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Abstract 

This paper investigates the use of two cumulative sum charts in the 
setup-phase. It is assumed that under in-control conditions the quality 
characteristics have a normal probability distribution with unknown loca¬ 
tion parameter. 

The traditional cumulative sum depends on the unknown parameter, 
and hence can not be used. Replacing the unknown parameter by its 
estimator yields the estimated cumulative sum, but the replacement clearly 
affects the in-control behaviour. To overcome this problem, the innovation 
cumulative sum is proposed. 

The innovation cumulative sum performs at least as good as the esti¬ 
mated cumulative sum under linear trend out-of-control conditions, and 
clearly performs better for sudden shift out-of-control conditions with a 
sudden shift occurring in the first 70 percent of the sample. 

Finally, the definition of the innovation cumulative sum is extended to 
in-control conditions under which quality characteristics have a non-normal 
distribution. 

Keywords Statistical Process Control; Estimation; Innovation approach. 
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1 Introduction 

Control charts, first developed by Walter A. Shewhart at Bell Telephone Lab¬ 
oratories [see Shewhart (1931)], have become fundamental tools for detecting, 
diagnosing and correcting industrial production problems [see Ishikawa (1982)]. 

In paragraph 5.1.3 in Wetherill and Brown (1991) the use of control charts 
is divided into two phases: the set-up phase and the operational phase. In the 
operational phase, the production process is already in control, and the objective 
is to keep it in control. Usually, extensive process knowledge and specific process 
requirements are available, leading to simple in-control conditions: in-control 
conditions which completely specify the distribution of the quality characteristics. 

In the set-up phase the production process is not in control, and the objective 
is to bring it in control. Typically, process knowledge and requirements are still 
being developed, leading to composite in-control conditions: in-control conditions 
which only partially specify the distribution of the quality characteristics; that is, 
some parameters of the distribution of the quality characteristics remain unknown 
[the dichotomy “simple” or “composite” in this paper is borrowed from statistical 
test theory, and is non-standard in statistical process control] . 

Although developed for simple in-control conditions, Shewhart control charts 
are easily modified to accomodate composite in-control conditions as well. The 
only modification needed is to replace the unknown parameters by estimators. 
The effects of this modification are limited, and tend to disappear as the sample 
size grows large. 

Cumulative sum charts, originally proposed in Page (1954) [see also Dobben 
de Bruyn (1968)], are more effective than Shewhart control charts in detecting 
small departures from in-control conditions. Unfortunately, their straightforward 
adaptation to composite in-control conditions can be hazardous. In this paper 
we give some examples in which the replacement of unknown parameters by 
estimators drastically changes the in-control behaviour of the cumulative sum 
chart, and propose an adaptation of the cumulative sum chart which is based on 
the so-called innovation parts of the quality characteristics rather than on the 
quality characteristics themselves. The behaviour of the innovation cumulative 
sum chart under composite in-control conditions resembles the behaviour of the 
traditional cumulative sum chart under simple in-control conditions. 

The outline of the paper is as follows. In section 2 we develop the innovation 
cumulative sum for in-control conditions under which the quality characteristics 
are independent random variables having a normal distribution with unknown 
expectation 9 and variance 1. In section 3 the out-of-control behaviour of this 
innovation cumulative sum is investigated, and compared to the estimated cu¬ 
mulative sum [the straightforward adaptation of the traditional cumulative sum 
obtained by replacing 8 by the sample mean]; the innovation cumulative sum 
performs at least as good as the estimated cumulative sum under linear trend 
out-of-control conditions, and clearly performs better for sudden shift out-of- 
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control conditions with a sudden shift occurring in the first 70 percent of the 
sample. In appendix A an extended definition of the innovation cumulative sum 
is presented, which also applies to non-normal distributions. 

