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Abstract 

Hierarchically structured data are common in many areas of scientific research. 

Such data are characterized by nested membership relations among the units of 

observation. Multilevel analysis is a class of methods that explicitly takes the 

hierarchical structure into account. Repeated measures data can be considered 

as having a hierarchical structure as well: measurements are nested within, for 

instance, individuals. In this paper, an overview is given of the multilevel analysis 

approach to repeated measures data. A simple application to growth curves 

is provided as an illustration. It is argued that multilevel analysis of repeated 

measures data is a powerful and attractive approach for several reasons, such as 

flexibility, and the emphasis on individual development. 
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1 Introduction 

Hierarchically structured data are frequently encountered in many areas of scientific re¬ 

search. Such data are characterized by so-called “nested” membership relations among 

the units of observation. For instance, in social and behavioural science research em¬ 

ployees are nested within departments, or sportsmen are nested within teams. In bio¬ 

statistics, birds are nested within breeding areas, or litters of offspring are nested within 

animals, and so on. Classic examples of hierarchical data are found in educational re¬ 

search: students are nested within classes, which are nested within schools. Many other 

examples can be imagined. 

Multilevel analysis comprises a class of methods employing hierarchical linear re¬ 

gression models. Such models explicitly take into account the hierarchical structure of 

the data. Over the past 15 years, much progress has been made in the development of 

multilevel analysis. Originating from educational research (see, e. g., Burstein, Linn, 

&: Capell, 1978; Tate & Wongbundit, 1983; De Leeuw Kreft, 1986; Goldstein, 1987; 

Raudenbush, 1988; Bock, 1989), the technique is increasingly being used by now in 

numerous research settings. Comprehensive textbooks on theory and application of 

multilevel models include Goldstein (1987, 1995), Bryk and Raudenbush (1992) and 

Longford (1993a). 

Traditional “single level” models fail when data are hierarchically structured, be¬ 

cause the assumption of independence is violated. The nested structure causes so-called 

“intraclass dependency” among the observations within units at the higher level of the 

hierarchy. Multilevel analysis provides researchers with a very flexible and powerful 

set of tools to handle hierarchical data, with respect to both model formulation and 

hypothesis testing. From a statistical point of view, the application of multilevel models 

proves to be more precise (Goldstein, 1987; Bryk & Raudenbush, 1992). Moreover, it 

is argued that these models are conceptually enriching (Raudenbush, 1988). 

In multilevel analysis, individuals are typically considered the first level units. Some 

kind of grouping defines the second level units. Similarly, more levels may be specified. 

Commonly, there axe variables describing the individuals as well as describing the higher 

level units. A straightforward and most interesting generalization of multilevel analysis 

is in repeated measures data or growth curve analysis. Data from individuals that 

are measured at a number of consecutive points in time can be understood as having 

a two-level structure: measurements are nested within individuals. In this paper an 

overview is given of this approach to repeated measures analysis. New theory is not 

being developed, but known sources of information are combined to argue that the 
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approach is fruitful and attractive. 

2 A two-level model 

A fairly general two-level model for data obtained from N individuals, nested within 

J groups, each containing Nj individuals, is specified as follows. For each group j 

(j = 1,..., J), the Level-1 or within-group model is 

yj ~ Xjfij -j- Cj, (i) 

where yj is a vector containing values on an outcome variable, Xj is a matrix of fixed, 

explanatory variables, f)j is a vector of regression coefficients and e, is a vector of random 

error terms. At the second level, the Level-1 models are linked together by the Level-2 

or between-group model, given by 

/3j = Vk’7 + Uj, (2) 

where Wj is a matrix of fixed, explanatory variables measured at the group level, 7 is 

a vector containing fixed coefficients and Uj is a vector of random error terms. Usually, 

it is assumed that ej~jV(0,E(1)) with E(i) = that uJ~A(0,E(2)), and that the 

Level-1 random terms are distributed independently from the Level-2 random terms. 

Equation 1 specifies a separate regression model for each group j with the same ex¬ 

planatory variables, but with a different set of regression coefficients. These coefficients 

can vary across Level-2 units, which is expressed in equation 2, where they are treated 

as random variables. 

