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Abstract 

We argue that many models for multivariate longitudinal and cross-sectional 

data analysis have a common ancestry. They all are based on the qualitative idea 

that if we knew the actual state of the world, the relations between the observed 

quantities would be truly simple. This is shown to lead directly to factor analysis, 
IRT, state space models, mixture densities, latent Markov chains, MIMIC, LISREL, 

and various other common models and techniques. We show how our approach 

provides a convenient framework for looking at these models. The EM algorithm 
can be used to estimate the unknown parameters. 

An additional advantage of our approach is that it can incorporate continuous 
as well as interval, ordinal and categorical variables. 
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1 Introduction 

Our starting point in this paper is that we want to describe the relationships between 

(possibly many) variables, and we want to describe this relationship in simple terms. We 

look for simplicity, not necessarily because we believe the world is simple, but because 

simple relationships are easier to manipulate and communicate. 

For Quetelet, Galton, and the early Karl Pearson, the normal distribution was simple. 

When Pearson (1894) first came across non-normal variation in his biometric work, he tried 

to maintain this notion of simplicity by assuming that the sample came from a mixture 

of normal distributions. Thus normality was still the norm, but unfortunately the sample 

was impure, because it consisted of a mixture of types. If we could have separated the 

types by observation, we would have seen the normality, but because we couldn’t the 

statistical analysis has to do the job instead. In the same way, the Pearson polychoric 

model is based on the notion that multivariate normal is simple. Unfortunately we can 

only observe discreticized versions of the variables, which means we observe multinormals 

“mixed” over cell contents. 

In the same way for Spearman (1904), intelligence was simple. It was a construct much 

like the weight of an object, and the test was the spring balance. If uj,; is the weight 

of object i, and a} is the resistance of spring j, then Hooke’s Law tells us that the 

extension of the spring is ytj = in,Oj. This is basically Spearman’s model. Score on the 

test was proportional to the ’weight’ of the subject and to the “resistance” of the test. All 

other relationships between the tests, if they were indeed proper tests of intelligence, were 

measurement errors, i.e. they were dictated by chance. If we select a population of persons 

with a fixed intelligence, then the tests will be perfectly uncorrelated. Correlation between 

tests is merely a consequence of the fact that we cannot select such “pure” populations, 

i.e. it is a consequence of the fact that our populations are of mixed intelligence. If we 

knew the “state” of the system, i.e. the person’s intelligence, then the correlation would 

disappear. 

This very same idea comes back in Lazarsfeld’s (1968) latent class analysis, in a very 

simple discrete form. It also has dominated item analysis, or item response theory, ever 

since the work of Lawley (1944). In item response theory the basic assumption is called 

local independence, and the relationship between the variables is “explained” by mixing 

populations with local independence. 
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Factor analysis, latent class analysis, and item response theory are all special cases of the 

analysis of inter-dependence. All variables play the same symmetric role in the model, we 

do not measure any input to the system, only output. In the analysis of dependence, it 

is precisely the relationship between input and output variables that we are interested in, 

and the model is inherently asymmetric because of this. 

In classical regression analysis there is a very simple model for each cell in the design. 

All cells corresponds with normal distributions with the same shape, with a cell-specific 

shift. The joint distribution of the predictors and the outcome is a mixture of the cell 

distributions, although in this case the mixing proportions are known. By using the 

design matrix, we automatically unmix the distribution. The mixing variable is completely 

known, and thus we can analyze conditionally on its values (we consider the design matrix 
as fixed and known). 

The notion of local independence is applied most naturally in the analysis of dependence 

by using MIMIC models. MIMIC models, introduced by Joreskog and Goldberger (1975), 

again revolve the notion of a state, similar to intelligence or ability. Within a given state 

input and output are independent. Or, to put it differently, the state splits input and 

output, and all influence of the input on the output goes through the state. States are 

unobserved, as usual, and dependence of input on output comes about by mixing states. 