2 In-control conditions 

Consider random variables Xlt X2,..., Xn, which under in-control conditions are 
independent and normally distributed with expectation 0 and variance 1. If 9 is 
known [equal to 9C, say], then the in-control conditions are called simple, and we 
are able to use the traditional cumulative sum 

Cj = t. (*■ - 9c) ■ 
1=1 

The decision whether the cumulative sum is out-of-control at time j is often taken 
with the aid of a V-mask [see Figure 1], The cumulative sum is out-of-control at 
time j if one or more of the earlier values Ci,..., C,_i fall outside the V-mask 
with origin Cj. In Lucas (1982) an equivalent control chart is proposed, which 
employs control lines rather than a V-mask. Although the equivalent control 
chart has certainly practical advantages, we prefer to use the original V-mask 
cumulative sum procedure for ease of exposition. 

Figure 1: The V-mask V/^ consists of two backwards pointing arms with slopes 
—/ and / attached to a vertical line of length 2h\ the midpoint of the vertical 
line is the origin of this mask. 

If 0 remains unknown, then the in-control conditions are called composite. 
Obviously, the traditional cumulative sum can be adapted by replacing 0 by the 



8 

sample mean Xn = n 1 £)"=1 Xj, which yields the estimated cumulative sum 

Cj = i (X, - xn). 
t=l 

Note that the use of the sample mean to estimate 6 implies that the estimated 
cumulative sum can only be applied to past data. 

Unfortunately, the replacement of 9 by the sample mean changes the be¬ 
haviour of the cumulative sum drastically. This is most easily seen by comparing 
C„ to Cn. Under in-control conditions Cn is a random variable with expectation 
zero and variance n, whereas Cn is degenerate in zero [that is, takes the value 
zero with probability 1], 

Figure 2: Traditional and estimated cumulative sum for a sample of size 100 from 
the standard normal distribution. 

Figure 2 gives a further demonstration of the change in behaviour. In this 
figure the traditional cumulative sum Cj [with 9C = 0] and the estimated cumu¬ 
lative sum Cj are plotted versus j. Both cumulative sums are based on the same 
random sample Xi,X2,..., X10o from the standard normal distribution. Observe 
that the estimated cumulative sum returns to zero eventually, whereas the tradi¬ 
tional cumulative sum does not. In Bissel (1994) a similar figure is found on p. 
198, but the issue of the change in behaviour is not addressed. 

The effects of estimation do not vanish as n increases. Mathematically, the 
change in behaviour has the following asymptotic consequence. Let [nt] denote 
the largest integer not exceeding nt. Then the stochastic proces (n 1/,2C[nijJ ^ , 
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converges weakly to a standard Wiener process under simple in-control condi¬ 
tions, whereas the stochastic process (ji 1 ^ c:onverges weakly to a 

standard Brownian bridge under composite in-control conditions [the process 

(_n_1/2C'[n‘l)(e[0 ,| is called a standardized time series in Schruben (1982, 1983)]. 

The source of this problem is that knowledge of X„ and A'i, X2,yields 
information about the random variable A,-, since nXn — ^5=] Xj = A- and 
A'; are not independent. 

A similar problem occurs in the field of goodness of fit. The empirical pro¬ 
cess, the rescaled difference between the empirical distribution function and the 
cumulative distribution function, is often used for investigating a simple null hy¬ 
pothesis. A straightforward application of the empirical process for investigating 
a composite null hypothesis involves replacing the unknown parameter in the 
cumulative distribution function by an estimator. Unfortunately, the replace¬ 
ment changes the behaviour of the empirical process and makes its distribution 
intractable [see Durbin (1973)]. This problem can be avoided by using the inno¬ 
vation approach proposed in Khmaladze (1981) [see also Khmaladze (1993), and 
paragraph VI.3.3.4 in Andersen et al (1993)], in which a goodness of fit process 
is transformed by subtracting the conditional expectation given the combination 
of its past and the value taken by the estimator. The innovation cumulative sum 
proposed in this paper is obtained by applying the innovation approach to the 
traditional cumulative sum. 

At time instance i the random variable Xj summarizes the relevant infor¬ 
mation contained in the past Aj,..., At_, and the estimator A„. To describe the 
dependence between A; and £"=i Xj under in-control conditions, we introduce 
the random variable 

Xt A, - 
1 

n — i+\ £AV 

Observe that 

A, = A, - 
covar (A„ E"=i X3) 

var (E"=1 X,] Z-W.-5 A,:|£A- 
j=i 

hence A, is in fact the residual obtained by regressing A; on Xj. It follows 

that A", and £"=j Xj are uncorrelated, and hence independent [this in turn implies 
that A, and An are independent]. 