There are, of course, several ways to specify the Level-2 model. If Wj only con¬ 

sists of a vector of ones, the model specifies random variation of the coefficients across 

Level-2 units. Such models are referred to as random coefficient models (De Leeuw &; 

Kreft, 1986; Prosser, Rasbash, & Goldstein, 1991). If Wj contains one or more Level-2 

explanatory variables, part of the variation of the Level-1 coefficients may be explained. 

Further, the elements of may be modelled differently, for instance intercepts can be 

random, whereas slopes are fixed. 

Equations 1 and 2 give the illusion of a two-step procedure because it seems as if the 

Level-1 coefficients are regressed on the Level-2 explanatory variables within the Level-2 

model. However, it is only conceptually attractive to specify the Level-1 and Level-2 

models separately. The essential part of multilevel analysis is that we are considering 

the mixed linear model (cf. Harville, 1977), obtained by substituting equation 2 into 1, 
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written as 

Ui = xi + XjUj + ej. (3) 

Equation 3 contains a fixed part Xj Wj'y and a random part XjUj+ej. Note also that the 

fixed part contains (an) interaction term(s) between Level-1 and Level-2 explanatory 

variables. These terms are commonly called cross-level interaction terms. For some 

researchers cross-level interaction provides the major attraction to multilevel analysis. 

The covariance matrix of t/j, conditional to the fixed part, is expressed as 

Var{y, \ X^) = Var{XjUl + e,) = E, = X^X,’ + cllNj. (4) 

Models for the complete data are obtained by stacking the J groups’ models in 3 and 4. 

For 4, the resulting matrix E is block diagonal with blocks Ej. It follows that two sets 

of parameters have to be estimated: a set of fixed parameters and a set of random 

parameters, also called variance components. The fixed parameters are the elements of 

7. The variance components are <r^ at Level-1, and the elements of E(2) at Level-2. 

Note that the within-group coefficients f3j seem to have been eliminated from the 

model. In fact, this is why multilevel analysis is usually compared favorably with 

separate (OLS) analyses within the different groups. The estimation of a large number 

of is replaced by the assumption of a distribution (usually joint normal) for these 

parameters over the groups, and the estimation of the parameters (7 and £(2)) of this 

distribution. This makes the multilevel model far more parsimonious than separate 

models within the groups, and far more informative than one single model for the 

complete data ignoring grouping. Additional estimation of within-group coefficients, 

so-called “random Level-1 coefficients”, is of course possible, but more or less apart 

from the mixed linear model described above. 

3 A two-level model for repeated measures data 

Repeated measures data, or growth data, can be described as measurements on one 

variable for the same (groups of) individuals on a number of consecutive points in 

time. It is very natural to extend the concept of hierarchy to this type of data, since 

repeated measurements are inherently dependent responses: they can be regarded as 

nested within individuals. In a two-level model it makes individuals the second level 

and measurements the first level. Models of this kind have already been around for 

some time. Key references include Laird and Ware (1982), Strenio, Weisberg, and Bryk 

(1983), Goldstein (1986a, 1986b, 1987, 1989), Bryk and Raudenbush (1987), Rauden- 

bush (1989) and Bock (1989). Recent references include Bryk and Raudenbush (1992), 
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Hoeksmaand Koomen (1992), Plewis (1994), Goldstein (1995), Rogosa and Saner (1995) 

and Snijders (1996). 

Repeated measurements are almost always obtained for the assessment of change. 

Often, this concerns a kind of growth or development, for instance physical growth or 

learning achievement. Because such data reflect a developmental process as a function 

of time, a suitable method to model them is describing the expected values of the 

observations as functions of time. Polynomial functions comprise a class of functions 

often used for this purpose. 

In a two-level model for repeated measurements, the Level-1 models specify unique 

(polynomial) growth curves, or growth trajectories, for each individual (Level-2 unit). 

At the second level the individual growth parameters are treated as random variables. 

The Level-2 model may simply model the growth parameters as an average over all 

individuals plus a person specific deviation. More elaborate Level-2 models include 

covariates as explanatory variables to account for between-subject variation in growth 

parameters. As such, systematic variation in growth trajectories can be studied, for 

instance, as a function of background variables and/or experimental treatments. 

Usually, the model yields the estimated average growth trajectory over all individ¬ 

uals (possibly conditional on person-level covariates) and a set of estimated variance 

components. At Level-2 these components refer to the (conditional) between-subject 

variation in growth trajectories, whereas at Level-1, the within-subject variation not ac¬ 

counted for by the growth trajectory is estimated. In addition, it is possible to estimate 

the individual growth parameters. 