MIMIC notions are easy to generalize to the longitudinal situation, in which we observe 

the same input-output system at various points in time. This defines a sequence of MIMIC 

models. Of course replicating a MIMIC model on independent individuals also leads to 

a sequence of MIMIC models, but in that case the models are unconnected, because of 

independence. In the case of temporal variation, we need to connect the models because 

of the time-dependence. The basic idea in dynamic multivariate analysis is to link the 

models through the state variables. Not only do the state variables split input and output, 

they also split points in time. Thus all information about the past is collected in the 

present state of the system, and if we knew the present state, our predictions would not 

be improved by knowing about the past. Given the present state, we agree with Henry 

Ford that “history is bunk”. 

In the next section we will make these notions more precise, but for the time being it suf¬ 

fices to observe that Joreskog and Goldberger’s marriage of factor analysis and regression 

analysis can be extended in the time dimension to include state space analysis. In time, 

we have linked MIMIC models, and these linked MIMIC models may be stacked on top 

of each other if we have independent replications. We are interested in the time evolution 
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of the state, because that summarizes all the relevant information for prediction, and 

thus all the relevant dynamics in the system. If state in cross-sectional factor analysis 

is intelligence, then state in state space models in the same context is development of 

intelligence, with similar interpretations for ability. 

It is of importance to emphasize that in cross-sectional latent variable theory, a great deal 

has been made out of the fact that input, output, and state can all be either discrete 

or continuous. Regression of output on state can have many different possible forms 

because of this reason. The basic notion of state, or of latent variables, or of conditional 

independence, is not related to the nature of the various regressions, which should be 

tailored to the problem at hand. 

2 Dynamic Multivariate Models 

The basic model we are interested in is drawn in Figure 1. Actually there are N such 

models, one for each individual. The individuals are independent. We write 

prob[(A^.1 A?!, Aj-g z^XA^j At=1 !«)] (2-1) 

for the probability of observing the data X, Y and Z. Our basic task in this section 

is to derive a general expression for this probability, taking the properties of the model 

in Figure 1 into account. The key result used to translate directed acyclic graphs into 

statements about joint distributions is a simple one. We suppose that, given z,i, yn is 

independent of all other variables. Also, given z;,i-i and 2;(, z,'( is independent of all other 

variables. 
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Figure 1: Linear dynamic model for individual i. 

Under these conditions Theorem 2.1 is valid. 

Theorem 2.1. 

T 

prob[/\J=1xit | z;o]pro6[zjo] H pro%,-( | Zit}prob[zit \ A x,-.,] 
t-i 

Proof. The proof is by induction over T. The result is trivially true for T = 1. Assume it is 

true for T — 1. Start with a simple application of the definition of conditional probability. 

prob[(Atr=1yi,)(Afc0i:„)(A^;1x1i)] = 

prob[y,-r | (Af="i1y.i)(Atr=0Zii)(Af=1x„)] X 

prob[z,T | (Af^1 y,t){Af=“1 z,i)(Af=,xi()] x 

prob[xiT | ( A IS* y,t) (A^1 zit) ( Af^1 x,i)] x 

prob[(AtT=rl1j/I<)(Af=o1zI()(AtT=r11Xit)] 

The assumption about y,(, Zit and x;t tells us 

prob[piT | (Af=ri1y,t)(Af=o2,()(Af=1x,i)] = prob[ylT | ziT], 

and 

prob[ziT | (A^1!/,()(A^ZitJCA^jX,,)] = prob[ziT | A x,iT], 
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and 

prob[x,T | (Af=rl1y,,)(Af=rolx,t)(A^i1xi()] = prob[x,r | A zi0]. 

But this means that we have proved the recursion 

prob[(Af=l!/i,)(Af=o*ii)(Af=i:r«)] = 

probjt/.r | z,T]prob[ziT | A x^rlproblxiT | A^i'x.f A zi0] 

prob [( A^'y.-,) (Af^zu )(A^T11 x,,)]. 

By the induction hypothesis this means the result is true for T. □ 

We now introduce some simplifying assumptions, which just serve to make the final result 

easier to write down. If necessary, they can be gotten rid of again. 