Furthermore, observe that A, can be written as the sum of A,- and (n - t + 
ir1 T,j=,Xj. This representation decomposes A, in a part which is independent 
°f E"=i Aj and a part which is completely determined by >^' , A,. 

Finally, observe that 

cov (A,, At) 
n — i 

n — i + \ 
0 

if i = k, 

ifijtk. 
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Hence, the random variables 

are independent and standard normal. Basing a traditional cumulative sum on 
these random variables yields the innovation cumulative sum 

Figure 3: Estimated and innovation cumulative sum for a sample of size 100 from 
the standard normal distribution. 

Figure 3 plots the estimated cumulative sum Cj and the innovation cumulative 
sum versus j. Both cumulative sums are based on the same random sample 
Xi,X2,..., A'ioo from the standard normal distribution. 

Initially, the difference between the estimated and the innovation cumulative 
sum is only slight. However, as the ultimate return to zero of the estimated 
cumulative sum comes closer, the different behaviour of the innovation cumulative 
sum starts to materialize. 

Mathematically, the stochastic process ^ converges weakly to 
a standard Wiener process under composite in-control conditions._ 

Observe that the availability of the random variables Xi^J(n - i + l)/(n — i) 
opens up the possibility of implementing an equivalent control chart along the 



Table 1: Number of out-of-control simulations [out of 10,000] under in-control 
conditions. 

lines of Lucas (1982). We may even add the fast initial response feature proposed 
in Lucas and Crosier (1982). 

To investigate the behaviour of the estimated [estim] and the innovation 
cumulative sum [innov.], we simulated 10,000 random samples of size 1000 from 
the standard normal distribution using S-Plus [see section 5.2 in Venables and 
Ripley (1994)]. To assess the effects of estimating 0, we also included the tra¬ 
ditional cumulative sum [trad.] with 0C = 0 in the simulations [recall that the 
traditional cumulative sum is not applicable if 0 is not known; among all posible 
values of 8C, this particular value yields a traditional cumulative sum which has 
under in-control conditions behaviour least different from the behaviour of the 
estimated cumulative sum]. 

Table 1 reports for relevant values of h the number of simulations in which 
the V-mask V0,^h yielded an out-of-control signal [since the availability of the 
full sample estimator Xn implies that we are dealing with past data, the usual 
evaluation of the behaviour of the cumulative sums by means of the average run 
length is not appropriate]. The upper one-sided versions consider exceedance 
of the lower part of the V-mask only [see Lucas (1981)). Likewise, the lower 
one-sided versions only consider exceedance of the upper part of the V-mask. 

The numbers of out-of-control signals for the two-sided estimated cumulative 
sum are slightly less than the numbers of out-of-control signals for cither the 
two-sided traditional or the two-sided innovation cumulative sum. This can be 
explained from the fact that the Brownian bridge is in a global sense flatter than 
the Wiener process. However, the flatness of the Brownian bridge shows up only 
marginally. Since the Brownian bridge and Wiener process have comparable local 
behaviour [that is, the same modulus of continuity, see section 14.1 in Shorack 
and Wellner (1986)], this suggests that the out-of-control signals detected by the 
V-mask procedure are mainly triggered by local fluctuations. 

In section 3 some simulation results under out-of-control conditions are pre- 
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sented. A proper interpretation of these results should take into account the 
slightly different performance of the estimated cumulative sum under in-control 
conditions. 