A translation of this approach is that, for instance, differences in growth rate between 

different groups of individuals will be revealed not only in different mean levels of growth 

rate. Moreover, these differences will be modelled as different distributions of growth 

parameters within each group. 

Analogously to equations 1 and 2, a two-level model for repeated measurements is 

specified as follows. The Level-1 or within-subject model is 

yj=TPi + ej, (5) 

where the vector yj contains the repeated measurements for subject j, (j = 1,, J), 

T is a matrix of known, constant variables (e. g. age in years, number of months, etc.) 

and possible transformations of these variables, f)j is a vector of individual parameters 

specifying the shape of the growth curve for subject j and ej is a vector of random error 
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terms. More specifically, matrix T can be defined as 

1 di dj • • • d| ' 

T = 1 d2 d^ • • • d^ 

^1 d, a] ■■■ apt j 

Matrix T shows that the degree of the polynomial fitted for subject j is p, but maximally 

t — 1 (if there are t measurement occasions). Note that in this formulation, it is not 

necessay for each individual to have t measurements. Alternatively, T may either 

contain a set of standard, orthogonal polynomial vectors (see, e. g., Lury, 1950), or one 

might consider an orthogonalization of the original T. 

The Level-2 or between-subject model is equal to 2, that is, Pj = IV,7 + u,-, but in¬ 

terpreted differently. Now Wj is a between-sdiject design matrix which can take several 

forms. If Wj = /, only simple random variation of the individual growth parameters 

is modelled. More elaborate models arise if Wj contains dummy variables coding sub¬ 

groups of subjects and/or explanatory variables that may account for growth parameter 

variability. Covariates may be fixed across occasions (e. g. gender) or varying across 

time. So-called “time-varying” covariates can be included in T. 

Now the mixed linear model for repeated measurements (substituting 2 into 5, cf. 3) 

is 

Vi = TWjj + Tuj + ej, (6) 

where equal assumptions hold as for 3. The covariance matrix Ej of !/j, conditional to 

the fixed part, is now expressed as 

Var(yj | TWjj) = VariTu, + e,) = E; = TSpjT' + (7) 

One of the assumptions is that ej~A^(0,E(!)) with E^) = cr^Nj- Equation 7 shows that 

for the application to repeated measures, this leads to a relatively simple covariance 

structure at the person-level: error terms are equal and uncorrelated across points in 

time. According to Bryk and Raudenbush (1987), it is very common to assume this 

simple structure when the number of measurement occasions is limited. They argue 

that with short time series, the assumption is practical and unlikely to corrupt results. 

In some cases, however, it may be most useful to model a more complex Level-1 

covariance structure. When there are many time points per subject, one may wish 

to model some form of time dependent or autocorrelation structure (see, e. g., Ware, 

1985; Goldstein, Healy, Sz Rasbash, 1994). Other instances include studies where the 
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measurements are taken close together in time, or situations in which the error terms 

are dependent upon measured variables, such as age or time (Goldstein, 1986b, 1995). 

Error variance may also be group or person specific (Strenio et ah, 1983). A model that 

can handle a variety of error covariance structures is derived by extending equation 6 

to 

V, = TWj'i + Tu} + Zjtj, (8) 

where Zj is a matrix of explanatory variables of which the coefficients are random at 

Level-1. The error covariance structure of model 8 is given by 

Var(Tuj + ZjBj) = T,j = T’E^T1 + Zj’E^Z/, (9) 

Equation 9 contains a Level-2 and a Level-1 part. The covariance matrix £(!) is now 

unrestricted. Time dependent or autocorrelation structures may be modelled by appro¬ 

priate specification of Zj. In practice, matrices Wj, T and Zj will often contain one 

or more of the same variables. Model 8 is the most flexible version of the longitudinal 

mixed linear model, because (compared to model 6) (1) explanatory variables can have 

random coefficients at Level-1 as well, and (2) explanatory variables in the random part 

of the model not necessarily have been included in the fixed part. 

The topic of centering concerns multilevel models in general. It means that one has 

to decide upon an appropriate location of the variables in a model. The choice of a 

particular location will determine the way in which the coefficients should be interpreted. 