Corollary 2.2. If 

pTob[Aj=1xit | Zio] = prob[Aj=1Xit] 

and z,o is a.s. equal to a constant, then 

prob[AT=iyit \ Aj=1Xi,] = 
T 

[][ prob[yit | Zii]pro6[zi( | Zi,i_i A x;t(]dz,r . 
t=l 

. dzi0. 

Proof. Start with the result in Theorem 2.1. We remove the marginal distribution of the 

input variables by conditioning, and then integrate out the state variables. □ 

We see that the latent variables or state variables serve two purposes. They mediate the 

effect of input on output, and they channel the effect of the past on the present. Actually, 

the state space process is first-order Markov, although the observed output process can be 

much more complicated. The first-order Markov property is the basic notion of simplicity 

used in this context. It is clear that the state variables, with their double function, have 

to do a lot of work, and consequently the dimensionality of the state space (the “number 

of factors”) may have to be quite big for a satisfactory fit. 
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3 Specific Submodels 

There are a number of useful distinctions that can be drawn in discussing this class of 

models. In the first place there are models with and without input. There are models in 

which the state variables are discrete, and models in which they are continuous. In some 

models the input and/or output variables are discrete, in others continuous. There are 

models which are cross-sectional, in the sense that T = 1, and models which are time- 

series, in the sense that N = 1. Discussing the models in these terms shows that they 

do indeed cover a lot of the latent variable models discussed in psychometrics and other 
disciplines. 

We shall discuss a number of these special cases in a little bit more detail. What we 

propose here is a simple and straightforward widening of the framework introduced by 

Lazarsfeld and Henry (1968) and Guttman (1941) in the forties, and then extended by 

Anderson (1959), McDonald (1962), and Bartholomew (1987) for cross-sectional models, 

and of the framework discussed, for example, by Metz (1977) for time series. 

As mentioned in the introduction, in the class of cross-sectional models without input we 

find factor analysis (continuous state, continuous output), latent class analysis (discrete 

state, discrete output), latent profile analysis (discrete state, continuous output), latent 

trait analysis (continuous state, discrete output), and of course various combinations of 

these techniques. MIMIC models are cross-sectional with input, and again we can have 

discrete/continuous state-space and discrete/continuous input/output to describe various 

MIMIC variations. Classical state space models are usually for the time-series situation, 
in which N — 1, although this is by no means necessary. 

If IV = 1 the state space model has far too many parameters, and we need to get statistical 

stability from additional assumptions. The obvious one is stationarity, which means that 

the “structural” parameters of the model are constant over time. In this way observing 

more time points gives us more information about these parameters, and thus, in the limit, 

they can be estimated consistently. If N » 1 we can hope to estimate nonstationary 

models, such as the discrete latent Markov chains discussed by Van der Pol and De Leeuw 

(1986), or the continuous LISREL-type models discussed by MacCallum and Ashby (1986) 
and Oud et al. (1990). 

There is an elegant device, familiar from the psychometric tradition, but actually starting 

with Pearson, which makes it possible to generate models with discrete (or truncated, 
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or transformed) output from models with continuous output. This can be translated in 

terms of simplicity. We think the continuous models are simple, and we build models for 

the observed variables on the basis of these simple models. Before we discuss these, we 

shall look at continuous models in more detail. 

4 Continuous output variables 

Models with continuous variables remain important, because they are parsimonious, and 

because they can be used as stepping stones to construct models with continuous latent 

indicators. The previous formulations of the model were given in terms of the density or 

probability mass function. Now we will introduce model parameters and will switch to 

the equivalent formulation in terms of random variables, which we distinguish from fixed 

quantities by underlining. The conditional expected value and variance of the output 

given the input are computed. 

The natural assumptions in this case are linearity of regression and homoscedasticity. We 

look at the equations for a fixed value of i. More precisely, we assume that the conditional 

expectation of given and depends linearly on zt only. Moreover, the 

conditional expectation of z, given A1-^ and depends on zt_1 and xt only. Thus 

yt = HtZt + Sj, 

& = FtZt-i + G‘*t + 6i 

(4.1a) 

(4.1b) 

where 

and homoscedasticity means 

V (J,) = ft, 

vfe) = e. 