3 Out-of-control conditions 

In this section we investigate the behaviour of the estimated and innovation cu¬ 
mulative sums under out-of-control conditions under which the random variables 
A'i, . .., Xn are still independent and normally distributed with variance 1, but 
do not have a common expectation 9 anymore. Denote the expectation of Xi by 
/<j, and introduce 

Zi — Xi — /it, Zi — Zi — 
1 

71 + t — 1 EZ7- 

Since we may write 

cj = ±(zi-zn)+±fl, 
i=l i=l 

with 
n 

P. = W - 7l-1 H- 

J=1 
it follows that the estimated cumulative sum based on the random variables 
A'i, ..., Xn can be in fact decomposed into a estimated cumulative sum based on 
independent standard normal random variables Zx,... ,Zn and a deterministic 
drift n=i Ai- Likewise, since we may write 

n — i + 1 

with 
1 

77, + l — 1 

it follows that the innovation cumulative sum based on the random variables 
Xi,, Xn can be in fact decomposed into a innovation cumulative sum based 
on independent standard normal random variables Z\,...,Zn and a deterministic 
drift ELi fa¬ 

in the remainder of this section we discuss two important types of out-of¬ 
control conditions in detail. Both levels have in common that fa and fa are 
respectively approximated by S(i/n) and 6(i/n) for large n. It follows that the 
deterministic drifts Ei=i fa and lEi & are *n turn approximated by nA(j/n) 
and nA(j/n) respectively, where 

A(f) = [ S(s)ds and A(f) = [ S(s)ds. 
Jo Jo 
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In this case the magnitude of the deterministic drifts is of the order n, whereas the 
magnitude of random fluctuations of the cumulative sums based on Z1:_Zn 
is only of the order ^/n. Since the random fluctuations become neglegible with 
respect to the deterministic drifts as n increases, plots of A(t) and A(t) versus t 
give an impression of the patterns showing up in graphical displays of the esti¬ 
mated and innovation cumulative sums under various out-of-control conditions. 
Let us for simplicity ignore the random fluctuations for a moment: then a V- 
mask Vf,h placed at C, or C, essentially corresponds to a V-mask placed 
at Mj/n) or A(j/n). We infer that V-masks are more likely to detect patterns 
with sustained steep increases or decreases. 

Figure 4: Plot of A(<) and A(f) versus t for linear trend out-of-control conditions 
with Of — 6,. = 1. 

A linear trend out-of-control conditions Under the first type of out-of- 
control conditions the parameter of the quality characteristic distribution changes 
linearly from 0/ to 8r: 

/fj — + (Or ~~ 8() — 
n 

[see also Bissel (1984, 1986)]. One may show that for large n we have fij & S( j/n) 
and fj,j si where 

m = 
0, - 8r 

(1 — 2t), and S(t) Ot-0r 
(1-t). 2 2 
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Figure 4 plots A(t) and A(t) versus < for — #r = 1. The slope of A(f) decreases 
from 0.5 to -0.5, and hence the highest absolute slopes are found at both ends 
of the interval [0,1], The slope of A(t) decreases from 0.5 to 0; although the 
highest absolute slopes are found only at the beginning of the interval, this is 
compensated by a smaller decay of absolute slope. Thus, figure 4 does not suggest 
a clear advantage of one cumulative sum over the other. 

Table 2: Number of out-of-control simulations [out of 10,000] under the linear 
trend out-of-control conditions with 8t = 0.5 and 8r = —0.5. 

To investigate the behaviour of the estimated and innovation cumulative sums 
under linear trend out-of-control conditions, we used the samples simulated in 
section 2 to construct 10,000 random samples of size 1000 obeying linear trend 
out-of-control conditions with Qe - 0r = 1. To assess the effects of estimating 
8, we also included the traditional cumulative sum with f)c = (8i + Qr) /2 in the 
simulations [recall that the traditional cumulative sum is not applicable if 8 is not 
known; among all posible values of 8C, this particular value yields a traditional 
cumulative sum which has under linear trend conditions behaviour least different 
from the behaviour of the estimated cumulative sum]. 

Table 2 reports for relevant values of h the number of simulations in which 
the V-mask Ki.s./i yielded an out of control signal. Although not decidedly better, 
the two-sided innovation cumulative sum seems to perform at least as well as the 
two-sided estimated cumulative sum. Observe that virtually all out-of-control 
signals of the two-sided innovation cumulative sum are in fact generated by the 
upper version; that is, by the lower arm of the V-mask. 