One of the most important things to consider is the meaning of a score of zero on the 

predictor variable(s) (for instance, in a simple Level-1 model with one predictor this 

determines the interpretation of the intercept). 

Generally, there are several possibilities for the location of the predictors, such as 

centering around the grand mean, or around the Level-2 means, or no centering at all 

(natural metric). For longitudinal applications, it may be useful to center the Level-1 

predictors in such way that the intercept equals the expected outcome for subject j at a 

specific point in time, for instance, at the start of the training program. Comprehensive 

discussions on centering in multilevel analysis can be found in Bryk and Raudenbush 

(1992), Longford (1993a) and Kreft, De Leeuw and Aiken (1995). 

Relations with MANOVA and GLMs 

Models 6 and 8 are related to the more familiar MANOVA-based treatment of growth 

curve data in the following way. MANOVA approaches to repeated measurements have 

in common that for a group of J individuals the observations on the t different points 

in time are conceived as a set of dependent variables. Hence, models are of the form 
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E[Y] — XM, where Y and X are the complete response matrix and between-subject 

design matrix, respectively, and M is a matrix of coefficients. Wishart (1938) was one 

of the earliest to present a class of models in which MANOVA and polynomial curve 

fitting were connected. His approach was to find growth curves consisting of a set of least 

squares estimates of orthogonal polynomial coefficients. Represented in some defined 

experimental design, these curves could be subject to univariate or multivariate analysis 

of variance. MANOVA, considered superior to ANOVA for this purpose (cf. Visser, 

1985), was combined with polynomial curve fitting in one single model by Potthoff 

and Roy (1964). Their model is of the form E\Y] = XBT, where Y and X are the 

response and design matrix, B is a parameter matrix and T is a matrix containing 

(orthogonal) polynomials (compare T in models 6 and 8). Potthoff and Roy presented 

their model as a generalized MANOVA model. This generalization is however limited to 

the mean structure, that is, the fixed part of the model. The structure of the covariances 

(the random part, compare S, obtained by stacking the J groups’ in equations 7 

and 9) was in fact left unspecified. For most variations of the Potthoff-Roy model it 

holds that they mainly focus on the structure for the mean responses: mean curves 

for specified groups are estimated, and usually simple structures for £ are employed. 

Besides, estimation of individual growth curves receives less attention as well. 

For all J individuals, the longitudinal mixed linear models 6 and 8 can be writ¬ 

ten as E[Y] = (WYyT‘, showing the close similarity of the models’ fixed part to the 

generalized MANOVA model. More recent generalizations of the MANOVA repeated 

measures model include more elaborated structures for £j. Probably, the most compre¬ 

hensive model is discussed by Jennrich and Schluchter (1986) (implemented as procedure 

BMDP-5V in the BMDP package). Their model is of the form Y = (AT)' + VV + E, where 

X contains within-subject (the polynomials in T), as well as between-subject (Wj) ex¬ 

planatory variables, and V may contain T. Writing model 6 as K = (Wr)'T' + UT -f E 

shows the close similarity of both models. The Jennrich-Schluchter model shows where 

MANOVA repeated measures models and random coefficient models meet, although it 

is formulated from within a MANOVA frame of reference (for a more detailed discussion 

see Van der Leeden, Vrijburg, k. De Leeuw, 1996). Model 8 is slightly more general as 

far as the random part is concerned. 

The longitudinal mixed linear models 6 and 8 could also be derived as special cases 

within the class of “generalized linear models” (GLMs) (see, e. g., McCullagh k Nelder, 

1989). Zeger, Liang, and Albert (1988), for instance, study a mixed generalized linear 

model for the analysis of repeated measures data. GLMs are ususally fitted using the 

GLIM package (Francis, Green, k Payne, 1993) which has been designed as an interactive 
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“tool kit” for statistical modelling. As a result, longitudinal mixed generalized linear 

models should be developed (programmed) as GLIM macros. 

4 Estimation and testing 

Multilevel models can be fitted by several computer programs widely available today. 