These equations define the discrete linear system, made famous by Kalman. In these 

classical state space models it is usually assumed that the matrices Ft, Gt and Ht (and 
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even f2 and 0) are known from the physics of the problem, and only the state variables 

have to be estimated. For this the Kalman filter is applied, which is in this sense a method 

for computing “factor scores”. 

Lemma 4.1. 

£i-l- > 

6-L Ajli 

Proof. Again we use recursion. □ 
Theorem 4.2. Suppose, again to simplify notation, that zi0 is a.s. equal to zero. We 

define 

Pt =\ nL.+i Fk -s < < 
iJ [/ s = t' 

Then 

t 

5=1 

t 

v (yj Af=1 i?s) = 0 + E ntpt,np't,H't, 
5=1 

while 

mint,u 

c(M(-yJ= E HtPt.n.P'v,H'v. 
5=1 

Proof. We can solve the stochastic difference equation (4.1), and we obtain 

t t 

2U = ^ ^ PtsGaX^ + y ^ Ptaf^i 

5=1 5=1 

and thus 

t t 

y, = ]T HtPtsGsx, + H'P.st, + S,- 
5=1 5=1 

The Theorem follows directly. □ 
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5 Latent output variables 

If our models have categorical, ordinal or interval output variables, but we have the idea 

that these outcomes are really an imprecisely observed continuous process, then we can 

apply the same ideas as used by Pearson in his polychoric models. Actually, there are two 

versions of this idea, which both fit rather neatly into the general framework. 

In the first approach we change the formulation somewhat to obtain the model 

prob[Af=177i( | = 
T 

Q probfr/n | z,j]prob[z,'! | z,,i-i A Zi,(]dziT • • • dzio- 
ZiOfiZiT f=l 

The blocks yn have been replaced by the blocks ??,4, which are the unobserved or latent 

output variables. We assume that the r],t have some known distribution. The idea here 

is similar to the latent state as an indicator of the output: the y,t are a function of an 

unobserved or latent output variable (See Figure 2). Such a change of formulation is 

useful when the output variables have been measured at lower than interval level. 

Figure 2: Linear dynamic model for individual i, with yu an observed and r)xt an unob¬ 

served output variable. 

Suppose block ryt has mt variables, indexed by j. We allow the number of input and 

output variables to differ for each t. In that case there is no reason to assume that the 

number of factors or states would be the same for each t. Of course, we may constrain mt 
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to be equal for each time point if that would be appropriate for the particular analysis 

conducted. 

We now have to connect the observed with the unobserved output, and this can be done 

by assuming some kind of transformation for each separate observed output variable: 

Vijt — FjtiVijtityi 

where Fjt is a deterministic transformation which depends on a number of parameters, 

collected in A. In practice we will often assume Fjt to be time-invariant, so that Fjt = Fj. 

One obvious case, for instance, for assuming so is when i/;jt is the same for every t. This 

implies that each variable j has a unique transformation. It is not necessary that A be 

known beforehand as it can be estimated in a later stage as well. 

It follows that: 

prob[Af=1s/„ | AtejXif] = prob[A?LiS/;t | A^ulprobfA^??.-* | Af=1x„]. (5.1) 

Because of the Markov property of zn and because of the fact that yn depends on r]tt only, 

it follows that 

T 

(5.2) 

For nominal variables, we have a lot of freedom in our choice of transformation, given 

the categorical properties of the variables: the new values for the categories can in fact 

be chosen freely as long as they satisfy equality and inequality constraints. For nominal 

variables, we thus assume that Fjt(», A) is a step-function, mapping the real line into 

, c/cjt}, with Cijt the i-th category of variable j at timepoint t. Then, using (5.1) 

and (5.2) we can write 

probtA^jj/u | Af=iX„] = / problA^r?,, | Af=1x,(J ]T dr)«, 

where 

0,(A) = ®f=1 >J=11 jt '7=1 ^WA). 

For ordinal variables, we have less freedom in our choice of transformation, as the ordering 

of the categories has to be preserved. This implies that we assume, in the tradition of 
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the Box-Cox approach, that the transformation is a differentiable and strictly monotone 

function for each parameter A, in which case 

prob[Af=,yit | Af=1z„] = prob^^F'1^,) | Af=1i,,] —‘ J17’1’ ^ 
i=i ay'‘ 

Ft(», A) can be, amongst others, a step function or a Box-Cox transformation function. 