Sudden shift out-of-control conditions Under the second type of out-of- 
control conditions the parameter of the quality characteristic distribution jumps 
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t igure 5: Plot, of Aft) and A(f) versus t for sudden shift out-of-control conditions 
with p = 0.4 and 0, - ()r = 0.5. 

suddenly from 9e to 0T after [np] observations: 

( 0t if i = 1,..., \np], 
lh = 

[ f)r if j = [np\ + 1,..., n 

[see also Page (1957)]. If the relative position p of the jump remains fixed, then 
one may show that for large n we have fi, « S(j/n) and fij ss S(j/n), where 

m 
(l-p)(9e-9r) if t<p, 

and S(t) = 
p(9r ~ Or.) if t > p, 

~(de~9r) if t < p, 

0 if f > p. 

Figure 5, which plots A(t) and A(f) versus t for p = 0.4 and 9t - 9r = 0.5, 
illustrates that A(t) reaches its steepest slope 9? — 9r just before p. The slope of 
A(t) is either (1 — p)(9? — 0r) or p(0r — 0e), and thus less steep. This indicates that 
for sufficiently large n the innovation cumulative sums should perform better than 
the estimated cumulative sum in detecting sudden shifts. Moreover, the better 
performance is especially expected to materialize for values of p in the vicinity of 
0.5; that is, for sudden shifts occurring somewhere near the middle of sample. 

To investigate the behaviour of the estimated and innovation cumulative sums 
under sudden shift out-of-control conditions, we performed simulation studies for 
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nine different values of p. To assess the effects of estimating 0, we also included 
the traditional cumulative sum with 

0c = er-M (<?,. _ ee) 
n 

in the simulations [recall that the traditional cumulative sum is not applicable 
if 8 is not known; among all posible values of 8C1 this particular value yields a 
traditional cumulative sum which has under sudden shift conditions behaviour 
least different from the behaviour of the estimated cumulative sum]. 

In each simulation study the samples simulated in section 2 were used to 
construct 10,000 random samples of size 1000 obeying sudden shift out-of-control 
conditions with 9/ — 8r = 0.5. Tables 3-11 report for relevant values of h the 
number of simulations in which the V-mask Vq.s.j, yielded an out-of-control signal. 

4 
5 
6 
7 
8 
9 

10 

trad. 
9964 
9536 
8442 
7169 
5909 
4752 
3783 

upper 
estirn. 

9976 
9607 
8531 
7252 
5916 
4731 
3737 

innov. trad. 
9986 
9759 
8963 
7850 
6708 
5617 
4618 

9762 
7686 
4474 
2113 

980 
404 
164 

lower two-sided 
estim. innov. trad, estim. innov. 

9818 
7768 
4427 
2030 

898 
357 
144 

9289 
6136 
2899 
1196 
482 
181 

56 

9999 
9893 
9127 
7791 
6327 
4957 
3887 

9999 
9892 
9115 
7747 
6258 
4907 
3833 

9999 
9915 
9271 
8118 
6876 
5705 
4655 

Table 3: Number of out-of-control simulations [out of 10,000] under sudden shift 
out-of-control conditions with 9f = 0.5(1 — p), 9r = -0.5p and p = 0.1. 

6 
7 
8 
9 

10 

trad. 
9985 
9834 
9269 
8239 
6997 
5824 
4691 

upper 
estim. 

9996 
9857 
9399 
8355 
7119 
5882 
4666 

innov. 
10000 
9967 
9762 
9253 
8432 
7574 
6643 

trad. 
9892 
8589 
5741 
3155 
1603 
774 
353 

lower 
estim. 

9936 
8685 
5720 
3040 
1501 

703 
306 

two-sided 
trad, estim. innov. innov. 