Major packages include MLS (Prosser et al., 1991), MLn (Rasbash, Yang, Woodhouse, 

& Goldstein, 1995), VARCL (Longford, 1993b) and HLM (Bryk, Raudenbush, & Cong- 

don, 1996). Multilevel-type procedures are also available in SAS (PROC MIXED) and, as 

mentioned above, in BMDP (BMDP-5V) (for a comparative study of MLS, VARCL, HLM and 

BMDP-5V, see Kreft, De Leeuw, & Van der Leeden, 1994). They could also be developed 

within the GLIM package, but this is less straightforward. 

Estimates of the fixed parameters and the variance components of the mixed linear 

models 6 or 8 (stacking the J groups’ models) can be obtained by minimizing the 

deviance indicated by function A, written as 

A(7, £ I y) = c + log |E| + (y - 7W7)'£-»(y - 7W7), (i0) 

where £ has structure 7 or 9. 

Several procedures to minimize A have been developed and implemented in the 

available software. In one way or another, these procedures are all versions of full 

information maximum likelihood (FIML), or restricted maximum likelihood (REML) (if 

multivariate normality is assumed, the deviance equals twice the negative of the loga¬ 

rithm of the likelihood function for these models). REML methods optimize the likelihood 

function conditional on the fixed parameters, that is, with respect to the variance com¬ 

ponents only. It is common knowledge that FIML and REML estimators have several 

attractive properties, such as consistency and efficiency. A specific advantage of REML 

methods is that they provide unbiased estimators of the variance components (e. g., 

Searle, Casella, & McCulloch, 1992, Ch. 6). A drawback of both approaches is that 

generally the parameter estimates must be obtained iteratively. 

ML procedures include the EM algorithm (cf. Dempster, Rubin, & Tsutakawa, 1981), 

implemented in HLM, and the method of Fisher scoring (Longford, 1987), implemented 

in VARCL. Goldstein (1986b) developed an iterative generalized least squares (IGLS) 

procedure, and a restricted version (RIGLS). Both methods are implemented in MLB 

and MLn. If normality assumptions are met, IGLS and RIGLS are equivalent to FIML 

and REML, respectively. An alternative approach is Bayes estimation (Lindley & Smith, 
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1972; Strenio, 1981). For a detailed treatment of the various estimation procedures see 

Bryk and Raudenbush (1992) and Longford (1993a). 

Additional to the estimation of fixed parameters and variance components, the ran¬ 

dom Level-1 coefficients, /3j, can be estimated by the method of shrinkage. In repeated 

measures applications, /3j is the set of growth parameters for subject j. The shrinkage 

estimator /3J is written as 

/j; = Ay/3, + (/ - kj)W^, (11) 

where Ay is an estimated “reliability” matrix (cf. Bryk & Raudenbush, 1992, p. 43) 

and /ly is the OLS estimator of /3y based on the data for group/subject j. Shrinkage 

estimators combine the two available sources of information for estimation of /3j: the 

within-group/subject OLS estimates, and the overall sample estimates Wfi. The more 

reliable the OLS estimates, the more weight is put upon them, and vice versa. Hence, the 

unbiased but inefficient estimator ft is “shrunk” towards the biased but stable estimator 

Wy-y (cf. Longford, 1993a, p. 17). The estimator /?y is also called an empirical Bayes 

estimator (Morris, 1983). 

Single-parameter tests for fixed parameters and variance components can be derived 

as follows (for a comprehensive discussion of hypothesis tests see Bryk & Raudenbush, 

1992). 

Fixed parameters. The ususal null hypothesis for a fixed parameter is Ho : 'fg = 0. 

This amounts to testing the hypothesis that a specific person-level predictor variable 

(in By) has no effect on a corresponding growth parameter. H0 may be tested using a 

z-ratio defined as 

z = 7s/(V7„)I/2, (12) 

where ft is the ML estimate of 79 and Vft is the estimated sampling variance of ft. Bryk 

and Raudenbush, however, argue that in practice a t-ratio with degrees of freedom equal 

to N — p — 1 will often give more reliable results (N is the number of Level-2 units, in 

our case subjects, and p is the number of person-level predictors, except for the unit 

variable associated with the intercept) (see Bryk & Raudenbush, 1992, p. 50). This 

will be particularly important when the number of Level-2 units is small. Only the HLM 

program provides p-values based on the t, the other programs just give standard error 

estimates. 

Variance components. A hypothesis concerning a variance component could be, for 

instance, the null hypothesis that there is no significant variation in the slope parameters 

across subjects. Such hypothesis can be written as H0 : Vg = 0, where <r9 = Var(fty). 