Note how the formulation for ordinal variables is thus a special case of the more general 

formulation we used above for categorical variables. 

A second approach is to use mixture distributions. In such a mixing approach the above 

results simplify to a concise expression: 

mt 
prob[j/i( | r)i,] = J"Jprob[t/,jt | Jfat], 

probfA^ji/it | A^x.-i] = 

f f it 
/"'/ nnprobt^Ai 

d d I’l.j"} 1=1 j=i 

T mt 
prob[Af=1 riijt \ /<f=lxit\ driijt. 

t=i j=i 

Note how in the mixing approach, transformations for nominal and ordinal variables are 

combined in a uniform formulation. 

The mixing concept, in which the observed output variables are transformations of layers 

of mixes, can also be applied to distribution-free observed output variables which are 

continuous. In that case the distributions of the observed variables are transformations 

or mixes of specified distributions of latent variables. 

We have now arrived at a point where relatively simple formulas have been derived for 

probtA^-jt/u | A^-jXu]- These simple formulas contain product terms which are easy to 

work with. Given the structure of the formulas, the EM algorithm is an obvious choice 

for estimating the unknowns. 

We will now show how to fit the model to data, simultaneously finding optimal transfor¬ 

mations for output variables. 
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6 The EM algorithm 

Often a sufficiently general framework, which encompasses a lot of different techniques, 

comes with a “natural” class of algorithms. These algorithms may not always be optimal 

for any particular special case, but they are usually of a simple structure, and they are 

guaranteed to be available for any model in the class. For the ALSOS approach to multi¬ 

variate analysis (Gift, 1990), these were the Alternating Least Squares algorithms, and for 

the mixing or latent variable approach in this paper this is the Expectation/Maximization 

or EM method, presented first by Dempster et al. (1977). 

For a discussion of the EM algorithm as a special type of majorization algorithm, with ma- 

jorization provided by Jensen’s inequality, we refer to de Leeuw (1994). For our purposes 

we merely point out that EM algorithms maximize functions of the form 

by solving a sequence of maximization problems. The function maximized in step k is 

(6.1) 

where 

and contains the last estimates of the parameters in the iterative sequence. 

From corollary 2.2 we can now formulate the following theorem. 

Theorem 6.1. In a step of the EM algorithm we maximize, if the current set of param¬ 

eters is the following function of 8: 

Y, / / prob{(z | x A y)logprobe[zit \ 2;,i-i A xujdzudz^t-! 
t=l •'x't V*»,*-! 

where 

prob^z | i A y) = prob^Aj-^u \ [Af=1xit] A [Atr=1yi(]), 

and the £ are identical to the 0^ in (6.1) 
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Proof. This is just a matter of substituting our multivariate dynamic model in the ma- 

jorization function, and simplifying. d 

It is obvious from the Theorem that the simplifications resulting from majorization will be 

especially impressive in the case of exponential families (for instance normal distributions), 

where the logarithm inside the integral sign reduces computing the integral to computing 

the expected value of a sufficient statistic. 

Using the general principles of EM algorithm construction, it is also possible to construct 

methods to optimize the likelihood functions for the models in the previous section. This 

is true for the ones using the Box-Cox approach, and for the ones with use additional 

mixing. 

7 Conclusion and discussion 

In the above, we presented a framework that encompasses a wide class of models. The 

class includes amongst others multiple regression, factor analysis, MIMIC-type models 

and multivariate dynamic models. Furtermore, distribution-free continuous, as well as 

interval, ordinal and nominal variables can be taken into account. The general approach 

for estimating the model parameters uses the EM-algorithm. 