9036 
5667 
2620 
1068 
439 
161 

51 

10000 
9974 
9673 
8787 
7461 
6146 
4887 

10000 
9966 
9701 
8784 
7480 
6133 
4813 

10000 
9985 
9827 
9338 
8498 
7618 
6658 

Table 4: Number of out-of-control simulations [out of 10,000] under sudden shift 
out-of-control conditions with 9/ = 0.5(1 — p), 9r = —0.5p and p = 0.2. 
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trad. 
upper 

estim. trad. 
lower 

estim. innov. 
two-sided 

trad, estim. innov. 
9995 
9903 
9327 
8199 
6855 
5480 
4200 

9997 
9923 
9457 
8355 
6934 
5471 
4124 

10000 
9993 
9909 
9605 
9003 
8204 
7206 

9962 
9214 
7017 
4396 
2504 
1400 
683 

9975 8780 
9349 5218 
7050 2356 
4332 929 
2373 375 
1219 135 
636 42 

10000 10000 10000 
9990 9991 9998 
9800 9790 9936 
8971 8951 9649 
7640 7539 9040 
6131 5947 8235 
4607 4472 7224 

Table 5: Number of out-of-control simulations [out of 10,000] under sudden shift 
out-of-control conditions with Of = 0.5(1 - p), 9r = -0.5p and p = 0.3. 

upper 
trad, estim. trad. 

lower 
estim. innov. 

two-sided 
trad, estim. innov. 

9996 9997 
9837 9895 
9081 9222 
7719 7838 
6079 6056 
4469 4409 
3160 3078 

10000 
9996 
9929 
9659 
9107 
8224 
7208 

9984 
9573 
7997 
5700 
3676 
2217 
1284 

9990 
9642 
8106 
5698 
3550 
2091 
1134 

8378 
4706 
2038 

797 
310 
110 
34 

10000 10000 10000 
9990 9990 9997 
9831 9799 9944 
9042 8931 9689 
7530 7280 9131 
5700 5427 8243 
4048 3805 7221 

Table 6: Number of out-of-control simulations [out of 10,000] under sudden shift 
out-of-control conditions with 0e = 0.5(1 — p), 8r = —0.5p and p = 0.4. 

Table 7: Number of out-of-control simulations [out of 10,000] under sudden shift 
out-of-control conditions with 0, = 0.5(1 -p),0r = -0.5p and p = 0.5. 



18 

4 
5 
C 
7 
8 
9 

10 

trad. 
998G 
9521 
7950 
5705 
3661 
2185 
1253 

upper 
estim. 

9993 
9626 
8058 
5678 
3540 
2056 
1122 

innov. trad. 
10000 
9992 
9895 
9455 
8603 
7495 
6324 

9999 
9849 
9167 
7768 
6098 
4525 
3201 

lower two-sided 
estim. innov. trad, estim. innov. 
10000 
9889 
9265 
7864 
6116 
4438 
3077 

7518 
3707 
1488 
557 
218 

76 
25 

10000 
9994 
9802 
9023 
7487 
5715 
4049 

10000 
9991 
9787 
8930 
7298 
5453 
3808 

10000 
9997 
9918 
9489 
8627 
7509 
6330 

Table 8: Number of out-of-control simulations [out of 10.000] under sudden shift 
out-of-control conditions with 0f = 0.5(1 — p), 8r = —O.op and p = 0.6. 

4 
5 
6 
7 
8 
9 

10 

trad. 
9940 
9154 
6965 
4408 
2518 
1308 
623 

upper 
estim. 

9966 
9299 
7052 
4309 
2397 
1190 

552 

innov. trad. 
10000 
9979 
9786 
9118 
8046 
6629 
5320 

9993 
9899 
9340 
8189 
6747 
5327 
4122 

lower two-sided 
estim. innov. trad, estim. innov. 

9994 
9910 
9440 
8320 
6848 
5308 
4045 

7113 
3261 
1262 
448 
164 
62 
19 

10000 
9986 
9769 
8980 
7547 
5917 
4475 

10000 
9983 
9778 
8951 
7509 
5770 
4325 

10000 
9984 
9810 
9159 
8079 
6653 
5328 

Table 9: Number of out-of-control simulations [out of 10,000] under sudden shift 
out-of-control conditions with Qt = 0.5(1 — p), dT = —0.5p and p = 0.7. 

Table 10: Number of out-of-control simulations [out of 10,000] under sudden shift 
out-of-control conditions with &/> = 0.5(1 — p), dr = —0.5p and p = 0.8. 
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Tabic 11: Number of out-of-control simulations [out of 10,000] under sudden shift 
out-of-control conditions with 8t = 0.5(1 — p), 8r — —0.5p and p = 0.9. 