Generally, if Level-2 units contain enough Level-1 units to justify the computation of the 
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OLS estimates (3j, that is here, if the number of measurements per subject is sufficiently 

large, the following statistic can be computed. Let dgj denote the g’th diagonal element 

of Dj = a^T'T)-1. Then the statistic 

(13) 
3 

will be approximately \2 distributed with degrees of freedom equal to iV — p — 1 (see 

Bryk & Raudenbush, 1992, p. 55). 

Sometimes the same hypothesis is tested using a z-ratio based on the estimated 

standard error of a*. However, in most instances the normality approximation will be 

very bad and so these z-tests are not well-founded. 

Generally, likelihood-ratio tests may be the most preferable to test hypotheses about 

the variance components. These tests are well known from standard literature. They 

are derived by computing the difference between deviance-values from “nested models” 

and using a distribution as a reference (see e. g. Wilks, 1962, p. 55). 

5 Illustration: rat growth 

The multilevel model for repeated measures data is illustrated with a set of data on 

rat growth originally presented and analyzed by Box (1950) and afterwards by several 

others (Rao, 1965; Hills, 1974; Strenio et ah, 1983). The data analyzed here are taken 

from Strenio, Weisberg and Bryk (1983). These authors used only a part of the original 

set, and because their purpose was to provide an illustrative analysis as well, they added 

some random error and constructed a covariate. The data consist of the weights of ten 

rats (WEIGHT), measured initially and after each of four consecutive weeks. The covariate 

is mother’s weight (MW). Although simple, this example analysis serves to illustrate the 

multilevel approach to repeated measurements. 

Results from the literature (mentioned above) suggest fitting a linear growth model. 

The variable WEEK has the values 0,1,2,3,4 and 5. The within-rat (Level-1) model can 

be written as 

{WEIGHT),, = A,, + Pu{WEEK)]t + ejt (14) 

and the between-rat (Level-2) model is 

Ay — 7oo + + u0j 

Aj = 7io + 7ii(AnT')j + u^. (15) 
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Table 1: Rat data, parameter estimates for linear growth model with covariate 

Fixed parameter Estimate se t ratio 

0.356 

1.126 

0.250 

2.014 

Variance component Estimate se 

<re2 91.750 23.690 

<rl 82.840 63.210 

<t01 -19.270 19.120 

5.514 6.975 

deviance 376.72 

700 12.940 36.300 

710 0.251 0.223 

701 2.967 11.850 

711 0.147 0.073 

The single-equation specification of the model is 

(WEIGHT)jt = 700 + ImiMW), + ll0{WEEK)]t 

+ln(W EEK)jt(MW)j 

TiiOj -)- uij(WEEK)jt T Cjt. (15) 

Parameter estimates for model 16 have been obtained with MLS using the RIGLS method. 

Results are given in Table 1. 

Note that <r2 is the Level-1 variance component, whereas erg, <toi and of are the 

Level-2 variance components (the elements of S(2))- Hence, Oq and o2 denote the vari¬ 

ance of the intercepts (initial growth status) and the variance of the slopes (growth rate), 

respectively, that is, the variance not accounted for by MW; o0i denotes the covariance 

between both growth parameters. 

Because sample size is extremely small here, we may argue the usefulness of the sigi- 

ficance tests. However, neglecting this problem for the sake of our illustrative purposes, 

the results can be interpreted in the following way. 

Standard errors and t-ratio’s in Table 1 indicate that except for the ‘interaction’ 

parameter 7n, none of the fixed parameters is significant. Fitting a random coefficient 

growth model without the covariate MW (not reported here) shows a significant slope. 

Thus, correcting for mother’s weight reduces the significance of this parameter, but 

keeps the linear trend (710) unimpaired, though weeker. The fixed parameters further 
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Figure 1: Rat data, predicted growth curves for 10 rats 

show that MH has a positive effect on the initial rat weight (701), as well as on the growth 

rate (711). This means that rats with a stout mother have a higher initial weight and 

gain weight faster. 

It is difficult to give an interpretation of the variance component estimates them¬ 

selves, since their value depends on the scaling of the variables. Nevertheless, comparing 

results of the random coefficient growth model without MH (not reported here) shows 

that the covariate has a strong effect on the growth trajectories: MW appears to explain 

a substantial amount of the Level-2 variance, that is, the variance of the initial weights 

and the growth rates. The negative covariance between initial status and growth rate 

is sometimes interpreted as that generally subjects (rats) that start at a low level tend 

to develop faster than others that start at a higher level. 