A first question to be answered is what practical benefits our approach has over existing 

methodologies for similar data analytic situations. The most obvious competing frame¬ 

work is provided by structural equations modeling. There is much recent research dealing 

with modeling the dependence structure of variables using caused models, of which struc¬ 

tural equations models are a subclass. The modeling should be done in such a way that 

the structural properties of the graphs that depict the relations between the variables, 

such as connectivity and separation, are isomorphic with the dependence structure of the 

variables. This is often.called “causal modeling”, a description which is unnecessarily 

controversial. The controversy arises from attributing too much truth to the models, and 

from not using models as what they are, namely tools. Models are tools in the sense that 

they are filters, or smoothers, which can be used to bring data in a form which is more 

interesting, more easy to communicate, or more easy to relate to existing theory. We 

separate the signal from the noise by using prior theory whenever it is available, and by 

using inductive techniques otherwise. We can talk about our results in causal language, 

as long as we realize that this language is simply another (verbal) model with which we 
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overlay the statistical analysis. Verbal models are however by nature vague, and may thus 

lead to misconceptions. 

A second controversy arises from the fact that the so-called causal models have also 

been used, mainly in the social and behavioural sciences, to dress up weak data. Using 

causal terminology suggest a certainty which is, however, mostly absent. In many cases, 

the outcomes of such models depend largely on accidental properties of the data and 

arbitrary choices of the researcher. More particularly, there are many reasons to distrust 

highly specific models in which some of the relations between variables are present, and 

some of the other comparable relations are absent, and there are no clear reasons for either 

presence or absence. This has given causal models a bad name, although obviously the 

problem is not with the model but with the data and the way the model is applied to the 

data (and perhaps the way the techniques have been sold commercially). 

Contrary to common practice with causal models, we propose to use full models, in which 

the dependence that is modeled depends on global and fairly uncontroversial choices. 

Exploratory factor analysis is one example, multiple regression is another. All the re¬ 

lations are there between the predictors and the criterion, or between the factors and 

the indicators. Such full models are much more descriptive than the models whose fine 

structure suggests much more prior knowledge than we actually have. The former can 

be used as data reduction techniques, and in fact in most cases they axe not far from 

saturated models. Multiple regression and complete recursive path models are saturated, 

factor analysis and the state space models we discuss here can be made saturated by 

introducing sufficiently many latent variables. 

The choices we have to make to construct a model are really simple. In multiple regression 

we only have to choose which variable is the criterion, in factor analysis we only have to 

choose the number of factors, in MIMIC type models we have to distinguish input and 

output variables and choose the number of factors. In linear dynamic systems we have 

to order the blocks of input, state, and output variables in time. These axe simple global 

choices, with which few people will disagree. The filtering done by the model is entirely 

in the dimensionality of the state space or factor space, and we easily see the effect of this 

by looking at different dimensionalities. 

Finally we have to mention that further research is needed to show the practical relevance 

of our general framework. For instance, the convergence speed of the EM algorithm 

in our context has to be investigated. Also, using generated data, comparisons with 

competing methods for submodels will have to be made, the most notable being the 
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structural equations models (Bentler (1989); Joreskog (1988)), the nonlinear dynamic 

systems models proposed by Bijleveld and de Leeuw (1991) and the latent Markov models 

proposed by Langeheine and others (Langeheine and van de Pol (1990); Van der Pol and 

De Leeuw (1986)). 
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statistische programma’s en pakketten die mogelijk voor een breed statistisch publiek zinvol 
en bruikbaar kunnen zijn. Bijdragen voor deze rubriek mogen de 12 pagina’s niet 
overschrijden. Op z’n minst moeten in een bespreking de volgende zaken aan de orde komen: 

0 Administratieve gegevens: naam, versienummer, maker, importeur, prijs; 
0 Technische gegevens: type machine, vereist geheugen, harde schijf wel of niet nodig, 

omvang bestanden; 
0 Statistische inhoud: mogelijkheden, kritische beoordeling; 
0 Bewerking van gegevens: mogelijkheden, koppeling met andere pakketten; 
0 Gebruikersvriendelijkheid: stuurtaal (menu/commando), helpschermen, dokumentatie. 

Bijdragen voor deze rubriek kunnen worden gestuurd naar bovengenoemde redacteur van deze 
rubriek. 
Ook producenten en verkopers van statistische programmatuur kunnen hun produkten ter 
evaluatie aanbieden. 