For the two-sided estimated cumulative sum the number of out-of-control 
simulations shows a symmetric picture: it reaches a maximum both before and 
after p = 0.5, and at p = 0.5 a local minimum; the locations of the maxima 
divert from p = 0.5 as h increases. For the two-sided innovation cumulative 
sum the number of out of control simulations shows a less symmetric picture: it 
increases until a maximum is reached somewhere between p = 0.3 and p = 0.4, 
and then steadily decreases. For p < 0.7 the innovation cumulative sum clearly 
performs better, for p > 0.8 the estimated cumulative sum. Sensitivity to early 
jumps is in some applications an especially attractive property, for instance in 
detecting initialization bias in simulation output [see Schruben (1982)]. If instead 
sensitivity to late jumps is required, then one may consider reverting the time- 
scale [which is possible since we are dealing with past data]. 

References 

[1] Andersen, P.K., Borgan, 0., Gill, R.D., Keiding, N. (1993). Statistical Models 
Based on Counting Processes. Springer-Verlag, Berlin. 

[2] Bissell, A.F. (1984). The performance of control charts and cusums under 
linear trend. Applied Statistics 33, 145-151. 

[3] Bissell, A.F. (1986). "Corrigendum” (to Bissell, 1984). Applied Statistics 35, 
214. 

[4] Bissell, A.F. (1994). Statistical Methods for SPC and TQM. Texts in Statis¬ 
tical Science. Chapman and Hall, London. 

[5] Dobben de Bruyn, C.S. (1968). Cumulative Sum Tests: Th eory and Practice. 
Griffin’s Statistical Monographs and Courses 24. Hafner, New York. 



20 

[6] Durbin, J. (1973). Distribution Theory for Tests based on the Sample Dis¬ 
tribution Function. SIAM, Philadelphia. 

[7] Ishikawa, K. (1982). Guide to Quality Control. Asian Productivity Organi¬ 
zation, Tokyo. 

[8] Khmaladze, E.V. (1981). Martingale approach in the theory of goodness of 
fit tests. Theory Probab. Appl. 26. 246-265. 

[9] Khmaladze, E.V. (1993). Goodness of fit problems and scanning innovation 
martingales. Ann. Statist. 21, 798-829. 

[10] Lucas, J.M. (1982). Combined Shewhart-CUSUM quality control schemes. 
Journal of Quality Technology 14. 51-59. 

[11] Lucas. J.M., Crosier, R.B. (1982). Fast initial response for CUSUM quality 
control schemes: Give your CUSUM a head start. Technometnc.s 24, 199- 
205. 

[12] Page, E.S. (1954). Continuous inspection schemes. Biom,etrika 41, 100-115. 

[13] Page, E.S. (1957). On problems in which a change in a parameter occurs at 
an unknown point. Biometrika 44, 248-252. 

[14] Schruben, L.W. (1982). Detecting initialization bias in simulation output. 
Oper. Res. 30, 569-590. 

[15] Schruben, L.W. (1983). Confidence interval estimation using standardized 
time series. Oper. Res. 31, 1090-1108. 

[16] Shewhart, W.A. (1931). Economic Control of Quality Manufactured Product. 
Van Nostrand, New York. 

[17] Shorack. G.R., Wellner, J.A. (1986). Empirical Processes with Applications 
to Statistics. Wiley, New York. 

[18] Venables, W.N., Ripley, B.D. (1994). Modern Applied Statistics with S-Plus. 
Springer-Verlag, New York. 

[19] Wetherill, G.B, Brown, D.W. (1991). Statistical Process Control. Theory and 
practice. Chapman and Hall, London. 



21 

A Extension to general distributions 

In this section we extend the normal distribution theory of the previous section 
to general distributions. Consider random variables Xi, X2,..., Xn, which under 
in-control conditions are independent and have common continuous probability 
density function fn[x), where 0 is one-dimensional. Assume that fo(x) satisfies 
certain regularity conditions guaranteeing consistency and asymptotic normality 
of the maximum likelihood estimators [for instance, conditions (Rl), (R2) and 
(R3) in paragraph 4.2.2 of Serfling (1980)]. 