Additionally, shrinkage estimates (/?*) of the growth parameters were computed for 

each rat. These are used to plot the predicted growth curves in Figure 1. 

6 The merits of longitudinal multilevel 

analysis 

Multilevel analysis of repeated measures data has several attractive qualities which will 

be discussed below. 



34 

Attributes of growth. Every multilevel polynomial growth curve model, even the 

most simple, includes two important characteristics of growth or development. First, 

the (co)variances among the observations are a function of time. This can be seen from 

equation 7 and it is easily illustrated by considering the simple random coefficient linear 

growth model Fjt = 700 + 7ioajf + u0j + UijOjt + ej,. Now let rit = u0j + nijOj, + e^, 

the random part of the model. Then, for any subject j, the (co)variances among the 

elements of yj are given by 

Var(rJt) - (Tg + 2a01ajt + cri^, + <T^. (17) 

Hence, the between-subject variation is a function of time (or age), which makes sense 

because subjects are expected to grow at different rates. 

Second, the responses of a subject on different occasions are correlated, that is, 

every two observations for a single subject are correlated. This characteristic refers to 

the serial dependency in repeated measurements. It can be shown by expressing the 

covariance between the observations of subject j at occasions t and t' as 

Cov(r]t. r= <To T (ojt + + a:,aji’o f (18) 

Equation 18 shows that the covariance between every two responses depends on the 

spacing of the observations, on the relative size of the variances of both the intercepts 

and the slopes, and on the covariance between them. 

Bryk and Raudenbush (1992) present the following topics to characterize the favor¬ 

able properties of longitudinal multilevel analysis, and to compare it with the usual 

MANOVA approach. 

Emphasis on individual growth. The multilevel model for repeated measurements 

explicitly takes into account the individual growth. The starting point of the model is 

the Level-1 model representing the individual growth trajectory. In common MANOVA 

repeated measures methods, individual variation in growth trajectories is not modelled 

directly, but derived from the interaction of repeated measures by individuals. One 

could argue that the hierarchical approach is therefore conceptually more suited for 

growth curve modelling (see, e. g., Willett, 1988). 

Flexibility of approach. Generally, the longitudinal multilevel model can be consid¬ 

ered more flexible than the MANOVA repeated measures model. Within the multilevel 

framework, it is possible to formulate a variety of growth models. Polynomial growth 

curves can be of any degree and there is maximal freedom to chose predictor variables 

in the person-level model for each growth parameter separately. Including time-varying 
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covariates (covariates that vary across occasions) in the Level-1 model is straightfor¬ 

ward. Time variables do not necessarily need to be discrete but may also be continuous. 

Especially noteworthy is the fact that the number of observations per subject, as well 

as the spacing of these observations in time may vary. This means that missing data 

can be handled very well. 

Modelling of the within-subject covariance structure. The longitudinal multilevel 

model allows for the modelling of the within-subject covariance structure (cf. 9). It is 

possible to include explanatory variables that (partially) account for these (co)variances 

and to model specific structures, such as autocorrelation structures. Using MANOVA 

repeated measures methods it is usually impossible to model the within-subject covari¬ 

ance structure. The Jennrich-Schluchter model implemented in BMDP-5V, was the first 

MANOVA repeated measures approach in which (specific) covariance structures could 

be modelled directly (Jennrich & Schluchter, 1986; Dixon, 1988). 

Correspondence in results. Concerning data requirements (e. g. balancedness) and 

assumptions (e. g. about the within-subject covariance structure), conventional MANO¬ 

VA repeated measures methods are more restrictive than longitudinal multilevel models. 

It can be shown, however, that when MANOVA requirements are satisfied, longitudinal 

multilevel models give the same estimates for fixed effects and the same t-ratio’s as 

MANOVA repeated measures procedures. 

Models with more than two levels. The hierarchical approach to repeated measures 

data permits the formulation not only of two-level models, but also of higher-level mod¬ 

els. One could think of a third level, for instance, at which the subjects are clustered. 

In such models, the effect of “organization” on growth can be studied. 
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