34,

p. 596 - 615.

A.V. Goldberg and R. Kennedy (1995), "An efficient cost scaling

algorithm for the assignment problem", Math. Programming 71,

p. 153 - 177.

A.V. Goldberg and T. Radzik (1993), "A heuristic improvement of

the Bellman - Ford algorithm", Applied Math. Let. 6, p. 3-6.

A.V. Goldberg and R.E. Tarjan (1990), "Finding minimum-cost

circulationsby successive approximation", Math. Op. Res. 15,

p. 430 - 466.

E.F. Moore (1959), "The shortest path through a maze", in:

Proceedings of the Int. Symp. on the Theory of Switching,

Harvard University Press, p. 285 - 292.

N. Tomizawa (1971), "On Some Techniques Useful for Solution of

Transportation Network Problems", Networks 1, p. 173 - 194.

H.M. Wagner (1975), "Principles of Operations Research", 2nd edition,

Prentice-Hall, Englewood Cliffs.

R.A. Wagner (1976), "A shortest path algorithm for edge-sparse graphs",

J. ACM 23, p. 50 - 57.

(1) ftp.bilkent.edu.tr at /pub/IEOR/Opt/goldberg directory.

Ontvangen: 25-11-1996
Geaccepteerd: 24-12-1997