If 0 is known [equal to 8C, say], then we are able to generalize the traditional 
cumulative sum given by 

C, = EM*,), 
1=1 

where pg(t) is the classical score function, defined by 

Po(t) = log/fl(f). 

This generalization of the traditional cumulative sum is inspired by Johnson 
(1961), in which the connection between the sequential probability ratio test and 
cumulative sum charts is observed. 

Martingale theory implies that the stochastic proces con- 
' '£€[0,1] 

verges weakly to a standard Wiener process under simple in-control conditions. 
If 8 is unknown, the maximum likelihood estimator 8n of 8 is found by solving 

the maximum likelihood equation 

log/opf,) = 0. (1) 

Replacing the unknown parameter value 8C in the traditional cumulative sum by 
the maximum likelihood estimator 8n yields the estimated cumulative sum 

d_ 

dd 

Cj = L/WA) 
i=l 

J’he replacement of 8C by the maximum likelihood estimator 8n changes the be¬ 
haviour of the cumulative sum in a similar way as we have seen before, since the 
maximum likelihood equations imply that Cn is degenerate in zero. 

Mathematically, the stochastic process («-1/2C'[nt]) , converges weakly to 

a standard Brownian bridge under composite in-control conditions. 
Again, the source of the difference in behaviour of the traditional and the 

estimated cumulative sum is that knowledge of 0" and X,, A'2,..., A',_, yields 
information about the random variable Xr 
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To make this more explicit, introduce the random variables 

v; = £1/2 {e - £-%(*,)), 

where 

is the Fisher information. Observe that ■ ,Yn are independent random 
variables. Standard likelihood theory implies that each of these random variables 
has expectation zero and covariance 1. Moreover, we typically have 

(2) 

[for instance, under the regularity conditions in paragraph 4.2.2 of Serfling (1980) 
the maximum likelihood equation (1) implies 

y, - £1/2 {en - £-V(*.))| < H(Xi) (en - e)2 

for 0n in N(0), where H(Xi) is a random variable with finite expectation; now 
Markov’s inequality yields (2)]. 

It follows from (2) and the maximum likelihood equation (1) that the maxi¬ 
mum likelihood estimator 6n may be approximated by where Yn denotes 
the sample mean of Yi, Y-z, • ■ •, Yn. 

We now temporarily ignore the fact that 9n and Y~l^2Yn differ slightly. Ob¬ 
serve that knowledge of T.~l‘2Yn and Fj, • • • > F-i yields information about the 
random variable Yt, since Y,"=iYj = nYn — Y^iYi and Yt are not independent. 
Inspired by the fact that this resembles the situation in section 2, we introduce 
the random variable 

[the second equality follows from paragraph 9.11 in Williams (1992)]. Observe 
that Y is in fact the residual obtained by regressing V] on Yj. It follows 
that Y and T^-iYj are uncorrelated [but not necessarily independent]. Hence, 
we may decompose 5 ] in a part Y, which is uncorrelated with Yj and a part 
(n — i + l)^1 Yj which is completely determined by Yj. Finally, observe 
that 

Hence, the random variables 
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are uncorrelated, and have expectation zero and covariance 1. The traditional 
cumulative sum based on these random variables is given by 

Due to the fact that Y% is an approximation to E1/2 [i)n — £-1pj„(Xi)), we 
have that 

approximates Yi. The innovation cumulative sum is defined by 

1 

n — i + 1 

Mathematically, the stochastic process (n ! . ... ^ converges weakly to a 

standard Wiener process under composite out-of-control conditions. 
It fo(t) is the density belonging to a normal distribution with expectation 0 

and variance 1, then the classical score function equals 0 - t and E equals 1. 
Hence, the definition of Cj given in this section coincides with the one given in 
section 2, since 

si/2 (r-x-'Pd7i(xi)) = xi. 
In some applications, it may be necessary to replace E in the definition of Cj 

by its estimator 
f00 T 

/ P^MPen(x)' fd„(x)dx. 
.1—00 

The effects of this replacement vanish as n grows large. 
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